
FLEX-MPI: An MPI Extension for Supporting

Dynamic Load Balancing on Heterogeneous
Non-dedicated Systems

Gonzalo Mart́ın1, Maria-Cristina Marinescu2, David E. Singh1,
and Jesús Carretero1

1 Universidad Carlos III de Madrid, Leganés, 28911, Spain
gmcruz@arcos.inf.uc3m.es

2 Barcelona Supercomputing Center, Barcelona 08034, Spain

Abstract. This paper introduces FLEX-MPI, a novel runtime approach
for the dynamic load balancing of MPI-based SPMD applications run-
ning on heterogeneous platforms in the presence of dynamic external
loads. To effectively balance the workload, FLEX-MPI monitors the ac-
tual performance of applications via hardware counters and the MPI
profiling interface—with a negligible overhead and minimal code modifi-
cations. Our results show that by using this approach the execution time
of an application may be significantly reduced.

Keywords: Dynamic load balancing, distributed computing, heteroge-
neous systems, hardware counters.

1 Introduction

The work described in this paper focuses on the efficient distribution of program
workloads on heterogeneous platforms composed of processors with the same
instruction set architecture (ISA) but with different performance. This work
targets parallel applications based on the SPMD (Single Program Multiple Data)
paradigm. A large proportion of these applications are iterative and alternate
phases of computation and communication; linear system solvers such as Jacobi
and Conjugate Gradient from NPB [1] are good representatives of this class of
applications and are used as benchmarks in our evaluation. We also evaluated
our approach on EpiGraph [2], a significantly more complex HPC application.

We introduce FLEX-MPI, an MPI extension which monitors the performance
of an application and uses this information to make decisions with respect to
the distribution of the workload and the data between processes. We focus on
an adaptive strategy for balancing the workload of applications that run on non-
dedicated systems, in which several applications run concurrently and share the
computing resources, e.g. CPU, memory, and cache. Sharing resources means
that applications have external loads which degrade their performance.

We consider both burst and long-term external loads. Burst loads correspond
to short-duration external loads which do not significantly affect the application

F. Wolf, B. Mohr, and D. an Mey (Eds.): Euro-Par 2013, LNCS 8097, pp. 138–149, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

FLEX-MPI: An MPI Extension for Supporting Dynamic Load Balancing 139

performance. Long-term external loads reduce the application’s CPU usage af-
fecting its performance. FLEX-MPI is able to discriminate between these two
kinds of loads and flexibly apply different load balance policies depending on
their magnitude. One of the advantages of this approach is that it does not
require prior knowledge about the underlying architecture. We use hardware
counters and the MPI profiling interface to directly measure performance met-
rics at runtime. The main contributions of this work are:

– A precise, flexible dynamic load balancing technique based on monitoring
the actual performance of the applications via hardware counters and the
MPI profiling interface.

– A powerful, decentralized approach that works for homogeneous and het-
erogeneous systems which can be either dedicated or non-dedicated.

– A low overhead, generic method for integrating dynamic load balancing
into existing MPI-based SPMD applications.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 introduces FLEX-MPI. Before concluding in Section 5, we present an
extensive performance evaluation in Section 4.

2 Related Work

Dynamic load balancing for heterogeneous systems is a topic of great interest
since current distributed computing systems—mainly grid and cloud, but also
cluster—are becoming predominantly heterogeneous [3]. An efficient approach,
originally designed for homogeneous systems, consists in adapting the parallel
code by software techniques which balance the load depending on the compu-
tational power of each computing unit. But to adapt parallel code to run on a
heterogeneous system requires prior knowledge about the characteristics of the
architecture [4], which is not always feasible.

The basic approach for dynamic load balancing in heterogeneous systems
is based on a theoretical model of the system. Belikov et al. [5] present an
architecture-aware cost modeling technique based on theoretical CPU speed,
cache, RAM, and latency. However, theoretical values do not always match the
performance achieved when running a real application and do not consider the
external load introduced by other processes running on the same processor.

Several projects propose approaches based on collecting performance metrics
at runtime. Galindo et al. [6] present a model based on the relative computing
power, a metric which is obtained by measuring the execution time invested by
a processor in performing a given computation. The computation is measured
as the number of rows of a dense matrix, an inaccurate model when it comes to
sparse data structures. Their approach only considers executions on dedicated
systems. ALBIC [7] is a system based on [6] which measures the system load by
collecting performance metrics at runtime. However, this technique is intrusive
since to collect this data and feed it to the monitoring system they add a specific
module in the Linux kernel. A similar approach is Dyn-MPI [8], a dynamic MPI

140 G. Mart́ın et al.

implementation which targets parallel applications running on non-dedicated
architectures. Dyn-MPI requires a daemon running in each computing node to
extract performance metrics. It is highly code intrusive since many of the calls,
including standard MPI functions, must be instrumented.

Bohn et al. [9] measure the performance of compute nodes by extracting infor-
mation from files of the Linux OS and benchmarking both the processor and the
memory, operations which are usually expensive. HeteroMPI [10] is anMPI exten-
sionwhichwas specifically designed for programming on heterogeneous systems. It
canmeasure processor performance by using a benchmarking function whose code
must be provided by the programmer. HeteroMPI requires a significant intrusive
instrumenting, even for simple parallel programs. AdaptiveMPI [11] is an adap-
tive implementation of MPI built on top of the CHARM++ runtime environment
which supports dynamic load balancing through processor virtualization. It only
offers full compatibility with the MPI-1.1 features and MPI standard programs
need to be significantly modified.

Hardware counters have been demonstrated to be an effective way of mea-
suring computer performance [12]. FLEX-MPI introduces a novel dynamic load
balancing algorithm which flexibly adapts to external load in heterogeneous non-
dedicated systems. Our approach is based on collecting precise system perfor-
mance metrics at runtime via hardware counters and can be integrated in existing
MPI-based SPMD applications with minimal code modifications.

3 FLEX-MPI

FLEX-MPI is an MPI extension which integrates three functionalities: monitor-
ing, load balancing (LB), and data redistribution. We implemented FLEX-MPI
as a library on top of the MPICH-2 implementation. This makes it fully com-
patible with the MPI-2 features and allows it to easily link with any existing
MPI-based application. FLEX-MPI’s API is described in detail in [13].

3.1 Monitoring

The purpose of the monitoring functionality is to collect performance metrics for
each process of the parallel application during its execution. The applications
we target are iterative and alternate computation and communication phases.
We monitor computation by means of hardware counters (via PAPI [14]) and
communication by using the MPI profiling interface (PMPI), which allows to
profile the communications without modifying the source code of the application.

FLEX-MPI targets SPMD applications using one-dimensional domain decom-
position with distributed data, a parallelization method used by a large number
of scientific parallel applications. In these applications the portion of the domain
assigned to a process is usually expressed as a combination of a count—which
represents the number of elements, rows, or columns assigned to the process—
and a displacement. Fig. 1 illustrates an example of a SPMD application using
the FLEX-MPI library, in which the data structure managed by the application

FLEX-MPI: An MPI Extension for Supporting Dynamic Load Balancing 141

L1:
L2:

L3:

L4:

L5:

L6:

L7:

L8:

L9:

L10:
L11:
L12:

L13:

L14:

L15:

:
:
:

:

:

:

#include <mpi.h>
#include <xmpi.h>
int main (int argc, char *argv[]) {

MPI_Init (argc, argv);
XMPI_Get_wsize(size,&displ,&count);
Load_data (&A,displ,count);
XMPI_Register (&A,“vector”,size);
for (it=0; it<maxit; it++) {

XMPI_Monitor_init ();
//Parallel computation
for(i=displ; i<displ+count; i++){

A[i] = ...A[i]...;
}

MPI_Allreduce (...);
XMPI_Monitor_end(&displ,&count);

}

MPI_Finalize ();
}

FLEX-MPI
library

MPI library

P
M

P
I In

terface

PAPI
library

2

1

4

3

Monitoring

Dynamic
process

management

Data
redistribution

Load balancing

Fig. 1. Structure and runtime calls of a parallel code linked with the FLEX-MPI library

(vector A) is distributed between the processes. Each process operates in parallel
(L10-12) on a different subset of the data structure. The parallel code is instru-
mented with a set functions to get the initial partition of the domain assigned
to every process (L5), register the data structure managed by the application
(L7), enable monitoring (L9), and rebalance the load as needed (L14). The moni-
toring functionality dynamically collects performance metrics provided by PAPI
(arrow labeled 2) and the MPI library through the PMPI interface (arrow la-
beled 3). When a program iteration finishes (at line L14) these metrics are fed
to the LB functionality (arrow labeled 1), which computes the new distribution
of the workload. In our work, we consider each of the computing cores of modern
multiprocessors as an independent processing element (PE). After a new work-
load distribution has been decided, the data redistribution functionality moves
the data to the processes that will need it (arrow labeled 4). A more detailed
description of the instrumentation process can be seen in [13].

Our implementation uses low level PAPI interfaces to track the number of
floating point operations FLOP , the real time Treal (i.e. the wall-clock time),
and the CPU time Tcpu (i.e. the time during which the processor is running in
user mode). These metrics are collected for each process of the parallel appli-
cation, and they are preserved during context switching. The FLOP is needed
to effectively track and measure the performance at the granularity of each pro-
cessing element, while the real time and CPU time allow us to identify if there
exists external application load. In our model, we assume floating-point based
applications which exhibit a linear correlation between the FLOP and the work-
load size, which is reasonable for many parallel applications (e.g. linear system
solvers). An initial calibration is required because in heterogeneous systems the
events counted by hardware counters are processor specific. This calibration is
carried out by performing a microbenchmark with a negligible overhead before
starting the computation of the application.

142 G. Mart́ın et al.

3.2 Load Balancing

The load balancing functionality receives as input the per-process values for the
performance metrics measured via monitoring. When load imbalance is detected,
the algorithm decides the new distribution of workload based on the per-process
performance metrics. Although monitoring can be performed at every iteration
we trigger load balancing only every sampling interval—consisting of a fixed
number of iterations—to reach a trade-off between the overhead of this operation
and the performance gain as result of it.

To decide how much workload to re-assign to each process, the load balancing
algorithm first computes the MFLOPS that each process i executed during the
previous sampling interval. MFLOPSi is defined in Equation 1 as the ratio be-
tween the number of floating point operations FLOPi and the real execution time
Treali during a given sampling interval. The fraction of the workload assigned
to process i is computed in Equation 2 depending on the relative computing
power (RCPi) of a process i, which is computed as the MFLOPSi divided by
the total MFLOPS for all of the p processes. RCP is used to estimate workload
distribution on parallel applications, since it provides a normalized value of the
computational power of a process relative to the computational power of the
whole system [4,7].

MFLOPSi =
FLOPi

Treali
(1)

RCPi =
MFLOPSi

p∑

i=0

MFLOPSi

(2)

Algorithm 1 shows the pseudocode for the load balancing algorithm, which is
evaluated at each sampling interval n. The first step (line 1) detects which of
the processing elements involved in executing the application are dedicated and
which are not. When the difference between the CPU time and the real time of
a processing element is small we can safely assume that it executes only one pro-
cess. When the real time is significantly higher than the CPU time then the pro-
cessing element is being shared between multiple processes - either of the same,
or of a different application. The real time is always a little higher than the CPU
time because of OS interrupts; we use a threshold parameter TH1 to account
for this overhead and mark the difference between dedicated and non-dedicated
processing elements. We consider that values of the real time that surpass the
CPU time by 5% are reasonable for setting the tolerance threshold TH1. Each
process uses a boolean variable dedicated to record whether it uses the process-
ing element in exclusive mode or not. By applying a reduce operation (line 6)
over all processes we know whether there exists any non-dedicated processing el-
ement. The reduction result—stored in the variable global dedicated—is false
if at least one processing element is non-dedicated.

We evaluate whether we should redistribute the workload if either (1) the
processing elements have been used in exclusive mode during the current sam-
pling interval but the application is unbalanced or (2) long-term external load
is detected on any of the processing elements. It is possible that the applica-
tions that share the resources with our application execute during short, iso-
lated bursts which do not affect the overall performance of our application.

FLEX-MPI: An MPI Extension for Supporting Dynamic Load Balancing 143

Algorithm 1. Pseudocode for the load balancing algorithm

1: if ((Treali − Tcpui)/Treali) < TH1 then
2: dedicated← true
3: else
4: dedicated← false
5: end if
6: global dedicated← Allreduce(dedicated,AND)
7: buf [n]← global dedicated
8: external load← evaluate external load(buf, k)
9: if (global dedicated == true) or (external load == long term) then
10: {FLOP, Treal} = Allgather(FLOPi, T reali)
11: MFLOPS = compute MFLOPS(FLOP, Treal)
12: if (max(Treal)−min(Treal)) > (TH2 ∗max(Treal)) then
13: RCP = compute RCP (MFLOPS)
14: Data redistribution(RCP)
15: end if
16: end if

In contrast, long-term external loads consume a lot of computer resources during
a continuous period of time and significantly degrade the overall performance
of our application. In our algorithm each process stores the value of variable
global dedicated at each sampling interval (n) (line 7). When a processing
element has been running in non-dedicated mode during k consecutive sam-
pling intervals it is considered that long-term external load is present on that
processing element and the workload should be considered to be redistributed.
The function evaluate external load returns long term when any of the pro-
cessing elements have been running in non-dedicated mode during the past k
sampling intervals (line 8). Section 4.2 discusses practical values of k.

If either all of the processing elements are dedicated during the current sam-
pling interval, or long-term external load has been detected (line 9), then the
algorithm analyzes the load balance of the application. Otherwise, when a bursty
external load is detected, the algorithm tolerates it without performing load bal-
ancing for (k − 1) consecutive sampling intervals. In the kth sampling interval
one of two things will happen: (1) either there will be another burst, in which
case it leads to the conclusion that rather than a series of bursts, a long-term
load is present, or (2) the processing elements will run in dedicated mode, in
which case it will also be a candidate for load balancing evaluation. When the
application is evaluated for load balancing, the algorithm gathers and distributes
the FLOP and real time numbers of each process (line 10) to all the other
processes. It then applies Equation 1 to compute MFLOPSi locally by each
process i (line 11). If the difference between the maximum and minimum val-
ues of Treal is larger than the threshold value TH2 * max(Treal) (line 12)
then the application is more unbalanced than what it can tolerate. In our ex-
periments, we empirically set TH2 to 15%. As a result, LB triggers the redistri-
bution of workload based on Equation 2 and the RCP of each process (line 13),

144 G. Mart́ın et al.

then uses the new workload distribution to perform the data remapping by
invoking the data distribution functionality (line 14).

The algorithm implemented focuses on balancing computation workloads and
requires precise computation time measurements which do not take into ac-
count the time spent on performing communication operations. Otherwise, the
algorithm would lead to inaccurate workload distributions. For instance, an im-
balanced parallel application where the fastest process spends most of the time
waiting idle for other processes involved in communication operations will have
a low FLOP count and large Treal. By profiling MPI communications we can
compute separately the time spent by each process in performing computation
and communication, enabling a precise load balancing policy.

3.3 Data Redistribution

In SPMD applications the data is usually distributed—rather than replicated—
between processes, which requires redistribution to move the data between pro-
cesses each time a load balance operation is carried out. FLEX-MPI includes a
data redistribution functionality which handles both one-dimensional (e.g. vec-
tors) and two-dimensional (e.g. matrices) data structures, which may be either
dense or sparse.

The user has to register each of the data structures which will need to be
redistributed as result of load balance operations. The registering function
(XMPI Register) receives as input the pointer to the data structure and the
size of the data structure. Depending on the domain decomposition type, the
sizes of the data structures can be provided either as the number of elements,
rows, or columns of the structures. FLEX-MPI can manage several data
structures whenever they have been registered using the same type of domain
decomposition.

Once the load balancing functionality has computed the RCP of each PE
and the new workload distribution has been mapped to a data partition, the
data redistribution functionality (1) computes the range of data associated to
the new workload partition of every process, and (2) moves the data from the
previous to the new owners. XMPI Monitor end returns—on behalf of the data
redistribution functionality—the new count and displacement for the new data
mapping used by each process. MPI standard messages are used to efficiently
move data between MPI processes.

4 Performance Evaluation

We evaluate our approach using three iterative SPMD applications—Jacobi,
Conjugate Gradient, and EpiGraph. Jacobi is an iterative method for solving a
system of linear equations which operates on a symmetric dense matrix. Con-
jugate Gradient (CG) is a linear system solver suited for large sparse matrices.
EpiGraph [2] is a distributed simulator for infectious diseases which iteratively
operates on a sparse matrix which reflects a social interconnection graph.

FLEX-MPI: An MPI Extension for Supporting Dynamic Load Balancing 145

For the experiments using Jacobi we generated random square matrices with
different sizes: 5,000, 10,000 and 15,000 rows. For CG we used matrices from the
University of Florida sparse matrix collection [15]. The matrices we selected are
nd24k (size: 72,000, number of nonzero elements (nnz) 28,715,634), ldoor (size:
952,203, nnz 42,493,817), and audikw 1 (size: 943,695, nnz 77,651,847). This
subset is representative of data structures which exhibit regular and irregular
data distribution patterns. We run Jacobi and CG for 10,000 iterations each.
For the experiments using EpiGraph we simulated a population of 1,000,000
people (matrix size: 1,000,000, nnz 38,473,353) for a simulated time span of
20 days (2,880 iterations). The sampling interval is problem dependent and we
experimentally set it to 100 iterations in our experiments.

Table 1 describes our target platform, a heterogeneous cluster consisting of 10
compute nodes of four different classes. All the compute nodes run under Linux
Ubuntu Server 10.10 with 2.6.35-32 kernel and MPICH-2 (v.1.4.1p1), and are
interconnected by a Gigabit Ethernet network.

4.1 Heterogeneous Dedicated System

We first evaluate FLEX-MPI by executing Jacobi, CG, and EpiGraph exclusively
on heterogeneous configurations running 4, 8, 16, 32, and 64 processes. Table 2
describes the heterogeneous configurations of the cluster.

Table 3 shows the execution times for Jacobi and CG while Table 4 shows the
execution times for EpiGraph. In our experiments we show the overall execution
time (of the application and FLEX-MPI), including the computation and com-
munication times of the application as well as the overhead of the monitoring,
load balancing, and data redistribution of FLEX-MPI. The reference scenario
(which execution time is Tpar) employs an equal-size block distribution of the

Table 1. Heterogeneous cluster with number of nodes (N), sockets per node (S), and
processing elements (PE) per socket for each class

Class N S PE Processor Frequency RAM

A 4 1 4 Intel Xeon E5405 2.00 GHz 4 GB

B 2 2 6 Intel Xeon E5645 2.40 GHz 24 GB

C 2 2 6 AMD Opteron 6168 800 MHz 64 GB

D 2 4 6 Intel Xeon E7-4807 1.87 GHz 128 GB

Table 2. Heterogeneous configurations, where n(p) stands for the number of nodes (n)
and the number of processes (p) running per node

Config. Class A Class B Class C Class D

HTC1-4 1 (1) 1 (1) 1 (1) 1 (1)

HTC2-8 1 (2) 1 (2) 1 (2) 1 (2)

HTC3-16 1 (4) 1 (4) 1 (4) 1 (4)

HTC4-32 2 (4) 1 (8) 1 (8) 1 (8)

HTC5-64 4 (4) 2 (8) 2 (8) 2 (8)

146 G. Mart́ın et al.

data without load balancing. Results show a significant improvement of up to
44% when executing the application with dynamic load balancing. Note that for
64 processes, the communication/computation ratio increases due to low work-
load per process. This produces performance degradation for the applications,
and reduces the efficiency of the load balancing.

Fig. 2 illustrates a typical execution of Jacobi and EpiGraph when using
FLEX-MPI. Jacobi is a regular application in which the amount of work done
in each iteration is the same. This leads to very small variations over time in
the execution time per iteration. In contrast, EpiGraph is an irregular applica-
tion which exhibits a highly variable workload per iteration. When executing on
a heterogeneous dedicated system, Jacobi requires a single data redistribution
operation to balance the workload. It is triggered during the first sampling in-
terval, in which the workload imbalance is larger than the imbalance tolerated
by the algorithm. From that moment on the application is balanced and no fur-
ther data redistribution operations are necessary. However, even on dedicated
systems, irregular applications such as EpiGraph require several data redistri-
bution operations to balance the workload.

Table 3. Heterogeneous dedicated system with: execution time of the application
(Tpar), execution time of the dynamic load balanced application - with FLEX-MPI
(TFLX), percentage of the time saved when executing with FLEX-MPI (Tsav)

Jacobi CG
Config. Matrix Tpar(sec) TFLX(sec) Tsav(%) Matrix Tpar(sec) TFLX(sec) Tsav(%)

HTC1-4
5,000 805 517 35.77 nd24k 1247 998 19.96
10,000 3259 2071 36.45 ldoor 2634 2285 13.24
15,000 7324 4683 36.05 audikw 1 4860 3537 27.22

HTC2-8
5,000 414 269 35.02 nd24k 682 538 21.11
10,000 1665 1070 35.73 ldoor 1751 1676 4.28
15,000 3707 2396 35.36 audikw 1 3562 2222 37.61

HTC3-16
5,000 208 151 27.40 nd24k 381 302 20.73
10,000 843 698 17.20 ldoor 1387 1327 4.32
15,000 1894 1384 26.92 audikw 1 2336 1789 23.41

HTC4-32
5,000 116 95 18.10 nd24k 220 188 14.54
10,000 421 332 21.14 ldoor 1253 1234 1.51
15,000 978 706 27.81 audikw 1 1844 1104 40.13

HTC5-64
5,000 108 100 7.40 nd24k 147 146 0.68
10,000 580 446 23.10 ldoor 841 815 3.09
15,000 880 756 16.40 audikw 1 1124 911 18.95

Table 4. Results of EpiGraph on heterogeneous dedicated system

EpiGraph
Config. Matrix Tpar(sec) TFLX(sec) Tsav(%)

HTC1-4 1,000,000 356 270 24.16
HTC2-8 1,000,000 222 156 29.73
HTC3-16 1,000,000 202 113 44.06
HTC4-32 1,000,000 161 102 36.65
HTC5-64 1,000,000 165 112 32.12

FLEX-MPI: An MPI Extension for Supporting Dynamic Load Balancing 147

0 2000 4000 6000 8000
0

375

750

1125

1500

of iteration

T
im

e
(m

s)

0 2000 4000 6000 8000
2.1

2.125

2.15

2.175

2.2
x 10

4

T
im

e
(m

s)

Overall execution time
Threshold (TH2 * max(Treal))
max(Treal)−min(Treal)

0 500 1000 1500 2000 2500
0

2

4

6

8
x 10

4

of iteration

T
im

e
(m

s)

0 500 1000 1500 2000 2500
0

2

4

6

8
x 10

4

T
im

e
(m

s)

Overall execution time
Threshold (TH2 * max(Treal))
max(Treal)−min(Treal)

(a) (b)

Fig. 2. Jacobi (a) and EpiGraph (b) on heterogeneous dedicated system. Right Y axis is
the Overall execution time per iteration. Left Y axis shows both the difference between
the maximum and minimum Treal (for all of the running processes for each sampling
interval), and the Threshold value tolerated by the algorithm.

4.2 Heterogeneous Non-dedicated System

The following experiment evaluates how well the load balancing algorithm per-
forms when external applications with workload that vary over time are sharing
the underlying architecture for execution. We run Jacobi, CG, and EpiGraph
for a heterogeneous configuration with 1 node Class A and 1 node Class B, each
running 4 processes per node. We artificially introduce an external load which
simulates an irregular computing pattern. This load consists of two processes
which are simultaneously executed on the Class A node together with the appli-
cation. The external load consists of a burst of short computing intervals followed
by a single long computing interval which lasts until the end of the execution.

Table 5 shows the execution times for the benchmarks on the heterogeneous
non-dedicated configuration we described above. We evaluated different values
of k and their impact on the execution time. Tpar stands for the execution time
(in seconds) of the application when it runs without adapting to changes in
performance due to the dynamic external load; Tk=n stands for these execution
times when the application does adapt to the external load, for different values
of k. The execution time is reduced by up to 39.31% when the applications
adapts to the external load. Results confirm our intuition to show that the most

Table 5. Jacobi, CG, and EpiGraph on heterogeneous non-dedicated system

Problem Matrix Tpar(sec) Tk=1(sec) Tk=3(sec) Tk=5(sec)

Jacobi 10,000 1652 1162 1162 1148

CG nd24k 1076 688 665 653

EpiGraph 1,000,000 272 195 179 169

148 G. Mart́ın et al.

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

of iteration

P
ro

ce
ss

or
 ti

m
e

(%
)

0 2000 4000 6000 8000 10000
0

0.6

1.2

1.8

2.4

3
x 10

9

F
LO

P

External load
Process FLOP

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

of iteration

P
ro

ce
ss

or
 ti

m
e

(%
)

0 2000 4000 6000 8000 10000
0

0.6

1.2

1.8

2.4

3
x 10

9

F
LO

P

External load
Process FLOP

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

of iteration

P
ro

ce
ss

or
 ti

m
e

(%
)

0 2000 4000 6000 8000 10000
0

0.6

1.2

1.8

2.4

3
x 10

9

F
LO

P

External load
Process FLOP

(a) (b) (c)

Fig. 3. Adaptive execution of Jacobi on a heterogeneous non-dedicated system for
different values of k: (a) k = 1, (b) k = 3, and (c) k = 5. The external load (left Y axis)
corresponds to the percentage of real time of the processing element consumed by the
external load, while the process FLOP (right Y axis) corresponds with the number of
FLOP performed by the process.

promising approach is to tolerate short external loads as to avoid the cost of
re-balancing too eagerly.

Fig. 3 shows what happens on processing element P0 when we run Jacobi
using FLEX-MPI and we introduce a dynamic external load on a subset of the
processing elements. The workload redistribution triggered by the load balancing
algorithm leads to a different number of FLOP performed by the process (in red
in the figure). The amount of data which needs to be redistributed depends on
the magnitude of the external load (in blue) and the value of k. We can observe
that for k = 1 the application adapts immediately to changes in the performance
of the processing element, performing load balance for every external load burst.
With k = 3 the first three smaller bursts are discarded, while larger values of k
lead to discarding all the bursts but considering the long-term load.

5 Conclusions

We presented FLEX-MPI, an MPI extension for supporting dynamic load bal-
ancing of SPMD applications running on heterogeneous platforms in the pres-
ence of dynamic external workload. The extension we provide does not require
prior knowledge about the underlying architecture, does not require dedicated
resources, and it is based on precise runtime monitoring with negligible overhead.
Our results show that by using FLEX-MPI the execution time of an application
may be significantly reduced.

There are two main directions for future work that are of particular interest
to us. The first extension we plan on developing is to improve FLEX-MPI by
considering other types of hardware events, which are used to monitor other
performance metrics. This is particularly useful for parallel applications which
do not exhibit a linear correlation between the FLOP and the workload size, or
applications based on integer operations. The second direction for future work is
to improve FLEX-MPI by integrating the dynamic process management features
of MPI-2 such that processes could be started or turned off on demand, based
on a cost model and the performance goals of the application.

FLEX-MPI: An MPI Extension for Supporting Dynamic Load Balancing 149

Acknowledgments. This work has been partially supported by the Spanish
Ministry of Science under the grant IPT-430000-2010-14.

References

1. Bailey, D., et al.: The NAS parallel benchmarks summary and preliminary re-
sults. In: Proceedings of the 1991 ACM/IEEE Conference on Supercomputing,
pp. 158–165. IEEE (1991)

2. Mart́ın, G., Marinescu, M., Singh, D., Carretero, J.: Leveraging social networks for
understanding the evolution of epidemics. BMC Syst. Biol. 5(suppl. 3) (2011)

3. Xu, C., Lau, F.: Load balancing in parallel computers: theory and practice. Kluwer
Academic Publishers (1997)

4. Beltran, M., Guzman, A., Bosque, J.: Dealing with heterogeneity in load balancing
algorithms. In: ISPDC 2006, pp. 123–132. IEEE (2006)

5. Belikov, E., Loidl, H., Michaelson, G., Trinder, P.: Architecture-aware cost mod-
elling for parallel performance portability. In: Kolloquium Programmiersprachen
und Grundlagen der Programmierung 5

6. Galindo, I., Almeida, F., Bad́ıa-Contelles, J.M.: Dynamic load balancing on dedi-
cated heterogeneous systems. In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.)
EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 64–74. Springer, Heidelberg (2008)

7. Mart́ınez, J., Almeida, F., Garzón, E., Acosta, A., Blanco, V.: Adaptive load bal-
ancing of iterative computation on heterogeneous nondedicated systems. The Jour-
nal of Supercomputing 58(3), 385–393 (2011)

8. Weatherly, D., Lowenthal, D., Nakazawa, M., Lowenthal, F.: Dyn-MPI: Supporting
mpi on medium-scale, non-dedicated clusters. Journal of Parallel and Distributed
Computing 66(6), 822–838 (2006)

9. Bohn, C., Lamont, G.: Load balancing for heterogeneous clusters of PCs. Future
Generation Computer Systems 18(3), 389–400 (2002)

10. Lastovetsky, A., Reddy, R.: HeteroMPI: Towards a message-passing library for
heterogeneous networks of computers. Journal of Parallel and Distributed Com-
puting 66(2), 197–220 (2006)

11. Huang, C., Lawlor, O., Kale, L.: Adaptive MPI. In: Rauchwerger, L. (ed.) LCPC
2003. LNCS, vol. 2958, pp. 306–322. Springer, Heidelberg (2004)

12. Dongarra, J., Malony, A., Moore, S., Mucci, P., Shende, S.: Performance instru-
mentation and measurement for terascale systems. In: Sloot, P.M.A., Abramson,
D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS
2003, Part IV. LNCS, vol. 2660, pp. 53–62. Springer, Heidelberg (2003)

13. Mart́ın, G., Marinescu, M., Singh, D., Carretero, J.: FLEX-MPI - Technical Report.
Technical report, Universidad Carlos III de Madrid (2012),
http://www.arcos.inf.uc3m.es/˜desingh/publications.html

14. Mucci, P., Browne, S., Deane, C., Ho, G.: PAPI: A portable interface to hardware
performance counters. In: Proceedings of the Department of Defense HPCMP Users
Group Conference, 7–10 (1999)

15. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38(1), 1:1–1:25 (2011)

http://www.arcos.inf.uc3m.es/~desingh/publications.html

	FLEX-MPI: An MPI Extension for SupportingDynamic Load Balancing on HeterogeneousNon-dedicated Systems
	1 Introduction
	2 Related Work
	3 FLEX-MPI
	3.1 Monitoring
	3.2 Load Balancing
	3.3 Data Redistribution

	4 Performance Evaluation
	4.1 Heterogeneous Dedicated System
	4.2 Heterogeneous Non-dedicated System

	5 Conclusions
	References

