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Abstract. We consider the problem of Scheduling parallel Jobs in
heterogeneous Platforms: We are given a set J = {1, . . . , n} of n
jobs, where a job j ∈ J is described by a pair (pj , qj) of a processing
time pj ∈ Q>0 and the number of processors required qj ∈ N. We are
also given a set B of N heterogeneous platforms P1, . . . , PN , where each
Pi contains mi processors for i ∈ {1, . . . , N}. The objective is to find a
schedule for the jobs in the platforms minimizing the makespan. Unless
P = NP there is no approximation algorithm with absolute ratio strictly
better than 2 for the problem. We give a (2 + ε)-approximation for the
problem improving the previously best known approximation ratio.

1 Introduction

This paper considers the problem of Scheduling parallel Jobs in hetero-
geneous Platforms (SPP): We are given a set J = {1, . . . , n} of n jobs,
where a job j ∈ J is described by a pair (pj , qj) of a processing time pj ∈ Q>0

and the number of processors qj ∈ N that are required to execute j. We are also
given a set B of N platforms P1, . . . , PN , where each Pi contains a set Mi of
|Mi| = mi processors for i ∈ [N ] := {1, . . . , N}. In general we assume that the
numbers mi may be different, that are heterogeneous platforms. If all values mi

are equal we have identical platforms. For heterogeneous platforms we may as-
sumem1 ≥ . . . ≥ mN . A schedule is an assignment a : J → ⋃N

i=1 2
Mi×Q≥0, that

assigns every job j to a starting time tj and to a subset Aj ⊂ Mi of the proces-
sors of a platform Pi with |Aj | = qj . Obviously, a job j can only be scheduled in
platform Pi if mi ≥ qj . A schedule is feasible if every processor in every platform
executes at most one job at any time. The objective is to find a feasible schedule

with minimum makespan maxi∈[N ] C
(i)
max, where C

(i)
max = max{j|Aj⊂Mi} tj + pj

denotes the local makespan for platform Pi. We denote with OPTSPP(J ,B)
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the optimum value for the makespan of a schedule for the jobs in J into the
platforms in B.

By reduction from 3-Partition it follows that SPP is strongly NP-hard even
for identical platforms. Moreover, there exists no approximation algorithm with
absolute ratio strictly better than 2, unless P = NP .

For N = 1 the problem is equal to Scheduling parallel Jobs, in the rel-
evant literature denoted with P |sizej|Cmax. This problem is strongly NP-hard
even for a constant number of processors m ≥ 5 [7]. By reduction from Parti-
tion it can be shown that there is no approximation algorithm for P |sizej|Cmax

with ratio strictly less than 1.5, unless P = NP . If we constrain the co-domain
of the assignment a further and assume identical platforms the problem is equiv-
alent to Strip Packing (for N = 1) and Multiple Strip Packing(N ≥ 2):

In addition to Aj ∈ ⋃N
�=1 2

M� we postulate that Aj is equal to a set of consec-
utively numbered processors for every job j ∈ J . Every job then corresponds
to a rectangle of width qj and height pj . In general because of this contiguity
constraint, algorithms for SPP cannot be directly applied to Multiple Strip
Packing, since rectangles may be cut. But the optimal value for Multiple
Strip Packing is an upper bound for the optimal value for the corresponding
SPP problem with identical platforms. Interestingly, fractional versions of both
problems coincide and therefore a solution of fractional (Multiple) Strip
Packing gives a fractional solution for SPP with identical platforms.

1.1 Related Work

There are several approximation algorithms for Scheduling parallel Jobs.
If the number of processors is bounded by a constant, the problem admits a

PTAS [1]. In case that the number of machines is polynomially bounded in the
number of jobs, a (1.5 + ε)-approximation for the contiguous problem (where a
job has to be executed on processors with consecutive adresses) and a (1 + ε)-
approximation for the non-contiguous problem were given in [12]. Recently, for
an arbitrary number of processors a tight approximation algorithm with absolute
ratio 1.5 + ε was achieved [10].

Also for an arbitrary number of processors the contiguous case of P |sizej|Cmax

is closely related to Strip Packing. A vast number of approximation algorithms
for Strip Packing have been developed during the last decades.

One of the most powerful results for Strip Packing is an asymptotic fully
polynomial time approximation scheme given by Kenyon and Rémila based on
a linear program relaxation for Bin Packing [13]. For any accuracy ε > 0 their
algorithm produces a (1 + ε)-approximative packing plus an additive height of
O(1/ε2)hmax, where hmax denotes the height of the tallest rectangle. Recently,
we showed that the additive term can be reduced to O(1/ε log(1/ε))hmax using
a more sensitive rounding technique [5]. We will use the algorithm in [13] as a
subroutine and refer to it as the KR algorithm.

Multiple Strip Packing was first considered by Zhuk [23], who also showed
that there is no approximation algorithm with absolute approximation ratio
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better than 2. Meanwhile, several approximation algorithms forMultiple Strip
Packing and Scheduling parallel Jobs in Platforms have been devel-
oped. Some of them can be applied to both problems achieving the same approx-
imation ratio. However, due to different underlying techniques used for designing
those algorithms, some of them are only suitable for one of the problems or re-
quire even more constraints on the jobs (rectangles) and platforms. In Table 1 we
give an overview about the different kinds of algorithms and their approximation
ratios.

Table 1. Known approximation algorithms and their ratios

Platforms Jobs Rect. Ratio Constraints

Tchernykh et al. [20] 2005 het. � � 10 none
Schwiegelshohn et al.[18] 2008 het. � no 3 non-clairvoyant
Ye et al. [22] 2009 ident. � � 2ρ ρ makespan of

P ||Cmax

Pascual et al. [16] 2009 ident. � no 4 none
Tchernykh et al. [21] 2010 het. � � 2e+ 1 release dates
Quezada-Pina et al. [17] 2012 het. � no 3 qj ≤ mini mi

Bougeret et
al.

[5] 2009 ident. no � 2 none
[3] 2010 ident. � no 2.5 none
[4] 2010 het. � no 2.5 qj ≤ mini mi

[5] 2011 het. � � AFPTAS none
[6] 2012 ident. � no 2 maxj qj ≤ m/2

1.2 New Result

Currently, the best known absolute ratio for an approximation algorithm di-
rectly applicable to SPP is 3 given in [18]. Remark that in [18], processing times
are not available to the scheduler. In this article we present a polynomial time
algorithm with absolute ratio (2+ε). Moreover, we nearly close the gap between
the inapproximability bound of 2 and the currently best absolute ratio.

Theorem 1. For any accuracy ε > 0 there is an algorithm that for a set J
of n parallel jobs and a set B of heterogeneous platform generates a schedule
for J into the platforms in B with makespan at most (2 + ε)OPTSPP(J ,B).
The algorithm has running time g(1/ε) · nO(f(1/ε)) for some functions g, f with
g(1/ε), f(1/ε) = 2O(1/ε log(1/ε)).

1.3 Methods and Overview

To obtain a simpler structure for the set of platforms B we use a new tech-
nique to group and round the platforms by the number of processors: Initially,
we partition the platforms into a set B0 containing a constant number of the
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largest platforms, and a set B1 containing the remaining smaller platforms with
less processors. For a certain number L the platforms in B1 are grouped and
rounded obtaining a set B̃1 that contains L groups B̃1, . . . , B̃L of equal constant
cardinality, so that the platforms in each group B̃� are identical, see Section 2.1.
Later we convert a solution for the rounded platforms B0 ∪ B̃1 into one for the
original ones in B = B0 ∪ B1, see Figure 1.

B0

1 +O(ε)

B̃1 B̃2 B̃L

1

2

B1 BL−1 BL

2

Fig. 1. Converting the schedule

Using gap creation [11] we simplify the structure of an optimum solution
in B0, see Section 2.2 and Figure 2. Then we allocate a subset of jobs with
large processing time jobs in B0. The main difficulty here is to place the correct
subset of large narrow jobs, that have large processing time and require only few
processors, since we cannot enumerate an assignment for them in polynomial
time. Instead we guess an approximate gap structure for them.

With a skillful linear program relaxation (refer to Section 2.6) we fractionally
assign a subset of large narrow jobs to the guessed gaps in B0, subsets of jobs
with small and medium processing time to B0, and the remaining jobs to B̃1. In
this new approach we have both, horizontal and vertical fractions of large narrow
jobs, which are related by a nice covering constraint. Interestingly, we can apply
a result for scheduling unrelated machines [15] to round those fractions to inte-
gral jobs producing only a small error even though there are different kinds of
fractions. The Linear Program in 2.6 also produces a fractional schedule for B̃1.
Here, the crucial part is to round the fractional schedule to an integral one with-
out loosing too much. Therefore, the jobs involved in that fractional schedule
have harmonically rounded processing times, see Section 2.5. That is, relatively
large processing times are rounded up to the next value of the form 1/q, q ∈ N.
We use the harmonically rounded processing times for rounding the fractional
schedule in B̃1 to an integral one using an idea by Bansal et al. [2] based on
the fact that any integer can be represented as a multiple of 1/q, see [8]. Again
the large narrow jobs are difficult as for one large narrow job we may produce
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fractions referring to different processing times in B0 and B̃1. This problem is
also cleverly modelled and solved in our LP-relaxation. An overview about the
algorithm is given in Algorithm 1.

1.4 Principles and Notations

First we define some notations and recall some well-known packing and schedul-
ing principles. For j ∈ J we define the size of a job as qjpj and SIZE(J ) :=∑

j∈J qjpj for a set of jobs. With pmax := maxj∈J pj we denote the largest pro-
cessing time of a job. A rectangle is a pair r = (wr, hr) of width wr ∈ Q>0 and
height hr ∈ Q>0. The size of r is defined as wrhr. The size of a set of rectangles
R is SIZE(R) :=

∑
r∈Rwrhr. A two-dimensional bin of width x and height

y will be denoted with b(x, y). In this context a strip is a bin of width 1 and
infinite height b(1,∞). We also use the notation b(x,∞) for a strip of width x.
If x ∈ N a strip b(x,∞) corresponds to a platform with x processors.

Geometric Rounding: For a set Rwide of rectangles r = (wr, hr) we obtain
the geometrically rounded set Rsup with onlyM different widths in the following
way: Order the rectangles by non-increasing width and stack them left aligned on
top of each other, starting with the widest rectangles. Let H denote the height
of the stack. Then draw horizontal lines at heights (iH)/M for i = 0, 1, . . . ,M
through the stack. For i = 0, 1, . . . ,M − 1 group together those rectangles that
lie completely with their interior between the ith and (i + 1)th line or intersect
with their interior the (i+1)th line. In every group round up the width of every
rectangle to the width of the widest rectangle contained in this group.

Fractional Strip Packing: For a set of rectangles R with wr ∈ (0, w] for r ∈ R
a fractional strip packing of height h > 0 into a strip b(w,∞) corresponds to
a feasible solution of a linear program of the form min{∑i xi|

∑
i:Ci(r)=1 xi ≥

hr r ∈ R, xi ≥ 0} with cost at most h. The variable xi denotes the height (or
length) of a configuration Ci : R → {0, 1}, that is a function that represents a
subset of rectangles that can be placed next to each into the strip b(w,∞), i.e.∑

{r∈R|Ci(r)=1}wr ≤ w. If xi > 0, for every rectangle with Ci(r) = 1 a fraction
of height xi and width wr is placed into the strip. If forR there exists a fractional
strip packing of height h, we say R fits fractionally into b(w, h). The content of
the following Lemma is given in [13].

Lemma 1. Let R be a set of rectangles r = (wr, hr) with width wr ∈ (0, w] and
heights hr ∈ (0, 1]. Let ε′ > 0 and M := 1/ε′2 and let Rwide := {r ∈ R|wr > ε′w}
and Rnarrow := R\Rwide. If Rwide fits fractionally into a bin b(w, h), then Rsup

fits fractionally into bin b(w, h(1+ε′)). Moreover, R can be packed integrally into

a strip b(w,∞) with height at most (1+ε′)h
1−ε′ + (4M + 1)maxr∈R hr.

2 Algorithm

Our algorithm considers two main scenarios for the shape of the platforms given
by the input. For ε > 0 with 3/18 ≥ ε and γ = 8

3N1, where N1 = O(1/ε4)
(specified in the end of Section 2.6) we distinguish:
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1. For all i ∈ [N ] we have m1

mi
≤ γ.

2. There is a number K ∈ [N ] with m1

mi
≤ γ for all i ≤ K and m1

mi
> γ for all

i > K.

In this section we give a detailed description of the algorithm for the first scenario
from which the algorithm for the second scenario is derived. Details for the second
scenario can be found in our technical report [8].

2.1 Platform Rounding

For N0 = 2(2N1 + 1) we partition the set of platforms B into L + 1 groups
B0, B1, . . . , BL by L−times collecting the N1 smallest platforms where L :=

max
{
0, 	N−N0

N1


}
. Let B0 = B0 := {P1, . . . , PN−LN1} and for � ∈ [L] de-

fine B� := {PN−(L−(�−1))N1+1, . . . , PN−(L−�)N1
} and B1 =

⋃L
�=1 B�. Therefore,

group B1 is further partitioned into several groups B� of equal constant cardi-
nality. Each group B� ⊆ B1 contains exactly N1 platforms. Group B0 contains a
constant number of platforms, moreover we have 5N1+2 = N0+N1 > |B0| ≥ N0.
In each group B�, � ∈ [L], we round the number of processors of each platform
up to the number of processors m̃� := mN−(L−(�−1))N1+1 of the largest plat-

form PN−(L−(�−1))N1+1 contained in this group and denote with B̃� the group

of rounded platforms. We compute a schedule for B0 ∪ B̃1, where B̃1 =
⋃

� B̃�,
and later convert this solution into a solution for B0 ∪ B1 applying a shifting
argument, see Figure 1.

2.2 Simplifying the Structure of an Optimum Solution in B0

Via binary search in the interval
[
SIZE(J )/(

∑N
i=1 mi), npmax

]
we find a can-

didate T for the makespan. By scaling we may assume T = 1. Now consider an
optimum solution with makespan 1 and denote with J �(B0) the set of jobs
that are scheduled in B0 by the optimum solution. In the following we use
the gap creation technique [11] to find a subset of jobs with medium process-
ing time J �

medium(B0) ⊆ J �(B0) and small total load. We can remove these
medium jobs from the instance and schedule them later on top only slightly
increasing the makespan. Define σ0 = ε

20 and σk+1 = σ5
k and sets Jk = {j ∈

J |pj ∈ (σk, σk−1]} for k ≥ 1. Let J �
k (B0) and J �

k (B1) denote those jobs in Jk

that are scheduled by an optimum algorithm in B0 and B1, respectively. We

have
∑

k≥1

∑
j∈Jk(B0)

pjqj ≤ ∑|B0|
i=1 mi ≤ |B0|m1. Using the pigeonhole prin-

ciple we proof the existence of a set J �
τ (B0) with τ ∈ {1, . . . , |B0|

ε } so that
∑

j∈Jτ (B0)
pjqj ≤ εm1: If not, we have

∑|B0|/ε
k≥1

∑
j∈Jk(B0)

pjqj > |B0|m1 which is

a contradiction. Then we choose δ = στ−1 and may assume that ε−1 is an integer

and thus δ−1 =
(

ε
20

)−(5τ−1)
=

(
20
ε

)5τ−1

is an integer (if not, we choose the next

smaller value for ε). Furthermore, note that in the worst case δ−1 =
(
20
ε

) |B0|
ε −1

.
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We partition the jobs into small jobs Jsmall := {j ∈ J |pj ≤ δ5}, medium jobs
Jmedium := Jτ = {j ∈ J |pj ∈ (δ5, δ]} and large jobs with Jlarge := {j ∈ J |pj ∈
(δ, 1]}.

Algorithm 1. (2 + ε)-Algorithm

Input: J , ε > 0
Output: A schedule of length (2 + ε)OPTSPP(J )
1: For a certain constant N1 = O(1/ε4) partition the set of platforms into L + 1

groups B0, B1 . . . , BL and let B1 :=
⋃L

�=1 B�.

2: Round the number of processors of the platforms in each group B� and obtain B̃1

containing groups B̃� of N1 similar platforms

3: for a candidate value for the makespan T ∈
[
SIZE(J )
∑N

i=1 mi
, npmax

]
do

4: for k ∈ {1, . . . , |B0|
ε

} do
5: Let δ := σk−1 where σ0 = ε/20, σk+1 = σ5

k for k ≥ 1.
6: For δ distinguish small, medium, and large jobs
7: Round the processing times and possible starting times of large jobs to

integral multiples δ2.
8: For α = δ4/16 distinguish wide and narrow large jobs.
9: Enumerate an assignment vector V of large wide jobs to B0 and let

Jla−wi(B0) denote the selected jobs.
10: for an assignment vector V of large wide jobs do
11: Approximately guess the total load Π of large narrow jobs for each

starting time and height in every platform of B0 and block corresponding gaps.
12: for a guess Π do
13: Compute free layers of height δ2 in B0.
14: Round the processing times pj of the jobs J ′ = J \ Jla−wi(B0)

harmonically.
15: Compute a solution of the LP in 2.6
16: if There is no feasible solution then
17: Discard the guess Π and take another one and go back to Step

13. If all guesses have failed discard V , take another and go back to Step 11. If all
pairs (V,Π) have failed, increase k and go to Step 5.

18: end if
19: Round the solution of the LP using a result of Lenstra et al. [15] and

obtain an almost integral assignment of
– a subset of the small jobs to the free layers in B0

– a subset of the large narrow jobs to the gaps Π in B0

– the remaining jobs to the groups B̃� in B̃1.
20: Pack small jobs with Strip Packing subroutine into the layers.
21: Schedule medium jobs in Jτ (B0) in P1.
22: for � = 1, . . . , L do
23: Pack the jobs assigned to B̃� into at most 2N1 bins b(m̃�, 1)
24: end for
25: end for
26: end for
27: end for
28: end for
29: Convert the schedule for B0 ∪ B̃1 into a schedule for B0 ∪ B1
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Scheduling the medium jobs in J �
τ (B0) in the end on top of the largest plat-

form P1 using List Schedule [9] increases the makespan by at most

2max
{
(1/m1)

∑
j∈Jτ (B0)

pjqj ,maxj∈Jτ pj

}
= 2max

{
εm1

m1
, δ
}
≤ 2max{ε, δ} ≤

2ε.
For B0 we can now simplify the structure of the starting times and different

processing times of large jobs. We round up the processing time of each job
with processing time pj > δ to p̄j = hδ2, the next integer multiple of δ2 with
(h − 1)δ2 < pj ≤ hδ2 = p̄j , for h ∈ { 1

δ + 1, . . . , 1
δ2 }. Since there can be at

most 1/δ jobs with height > δ on each processor within each platform this
increases the makespan in B0 by only δ2/δ = δ. The number of different large
jobs sizes H is bounded by 1

δ2 − (1δ +1)+ 1 ≤ 1
δ2 . In a similar way we round the

starting time of each large job in B0 to aδ2. This increases the makespan again
by at most δ to 1 + 2δ. Therefore the large jobs have starting times aδ2 with
a ∈ {0, 1, . . . , 1+2δ

δ2 − 1} and the number of different starting times is A = 1+2δ
δ2 .

An optimum schedule for J �(B0) \J �
τ (B0) in B0 with rounded processing times

p̄j and rounded starting times for the large jobs has length at most 1 + 2δ.

Let τ ∈ {1, . . . , |B0|
ε } be the current iteration step for finding Jτ with the

desired properties and δ = στ−1. We enumerate the set of large wide jobs and
approximately guess the structure of large narrow jobs in B0 that correspond to
a good solution for the jobs with rounded processing times p̄j . We distinguish
between wide and narrow large jobs as follows. Assume that mN ≥ 32/δ4, other-
wise the number of different platform sizes is a constant depending on γ and 1/δ.
We choose α = δ4/16. Then α satisfies αmN ≥ 2, implying 	αmN
 ≥ αmN−1 ≥
αmN/2. A job j ∈ J is called wide if qj ≥ 	αmN
 and narrow otherwise. Fur-
thermore distinguish large narrow jobs Jla−na := {j ∈ Jlarge|qj ≤ 	αmN
} and
large wide jobs Jla−wi := {j ∈ Jlarge|qj > 	αmN
}.

2.3 Assignment of Large Wide Jobs in B0

The number of large wide jobs, that fit next to each other within one platform,
is bounded by m1

�αmN � ≤ m1

αmN−1 ≤ m1

(αmN )/2 ≤ (2γ)/α. Since large jobs have

processing times > δ, at most 1+2δ
δ rounded large jobs can be finished on one

processor before time 1+2δ. Therefore, the number of large wide jobs that have
to be placed in every Pi ∈ B0 is bounded by 2γ

α · 1+2δ
δ . Furthermore, in every

platform large jobs can have A different starting times. Each possible assignment
of large wide jobs to platform and starting time can be represented by a tuple

of vectors V = (v1, . . . , v|B0|) ∈
(
([n] ∪ {0})A·2γα · 1+2δ

δ

)|B0|
. The running time of

a dynamic program to compute such an assignment is equal to the number of

possible vectors which is bounded by (n+1)|B0|·A· 2γα · 1+2δ
δ . Let Jla−wi(B0) denote

the set of large wide jobs selected and let J ′ := J \ Jla−wi(B0).

2.4 Gaps for Large Narrow Jobs in B0

In every platform Pi ∈ B0 we approximately guess the total load Π�
i,a,h of jobs

with height hδ2 starting at time aδ2. Note that we only need to consider those
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triples (i, a, h) with hδ2 + aδ2 ≤ (1 + 2δ). Therefore we compute a vector Π =
(Πi,a,h) with Πi,a,h = b · 	αmN
, b ∈ {0, 1, . . . , 2γ

α } and Πi,a,h ≤ Π�
i,a,h ≤

Πi,a,h + 	αmN 
. Here the condition αmN − 1 ≥ αmN/2 guarantees that 2γ
α ·

	αmN
 ≥ 2γ
α ·(αmN −1) ≥ m1. There is only a constant number (1+ 2γ

α )|B0|·A·H

of different vectors Π . For every triple (i, a, h) we block a gap of Πi,a,h+ 	αmN

(not necessary contiguous) processors for large narrow jobs with p̄j = hδ2. Later
we will place large narrow jobs with p̄j = hδ2 total width ≥ Π�

i,a,h into them.
This will be done using linear programming and subsequent rounding. Let G
denote the total number of gaps, clearly G ≤ |B0| ·A·H . Since γ, |B0| = O(N1) =
O(1/ε3 log(1/ε)) and δ−1 = 2O(1/ε log(1/ε)), the steps described above take time
g(1/ε) · nO(f(1/ε)) for some function g and f(1/ε) = 2O(1/ε log(1/ε)).

In Figure 2 an allocation of the enumerated large wide jobs and a guess Π for
the gaps reserved for the large narrow jobs in B0 are illustrated. We compute
the free layers of height δ2 that correspond to the empty space between and next
to the gaps and the large wide jobs. Let L1, . . . , LF denote the free layers, each
having mf processors for f ∈ [F ].

gaps for large narrow jobs

large wide jobs

free layers

P1 P2 P|B0|

1 + 2δ

aδ2

Fig. 2. Simplified structure of large jobs in B0

2.5 Rounding Jobs in B̃1

Let J �(B1) ⊂ J ′ be the subset of jobs scheduled in B1 in an optimum solution.
Let k := 20

ε . We assign to every job J �(B1) its harmonically rounded processing
time p̃j := hk(pj) ∈ [0, 1], where hk : [0, 1] −→ [0, 1] is defined as in [2] via
hk(x) = 1/q for x ∈ (1/(q+ 1), 1/q], q = 1, . . . , k− 1 and hk(x) = x for x ≤ 1/k.
Since ε ≤ 1/6, we have k = 20

ε ≥ 120. In fact, we only modify the processing
times of large jobs in J �(B1), because the small and medium jobs have processing
times pj ≤ δ ≤ ε/20 = 1/k. Consequently, for all small and medium jobs we
have p̃j = pj. It might also be possible that there are large jobs with processing
time 1/k ≥ pj > δ for which we have pj = p̃j. The following Lemma can be
derived from the fact that for a sequence of numbers x1, . . . , xn with values in
(0, 1] and

∑n
i=1 xi ≤ 1 we have

∑n
i=1 hk(xi) ≤ T∞ [2,14] together with a result

of Seiden and van Stee [19] (where T∞ is a constant � 1.691, see [2]).

Lemma 2. If the processing times of the jobs in J �(B1) are rounded harmon-

ically, an optimum schedule of the rounded jobs into B1 (and therefore in B̃1)
has makespan at most T∞.
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2.6 Linear Program for the Remaining Jobs J ′

We give a linear programming relaxation for the following problem:

– place a set of small jobs Jsmall(B0) ⊂ Jsmall into the layers L1, . . . , LF

– select large narrow jobs Jla−na(B0) ⊂ Jla−na to be placed into the gaps Π ,

– fractionally place the remaining jobs into B̃1.

We think of every group B̃� as a single strip b(m̃�,∞) and introduce a set C� of
feasible configurations C� : J ′ → {0, 1}. Let q(�) denote the number of different

configurations for B̃�. In the LP below the variable x�
i indicates the length of

configuration C�
i for i ∈ [q(�)]. In a similar way, we think of each layer Lf in B0 as

a strip b(m̃f ,∞) and introduce a set Cf of feasible configurations Cf : Jsmall →
{0, 1} of small jobs and denote with q(f) the number of different configurations

for Lf . The variable xf
i indicates the length of configuration Cf

i for i ∈ [q(f)].

For every job j ∈ Jla−na we introduce variables yi,a,hj ∈ [0, 1], that indicate the

vertical fraction of job j (with p̄j = hδ2) that is assigned to a gap Πi,a,h in

B0. For every group B̃� we need a constraint that guarantees that the length
of the fractional schedule in b(m̃�,∞) corresponding to a feasible LP-solution
does not exceed length NT∞. Since we have N platforms in B̃� this gives a
fractional schedule of length T∞ in every platform. In a similar way we have
one constraint for every layer Lf . For each gap Πi,a,h a constraint guarantees
that the total load of large narrow jobs (fractionally) assigned to the gap does
not exceed Πi,a,h + 	αmN
. To guarantee that all jobs are scheduled we have
covering constraints.

For every small job we have a covering constraint combined from heights of
configurations in Lf and in B̃�. Furthermore, we have a covering constraint for
each large wide job that is not placed in B0, i.e. j ∈ Jla−wi \ Jla−wi(B0). Every
large narrow job j ∈ Jla−na is covered by a clever area constraint: The total

fractional width of job j assigned to B0 multiplied with its height p̃j in B̃1 plus

the fraction of the area of this job covered by configurations in B̃1 should be at
least p̃jqj . For the medium jobs Jτ the last constraint ensures that the total area

of uncovered medium jobs is small, i.e. less than εm1. Finally we add xf
i , x

�
i ≥ 0

and yi,a,hj ∈ [0, 1].

∑q(�)
i=1 x

�
i ≤ N1T∞ � ∈ [L]

∑q(f)
i=1 xf

i ≤ δ2 f ∈ [F ]
∑

{j∈Jla−na|p̄j=hδ2} y
i,a,h
j · qj ≤ Πi,a,h + 	αmN 
 i ∈ [|B0|], a ∈ [A], h ∈ [H ]

∑F
f=1

∑
{i∈[q(f)]|Cf

i (j)=1} x
f
i +

∑L
�=1

∑
{i∈[q(�)]|C�

i (j)=1} x
�
i ≥ p̃j(= pj) j ∈ Jsmall

∑L
�=1

∑
{i∈[q(�)]|C�

i (j)=1} x
�
i ≥ p̃j j ∈ Jla−wi \ Jla−wi(B0)

∑L
�=1

∑
{i∈[q(�)]|C�

i (j)=1} x
�
i · qj + p̃j ·

∑
i,a,h:p̄j=hδ2 y

i,a,h
j · qj ≥ p̃j · qj j ∈ Jla−na

∑
j∈Jτ

pjqj −
∑

j∈Jτ

∑L
�=1

∑
{i∈[q(�)]|C�

i (j)=1} x
�
iqj ≤ εm1

xf
i , x

�
i ≥ 0, yi,a,hj ∈ [0, 1]
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If the LP has no feasible solution either the enumerated set Jla−wi(B0) was not
correct, the choice of Π does not fit or the choice of δ, moreover the choice of τ ,
was not correct. We can compute an approximate solution of the linear program
above by solving approximately a Max-Min Resource Sharing problem.

A solution ((xf ), (x�), (yi,a,hj )) of the LP can be transformed into a fractional
solution of a general assignment problem. This assignment problem corresponds
to scheduling n jobs on |B0| · A ·H + (F + L)(M + 1) + 1 unrelated machines,
for M = 1/ε′2, ε′ = ε/(4 + ε). Using a result by Lenstra et al. [15] a fractional
solution of this problem can be rounded to an almost integral one with only one
fractionally assigned job per machine.

Different job manipulations are then described in [8] to assign those fraction-
ally assigned jobs integrally to parts of B0 or in some gaps, without increasing the
makespan. Then using a rounding technique for strip packing with harmonically

rounded rectangles presented in [2], we show in [8] using N1 = (3M(k+1)+2)k
2k−(k+1)(1+ε)T∞

,

how to produce a schedule with makespan 2 +O(ε) of all jobs in J in the plat-

forms of B0 ∪ B̃1. The schedule is finally converted into one for B0 ∪ B1 with a
shifting procedure illustrated in Figure 1.

3 Conclusion

We have obtained an Algorithm that constructs a schedule of a set J of n parallel
jobs into a set B of N heterogeneous platforms with makespan at most (2 +
ε)OPT(J ,B). We assume that it is also possible to find an algorithm that packs
a set of n rectangles into N strips of different widths. Many of the techniques
used also apply to rectangles. The main difficulties will be the selection and
packing process of the large narrow rectangles for B0 as the gaps provided by
our algorithm might contain non-contiguous processors.
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