
Digital Signatures with Minimal Overhead

from Indifferentiable Random Invertible
Functions

Eike Kiltz1,�, Krzysztof Pietrzak2,��, and Mario Szegedy3
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Abstract. In a digital signature scheme with message recovery, rather
than transmitting the message m and its signature σ, a single enhanced
signature τ is transmitted. The verifier is able to recover m from τ and at
the same time verify its authenticity. The two most important parameters
of such a scheme are its security and overhead |τ | − |m|. A simple argu-
ment shows that for any scheme with “n bits security” |τ |− |m| ≥ n, i.e.,
the overhead is lower bounded by the security parameter n. Currently,
the best known constructions in the random oracle model are far from
this lower bound requiring an overhead of n + log qh, where qh is the
number of queries to the random oracle. In this paper we give a con-
struction which basically matches the n bit lower bound. We propose a
simple digital signature scheme with n + o(log qh) bits overhead, where
qh denotes the number of random oracle queries.

Our construction works in two steps. First, we propose a signature
scheme with message recovery having optimal overhead in a new ideal
model, the random invertible function model. Second, we show that a
four-round Feistel network with random oracles as round functions is
tightly “public-indifferentiable” from a random invertible function. At
the core of our indifferentiability proof is an almost tight upper bound
for the expected number of edges of the densest “small” subgraph of a
random Cayley graph, which may be of independent interest.

Keywords: digital signatures, indifferentiability, Feistel, Additive com-
binatorics, Cayley graph.

1 Introduction

When transmitting a message m over an unauthenticated public channel, one
usually appends a string σ to the message that can be used to verify (relative
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to a public key) the authenticity of the message. This string σ is called a digital
signature of m. More generally, one transforms the message m into an enhanced
signature τ such that (i) the original message m can be recovered from τ ; (ii) the
authenticity of m can be verified from τ . This is called a digital signature scheme
with message recovery (MR) and is used to save on bandwidth, i.e., to minimize
the signature overhead informally defined as O = |τ | − |m| (signature length
minus message length). Standard bodies for signature schemes (e.g. ISO/IEC
9796 and IEEE P1363a) contain several schemes with MR. In this paper we ask
the natural question: what is the minimal overhead required to achieve a desired
security level?

1.1 Bounds on the Overhead

A Trivial Lower Bound for Every Scheme. Following [3], we say that a
signature scheme has “n-bit security” if all adversaries A attacking the scheme
have success ratio SR(A) at most 2−n, where SR(A) := success(A)/time(A). A
natural lower bound for the overhead of a signature scheme (with or without
message recovery) for n-bit security is O ≥ n bits. This is since for a signature
scheme with O bits of overhead any random bit string τ constitutes a valid
enhanced signature with probability 2−O. Hence an adversary A guessing a single
random authenticated message τ has success ratio SR(A) = 2−O which implies
O ≥ n.

Overhead of Schemes without MR. In standard digital signature schemes
(without message recovery) such as RSA full domain hash [5], the probabilistic
signature scheme PSS [5], or (pairing-based) BLS signatures [6] the overhead
equals the size of a signature. Since classical signatures contain (at least) one
group element (e.g., Z∗

N or an elliptic curve group) whose representation requires
at least 2n bits (for n bits security, due to generic square-root attacks) we cannot
hope to obtain an overhead smaller than 2n bits. The above lower bounds do not
apply for schemes without such a group structure, in particular schemes based
on lattices or codes, but for other reasons these schemes tend to have a very
large overhead and/or prohibitively large public parameters.

Overhead of Schemes with MR in the RO model. Computing the over-
head for a given signature scheme turns out to be a bit subtle and depends on
the security reduction. We exemplify such a calculation for the RSA-based prob-
abilistic signature scheme with message recovery PSS-MR[n0, n1] [5], which can
be seen as a two-round Feistel construction. PSS-MR[n0, n1] has an overhead of
n0+n1 bits, where parameter n0 controls the randomness and n1 the amount of
added redundancy used during signing. The minimal size of n0 and n1 providing
a given security level can be computed from the security reduction. The security
reduction from [5] in the random oracle model [4] transforms an adversary against
PSS-MR[n0, n1] making qs (online) signing and qh (offline) hash queries with suc-
cess probability εPSS-MR into an adversary against RSA with success probability
εRSA such that εPSS-MR = εRSA + εsim , where εsim = (qs + qh)

2(2−n0 + 2−n1).
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An easy computation shows that this implies OPSS-MR = n0+n1 ≥ 2n+2 log2(qh)
bits of overhead for n bits security.1 An improved security reduction by Coron
gives OPSS-MR ≥ 2n+log2(qh)+log2(qs). Recently, an alternative security reduc-
tion for PSS-MR was proposed in [15] demonstrating a tight security reduction
for PSS-MR[n0 = 0, n1] with zero-padding from the (stronger) phi-hiding as-
sumption [7]. However, the required overhead is still OPSS-MR = n + log2(qh)
bits, stemming from an additive term εsim = q2h/2

n1 in the security reduction.

TheRandom Invertible PermutationModel.Besides the popular random-
oracle model, signature schemes have also been analyzed in other idealized mod-
els. In particular, [16,8] propose a digital signature scheme with message recovery,
together with optimal security reduction in the ideal random invertible permuta-
tion model. Unfortunately, unlike for random oracles, there is no standard cryp-
tographic object which could be used to directly instantiate random invertible
permutations over a large domain.2 In order to get a construction in the random
oracle model, one can replace the random invertible permutation P with some
construction CH (based on a random oracle H) that is indifferentiable [19,10]
from P . In the context of signature schemes, already a weaker notion called
“public-indifferentiability” [23,11,18] is sufficient. In [18] it is proven that a six-
round Feistel network with random round functions is public-indifferentiable
from a random invertible permutation. (For full indifferentiability more rounds
are needed [14].) Unfortunately, the reduction from [18] is not tight in the oracle
query complexity (i.e., the number of queries made by the simulator is quadratic
in the number of the queries made by the distinguisher), and as a consequence
the required overhead is log(qh) bits larger than in the ideal permutation model.

Table 1 summarizes the signature overhead and gives concrete parameters
for a typical security parameter of n = 80 bits and using 1024/2048-bit RSA.
(Parameters for n ∈ {128, 192, 256} can be computed accordingly.) We remark
that the table is only valid for sufficiently large messages, i.e., if |M | ≥ 1024−O.
For smaller messages standard signatures such as BLS naturally outperform any
RSA-based signature scheme with MR.

1.2 Our Contribution

Our main contribution is to revisit and affirmatively answer the question whether
there exist signature schemes with minimal overhead in the random oracle model.
In a first step we show that such a scheme exists in a new ideal model which we
call random invertible function model, provided that the ideal functions’ image

1 For n-bit security of PSS-MR[n0, n1] we require SR(A) ≤ 2−n+1 which is implied by
εRSA/time(A) ≤ 2−n and εsim/time(A) ≤ 2−n. With time(A) ≥ qs + qh we obtain
n0 ≥ n + log2(qh) and n1 ≥ n + log2(qh) and consequently the overhead is O =
n0 + n1 ≥ 2n+ 2 log2(qh).

2 For fixed small domain, one might use a block-cipher with a fixed key. Though,
the heuristic to replace a random permutation with a block-cipher like AES with
fixed known keys is not as well analyzed as replacing a random oracle with a strong
cryptographic hash function.
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Table 1. Overhead of RSA-based signature schemes with message recovery in the
random oracle model for n bits security assuming the adversary makes at most qh hash
and qs signing queries. The table shows the overhead required for n = 80 (and only
the trivial upper bound qh ≤ 280) and when we additionally assume that the number
of random-oracle/signature queries are upper bounded by qh ≤ 260 and qs ≤ 240,
respectively. As the o(log qh) term in our bound depends on the domain, we give the
bounds for 1024 and 2048 bits RSA.

Type Required overhead O for n bits security Security
asymptotic n = 80 qh ≤ 260, qs ≤ 240 reduction

2-round Feistel 2n+ 2(log qh) 320 280 Bellare-Rogaway [5]
2-round Feistel 2n+ log(qh) + log(qs) 320 240 Coron [9]
2-round Feistel n+ log(qh) 160 140 Kakvi-Kiltz [15]
6-round Feistel n+ log(qh) 160 140 [16,8]+[18]
4-round Feistel n+ o(log qh) 97 93 this work (1024-bit RSA)
4-round Feistel n+ o(log qh) 92 90 this work (2048-bit RSA)

is sufficiently sparse. Next, we show that a Feistel network with four rounds
and random oracles as round functions is public-indifferentiable from a random
invertible function with an almost tight reduction. Combining the two steps,
we obtain a new signature scheme with message recovery with almost minimal
overhead in the random oracle model.

Signature scheme with MR from random invertible functions. Given
a trapdoor permutation TDP = (f, f−1) over {0, 1}k and an injective function
F : {0, 1}m → {0, 1}k (k > m) that can be queried in both directions, we
can define a signature scheme with message recovery SIG-MRF as follows. The
enhanced signature τ on a message m is defined as τ = f−1(F(m)). Signature
recovery first evaluates the trapdoor permutation on τ and checks if the result
has a valid pre-image or not, i.e., {m,⊥} = F−1(f(τ)). If the result is not ⊥, it
returns message m. The overhead of SIG-MRF is O = k−m bits. It is a straight-
forward generalization of [16,15], to prove that the resulting signature scheme
SIG-MRF is tightly secure (losing an additive factor qF/2k−m, where qF is the
number of queries to F) if F is chosen at random. (The above scheme can only
be proved secure assuming TDP is lossy [22]. Using a trick of [16] we can also
prove a slightly modified scheme tightly secure assuming TDP is one-way.)

Instantiating Invertible Random Functions with Random Oracles.

To instantiate the above scheme in the random oracle model, we must replace
the random invertible function F : {0, 1}m → {0, 1}k with a construction CH

that is public-indifferentiable from F .
It is easy to construct a random invertible function F : {0, 1}m → {0, 1}k

from a random invertible permutation P : {0, 1}k → {0, 1}k (by setting F(x) =
P(x‖0k−m)) with a tight reduction. But as discussed above, we do not know how
to instantiate P in the random oracle model without losing at least a quadratic
factor in the oracle query complexity [18]. Furthermore, it is well known that a
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five (or less) round Feistel network cannot be pub-indifferentiable from a random
invertible permutation [18].

A formal definition of pub-indifferentiability is given in Definition 1. The
important parameters are the error εsim and the number of queries qS made by
the simulator S, which are both functions in the number of queries qD made
by the distinguisher D. In order to get a reduction with optimal overhead, i.e.,
where the security (in bits) is not much smaller than the overhead O = k −m,
we need qS ≈ qD and εsim ≈ qD/2

k−m.

Two Feistel rounds. As a simple warmup example we show that a two-round
Feistel network (with random oracles as round functions) is pub-indifferentiable
from F with

εsim = q2D/2
k−m and qS = qD.

The resulting signature scheme (as explained above) requires an overhead of
O = n+log2(qh) to achieve n bits security. This essentially reproves the overhead
of PSS-MR obtained in [15].

Four Feistel rounds. As the main technical result of this paper we give
a construction CH

4F based on a four round Feistel network and prove it pub-
indifferentiable from F with

εsim ≤ q
1+o(1)
D /2k−m and qS = Õ(qD). (1)

Hence the resulting signature scheme has an overhead of O = n+ o(log qh) bits,
cf. Table 1. The o(1) term can be computed explicitly and for example leads to
97 bits overhead for n = 80 bits security if the domain of the TDP is at least
1024 bits (we get smaller overhead if the domain is larger or we put non-trivial
bound on qh). The o(1) term goes to 0 as the ratio of the security we want to
achieve, divided by the domain size of the TDP, decreases.

In the proof of (1), the variable Q(μ, q) = maxX ,Z |{(x, z) |x ∈ X , z ∈ Z, z −
x ∈ B}| (where B,X ,Z are q element subsets of Zμ and B is sampled uniformly
at random) will play a central role. This variable has a natural interpretation in
graph theoretical terms, it’s the number of edges of the densest “small” subgraph
of a random (bipartite) Cayley graph (here the Cayley graph has μ vertices on
each side, is of degree q and the subgraph has q vertices on each side.) We prove
by a compression argument (Corollary 1) an upper bound

for each 0 < a < 1/4 : Q(μ, μa) ≤ μa+2a2

(with probability extremely close to 1).

(2)

We believe that this bound may be of independent interest. It complements a
result of Alon et al. [2, Th. 4] which states thatQ(μ, μa) ≈ μ3a−1 for 2/3 < a ≤ 1,
i.e. their bound applies to large subgraphs of size ≥ μ2/3.

We show (Theorem 5) that the four round Feistel network CH
4F is pub-

indifferentiable form a random invertible function with a simulator making qS =
Õ(qD) queries and failing with probability εsim = O(E[Q(μ, qD)]/2

k−m). Setting
qD = μa in (2) this gives the claimed bound (1) on the pub-indifferentiability of
CH
4F .
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We leave it is an interesting open problem whether our techniques can be used
to prove better bounds for constructions of permutations from random oracles.
As mentioned above, currently all such constructions suffer from a quadratic
increase in the oracle query complexity. Another interesting question is, whether
random invertible functions can be used to build chosen-ciphertext secure en-
cryption with optimal overhead. Interestingly, the construction from [1] also uses
a four round Feistel network, but the proven security suffers from a quadratic
loss in running time.

2 Preliminaries

For n ∈ N, we write 1n for the string of n ones, and [n] for {1, . . . , n}. |x| denotes
the length of a bitstring x, while |S| denotes the size of a set S. s ← S denotes
sampling an element s uniformly at random from the set S. For an algorithm
A, we write z ← A(x, y, . . .) to indicate that A is a (probabilistic) algorithm
that outputs z on input (x, y, . . .). In the following we will introduce some basic
cryptographic objects that (for simplicity) are defined over bit-strings (rather
than arbitrary domains).

2.1 Ideal Primitives and Indifferentiability

Throughout, we use the letter H to denote a random oracle [4], P for a random
invertible permutation and F for a random invertible function.

A random oracle H : D → R with input domain D ⊂ {0, 1}∗ and range R ⊂
{0, 1}∗ is a function chosen uniformly at random from all functions D → R. A
random invertible function F : D → R is a function chosen uniformly at random
from all injective functions (i.e., all functions where x �= x′ ⇒ F(x) �= F(x′)). A
random invertible permutation P is a random injective function where D ≡ R.

Unlike for H, which can only be queried in forward direction, whenever we
consider algorithms with oracle access to F (or P), it is always understood that
F can be queried also in inverse direction. Technically, we can think of F as
being given by two oracles F and F−1, where F−1(F(x)) = x and F−1(y) = ⊥
if y is not in the range of F .

Below we define a pub-indifferentiable [11,23] construction of F from H. The
public indifferentiability notion differs from the standard indifferentiability no-
tion [19,10] by the fact that in the public notion the simulator S gets to see all
queries made by D.

Definition 1 (pub-indifferentiability). A (qD, qS, εsim , tsim )-public indiffer-
entiable construction of a random invertible function F from a random oracle
H is a stateless oracle circuit C and a (stateful, probabilistic) simulator S such
that for any distinguisher D making at most qD oracle queries, S makes at most
qS oracle queries, runs in time at most tsim and the following holds:

|Pr[DF ,SF
(1n) = 1]− Pr[DCH,H(1n) = 1]| ≤ εsim ,

here the second oracle SF gets to see also the queries made by DF ,SF
to the first

oracle F .
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2.2 Digital Signatures with Message Recovery

A digital signature scheme with message recovery SIG-MR = (GSIG-MR, Sign,
Recover) consists of three algorithms and two function families m(n), k(n) de-
scribing message space {0, 1}m(n) and signature space {0, 1}k(n). Key gener-
ation GSIG-MR generates a keypair (pk , sk) ← G(1n) for a secret signing key
sk and a public verification key pk . The signing algorithm Sign, on input a
message M ∈ {0, 1}m(n) and the secret signing key, returns an enhanced sig-
nature τ ← Signsk (M) ∈ {0, 1}k(n) of the message. The recovery algorithm
Recover takes a verification key pk and an enhanced signature τ as input and
returns M ← Recoverpk (τ), where M ∈ {0, 1}m(n) ∪ {⊥}. We require that
Pr[Recoverpk (Signsk (M)) = M ] = 1.

The security of the signature scheme can be analyzed in a model where an
idealized primitive exists, for example a random oracle or a random invertible
function. In that case the adversary and the scheme get access to the idealized
primitive O by making oracle calls.

Security. Let us recall the existential unforgeability against chosen message
attacks (EUF-CMA) security game [12] relative to the ideal primitive O, played
between a challenger and a forger A.

1. The challenger runs GSIG-MR(1
n) to generate a keypair (pk , sk). Forger A

receives pk as input.

2. Forger A may ask the challenger to sign a number of messages and evaluate
the ideal object O. To query the i-th signature, A submits a message Mi ∈
{0, 1}m(n) to the challenger. The challenger returns an enhanced signature
τi under sk for this message. For the j-th query to O, A submits a query xj

to the challenger who returns the values O(xj).

3. Forger A outputs an enhanced signature τ∗.

Let M∗ ← Recover(pk , τ∗) be the recovered message of A’s forgery. The game
outputs 1 (meaning forger A wins the game) if M∗ �= ⊥ (i.e., τ∗ is a valid
enhanced signature) and M∗ �= Mi for all i. The success probability of A is the
probability that the game outputs 1.

Definition 2 (Security and Overhead of SIG-MR). Let O be an ideal prim-
itive and let SIG-MRO be a signature scheme with message recovery, where
{0, 1}m(n) is the message and {0, 1}k(n) is the signature space. Let tsig , qs, qo, εsig
be functions of a security parameter n.

Security: SIG-MRO is (tsig , qs, qo, εsig)-secure relative to O, if all adversaries
A running in time at most tsig making at most qs signing queries and qo
queries to O (this includes direct queries to O, but also the queries to O
done during evaluation of the signature queries), have success probability at
most εsig . If O is a random oracle (random invertible function), then we say

that SIG-MRO is secure in the random oracle (random invertible function)
model.
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n-bit security: We say SIG-MRO has n bits of security against qs, qo queries
if it is (tsig , qs, qo, εsig)-secure for all tsig , εsig satisfying εsig/tsig ≤ 2−n. We
simply say it has n bits security if it has n bits security for any qs, qo (we
can always assume the trivial upper bound qo ≤ tsig ≤ 2n.3)

Overhead: The overhead is defined as k(n)−m(n). OSIG-MRO (n, qs, qo) denotes
the overhead required in the construction SIG-MRO to reach n bits security
against qs and qo queries. OSIG-MRO (n) is short for OSIG-MRO (n, 2n, 2n) (i.e.,
when putting no upper bounds on qo, qs).

In the following we will propose a scheme with finite message space. In the full
version [17] we show how to do domain extension in order to get a scheme that
can sign arbitrary longer messages with the same security and overhead.

Using a composition theorem [19], we can express the security of a signa-
ture scheme proven secure in the invertible function model when we replace the
invertible random function F with an pub-indifferentiable constructions CH as
follows.

Theorem 1. If SIG-MRF is (tsig , qs, qh, εsig)-secure in the random invertible
function model, and C is a (qD = qh, qS, εsim , tsim)-pub-indifferentiable construc-

tion of F from H (cf. Def.1), then SIG-MRCH
is (tsig − tsim , qs, qS, εsig + εsim)-

secure in the random oracle model.

2.3 Trapdoor Permutations

A trapdoor permutation TDP = (GTDP, f, f
−1) over domain D(n) = {0, 1}k(n)

consists of three ppt algorithms. The key generation algorithm GTDP gener-
ates a keypair (ek , td) ← GTDP(1

n) of evaluation key and trapdoor. For every
(ek , td) in the domain of GTDP(1

n), f(ek, ·) and f−1(td , ·) compute permuta-
tions fek (·), f−1

td (·) on {0, 1}k(n) s.t. for all x ∈ {0, 1}k(n): f−1
td (fek (x)) = x. We

say TDP is homomorphic if (D(n), ◦) is a group and for all x1, x2 ∈ D(n),
fek (x1) ◦ fek (x2) = fek (x1 ◦ x2).

We now recall the security properties of one-wayness and regular lossiness
[15,22].

Definition 3 (Security of TDP). Let t = t(n) and εone−way = εone−way(n)
be functions of a security parameter n. TDP is (εone−way , t)-one-way if for all
adversaries A running in time at most t, Pr[A(ek , fek (x)) = x] ≤ εone−way , where
(ek , td)← GTDP(1

n), x← {0, 1}k(n).

Definition 4 (Lossy TDP). Let tlossy = tlossy (n), � = �(n) and εlossy =
εlossy (n) be functions of a security parameter n. A trapdoor permutation TDP
over domain {0, 1}k(n) is regular (εlossy , tlossy , �)-lossy if there exists a ppt algo-
rithm Glossy (the lossy key generator) that on input 1n outputs ek ′ such that

3 As ε ≤ 1, εsig/tsig ≤ 2−n for every tsig ≥ 2n, so we only have to look at the case
tsig ≤ 2n.
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1. (indistinguishability of real and lossy keys) for all adversaries A running in
time at most tlossy , Pr[A(ek ) = 1]−Pr[A(ek ′) = 1] ≤ εlossy , where (ek , td)←
GTDP(1

n) and ek ′ ← Glossy (1
n);

2. (lossiness) fek ′(·) is �-to-1, i.e. ∀x ∈ {0, 1}k(n) : |{z : fek′(z) = fek′(x)}| = �

For any � ≥ 1, a lossy trapdoor permutation is collision-resistant when instanti-
ated in lossy mode [22]. The most important example of a trapdoor permutation
is RSA with domain Z

∗
N , defined as fN,e(x) = xe mod N . It is homomorphic with

respect to modular multiplication. It is one-way under the RSA assumption; for
any e < N1/4 it is furthermore regular e-lossy under the phi-hiding assumption
[15], where e is the public RSA exponent. Another example of a (homomorphic
and regular lossy) trapdoor function is Paillier [21].

3 Signatures with MR from Random Invertible Functions

Let k = k(n) and m = m(n) be functions with k(n) ≥ m(n). Let TDP be
a trapdoor permutation over domain {0, 1}k and F : {0, 1}m → {0, 1}k be a
random invertible function. We build a signature scheme with message recovery
SIG-MRF = (GSIG-MR, Sign,Recover) with message space M(n) = {0, 1}m and
signature space S(n) = {0, 1}k. GSIG-MR(1

n) runs (ek , td)← GTDP(1
n). It returns

pk = ek and sk = td .

Algorithm Signsk (M ∈ {0, 1}m)

y := F(M) ∈ {0, 1}k
Return τ = f−1

td (y) ∈ {0, 1}k

Algorithm Recoverpk (τ ∈ {0, 1}k)
y = fek (τ)
If F−1(y) = ⊥ then return ⊥
Else return M = F−1(y)

Note that SIG-MR has n1 = k −m bits of redundancy and correctness follows
since TDP is a permutation.

The following theorem proves security provided TDP is regular lossy. Its proof
is similar to the one of FDH in [15] and postponed to the full version [17].

Theorem 2. Suppose TDP is regular (�, tlossy , εlossy )-lossy (i.e., lossy by log2(�)
bits) and F is a random invertible function from {0, 1}m to {0, 1}k. Then
SIG-MRF is (tsig , qs, qf , εsig) secure with

tsig ≈ tlossy , εsig = (2�− 1)/� · εlossy +
qf

2k−m
.

In case TDP only satisfies the weaker security property of (t, εone−way )-one-
wayness, we only can obtain a non-tight security reduction [9] with respect to
εone−way . As we will show now, a tight security reduction from one-wayness can
be obtained by paddingM with one random bit b, using a reduction technique by
Katz and Wang [16]. We now define an alternative signature scheme SIG-MRF

ow

with message spaceM(n) = {0, 1}m−1 which can be proved tightly secure from
one-wayness of TDP.
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Algorithm Signsk (M ∈ {0, 1}m−1)
b(M)← {0, 1}
y := F(b‖M) ∈ {0, 1}k
Return τ = f−1

td (y) ∈ {0, 1}k

Algorithm Recoverpk (τ ∈ {0, 1}k)
y = fek (z)
If F−1(y) = ⊥ then return ⊥
Else compute b‖M = F−1(y)
Return M

It is furthermore enforced that Sign always uses the same random bit b = b(M)
for message M . (E.g., by defining b = PRFK(M).) Note that SIG-MRF

ow has
k −m+ 1 bits redundancy.

The proof of the following theorem is postponed to the full version [17].

Theorem 3. Suppose TDP is homomorphic and (t, εone−way )-one-way and F is

a random injective function from {0, 1}m to {0, 1}k. Then the scheme SIG-MRF
ow

is (t, qs, qf , 2εone−way +
qf

2k−m ) secure.

4 Pub-Indifferentiable Constructions Based on Feistel
Networks

4.1 The Two Round Feistel Network

Consider the two-round construction CH
2f : Zμ → Zμ × Zρ Figure 1 (left) which

is derived from an unbalanced two-round Feistel network φ2f instantiated with
random oracles H1 : Zμ → Zρ,H2 : Zρ → Zμ

φ2f (x, v) = (x+H2(H1(x) + v),H1(x) + v)

φ−1
2f (w, y) = (w −H2(y), y −H1(w −H2(y))

as CH
2f (x) = φ2f (x, 0) CH

2f

−1
(w, y) =

{
x if φ−1

2f (w, y) = (x, 0)

⊥ otherwise

This will serve as an example of a simple indifferentiability proof and to prepare
for our four round Feistel network in the next section.

Theorem 4 (pub-indifferentiability of C2f , implicit in [5]). CH
2f as il-

lustrated in Figure 1 (left) is (qD, qS, εsim , tsim)-pub-indifferentiable from F (cf.
Def. 1) where

qS = qD tsim = qD · polylog(μ) εsim = q2D/ρ,

More precisely, we can set tsim = O(qD log(qD) log(μ)) using that the cost per
(find or insert) operation on a sorted list with ≤ qD elements of size log(μ) bits
is O(log(qD) log(μ)).

The proof of Theorem 4 is postponed to the full version [17]. There we also
formally show that a combination with Theorems 2/3 and Theorem 1 leads to the

overhead of O(n, qh, qs) = n+ log(qh) bits for the two schemes SIG-MRCH
2f [RSA]

and SIG-MR
CH
2f

ow [RSA] in the random oracle model.



Digital Signatures with Minimal Overhead 581

x ∈ Zμ 0 ∈ Zρ

x

y

a

b

�H1

� H2

x ∈ Zμ (v, 0) ∈ Zρ × Zρ

x a

b y

z c

d w

�H1

�H3

� H2

� H4

Fig. 1. (left) Two round Feistel network φ2f : Zμ × Zρ → Zμ × Zρ, the construction
CH
2f : Zμ → Zμ×Zρ of a random invertible function F from a random oracle H is derived

from φ2f by setting the right part to 0, i.e. CH
2f (x) = φ2f (x, 0). � denotes component-

wise addition in the respective domains. (right) Four round Feistel network φ4F , our
main construction is derived from it as CH

4F (x, v) = φ4F (x, v, 0).

4.2 The Four Round Feistel Network

We prove the following theorem which bounds the pub-indifferentiability of our
main construction CH

4F as illustrated in Figure 1 (right) in terms of the variable
Q(μ, q) (which we mentioned in the introduction, and will discuss in detail in
Section 5).

Theorem 5 (pub-indifferentiability of CH
4F ). C

H
4F as illustrated in Figure 1

(right) is (qD, qS, εsim , tsim)-pub-indifferentiable from F (cf. Def. 1) where

qS ≤ qD log(ρ) tsim = qS · polylog(μ)

εsim =
2E[Q(μ, qD)]

ρ
+

2q4D
μ

+
2q2D
ρ2
·
(

log(ρ)

log(ρ/qD)

)2

. (3)

Given Theorem 5 we will now compute the concrete overhead of SIG-MRCH
4F [RSA]

and SIG-MRCH
4F

ow [RSA]. Let N = pq be the RSA modulus with k = logN and
recall that logμ = k− log ρ, where log ρ is the redundancy of the scheme. For all
practically relevant values, the first term in εsim in (3) is the dominating one.4

With the same argument as in the case of two rounds, by Theorems 2/3 and
Theorem 1 the overhead for n-bit security can (up to a small additive constant)
be computed as

O(n, qh, qs) = n+ logE[Q(μ, qh)]− log qh. (4)

4 Unless one proves an even stronger upper bound on Q(μ, qD) than we do in this
work, in which case the last term might become dominant for large qD.
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In order to bound E[Q(μ, qh)] we assume n ≤ log ρ ≤ 1.25n and hence logμ =
logN − 2 log ρ ≥ logN − 2(1.25n). The following table summarizes the overhead
O(n, qs, qh) for n = 80 bits security using (4) and the bounds on Pr[Q(μ, qh) ≥
qh2

s] from Theorem 6 in Section 5. We use logN ∈ {1024, 2048} as bit-length
of RSA and log qh ∈ {60, 80} as upper bound on the random oracle queries.

logN log qh t = logμ s Pr[Q(μ, qh) ≥ qh2
s] O(n, qh, qs)

1024 80 824 17 2−427 (l = 8) ≈ 97
1024 60 824 13 2−430 (l = 10) ≈ 93
2048 80 1848 12 2−230 (l = 16) ≈ 92
2048 60 1848 10 2−92 (l = 18) ≈ 90

4.3 Proof Intuition

For space reasons, the proof of Theorem 5 is only given in the full version [17]
of this paper. In this section we give a high level intuition of the simulator, and
in the next section give a proof of a combinatorial result which is at the heart
of our proof.

To prove Theorem 5, we have to define a simulator SF , which is given access
to a random function F : Zμ×Zρ → Zμ ×Zρ ×Zρ, such that the pair of oracles
(F , SF ) behaves like (CH

4F ,H).
Our simulator will internally define fake random oracles Ĥi, i = 1, . . . , 4 by

lazy sampling, and always try to make sure that they are consistent with F in
the sense that on inputs x on which F has been queried, the Ĥi are defined on

all values required to evaluate CĤ
4F (x) and moreover CĤ

4F (x) = F(x).
At some point, the simulator might not be able to define the Ĥ’s consistently

any more due to collisions or more complicated linear relations amongst some
of the inputs/outputs of F and the Ĥ’s. We can easily bound the probability of
most such failure events by roughly qD/ρ or less, except for one case, which we’ll
outline below.

Consider a qD query adversary D who queries an unbalanced three round
Feistel network (as illustrated in Figure 1 on the right side, but ignore the last
round, and let the right half of the input be 0 ∈ Zρ not (v, 0) ∈ Zρ×Zρ). Assume
the adversary queried the third oracle H3 on inputs Z and the second on inputs
Y (receiving outputs B). Next, D chooses some set X and queries the network
on inputs (x, 0). If for some x ∈ X we have H1(x) ∈ Y and x+H2(H1(x)) ∈ Z,
then the input to H3 on this query has been already fixed, and the simulator
can’t program it so it is consistent with F(x), we’ll refer to this as a bad event
below.5 Any tuple (x, y, z) ∈ X ×Y ×Z where x+H2(y) = z can lead to such a

5 The reason our actual construction needs one more round, is so we can also program
the right half of the output of the network. Moreover the input to the right half
contains not just the redundancy 0 ∈ Zρ, but another element Zρ which is part of
the message. The reason we do this is that now the domain of the right half is large
enough so we can upper bound by q2D/ρ

2 ≤ qD/ρ terms which come up in the proof
that depend on the collision probability of random elements over this domain.
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failure with probability Z
−1
ρ (namely, if H1(x) = y). The number of such tuples

(for an optimal choice of X ,Z for a given B) is
Q(μ, q,B) = max

X ,Z⊂Zµ,|X |=|Z|=q
|{(x, z) | x ∈ X , z ∈ Z, z − x ∈ B}| (5)

We can thus bound the probability of this bad event by Q(μ, qD,B)/ρ. Simple
lower and upper bounds on Q(μ, qD,B) are6

∀B ⊂ Zμ, |B| = q : 2q − 1 ≤ Q(μ, q,B) ≤ q2.

Unfortunately, there exist B for which the upper bound is almost achieved.7

Fortunately, the set B is not adversarially chosen, but the output of a random
oracle, which makes it a random subset of Zμ. We thus consider the variable
Q(μ, qD) which denotes Q(μ, qD,B) for a randomly chosen B. In order to get a
good upper bound on the probability of the bad event, it thus suffices to give
an upper bound on Q(μ, qD) that holds with high probability over the choice of

B. In Section 5 we give such a bound showing that Q(μ, qD) is q
1+o(1)
D with very

high probability, here the o(1) term goes to 0 as the ratio qD/μ decreases.

5 A Bit of Additive Combinatorics

Additive combinatorics deals with questions of the sort that given an Abelian
group A, find subsets Z,X of given size that minimizes the size of

Z − X = {z − x|z ∈ Z, x ∈ X}
Often we also want to find out the structure of such optimal (or nearly optimal)
Z,X pairs. Such pairs are of course special, and we do not have too many of
them. Analogous questions are also raised when the ’−’ is replaced with ’+’.

Here we investigate a variant, where we also have a third set B ⊆ A with
the same size as Z and X with the property that z − x ∈ B for an unusually
large number (say, |B|3/2) of (x, z) pairs with z ∈ Z and x ∈ X . We show that
for an adequately small random B it is very unlikely that we can find any Z,X
such that Z,X and B form a triplet as above. We may interpret our result as a
property of the random Cayley graph generated by B.
Remark 1. Although our setting is natural and undoubtedly useful for the ap-
plication at hand, the problem we raise does not seem to have been studied
before. An often-cited work of B. J. Green [13] computes the maximum clique

6 To see the 2q − 1 lower bound, add any x to X and let Z be {z | z − x ∈ B}, this
gives us already a set of size |B| = q. We can get q − 1 more by adding any q − 1
elements x to X s.t. x = z − b for some b ∈ B, each increasing the set by at least 1.
To see the q2 upper bound, note that for any of the q distinct x ∈ X , z − x ∈ B can
hold for at most q z’s as |B| = q. This upper bound holds even if we allow Z (or X )
to be all of Zμ.

7 Consider the case B = X = Z = {0, . . . , q−1}, which shows |Q(μ, q,B)| ≥ q(q+1)/2.
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size of (dense) random Cayley graphs of cyclic groups and of Zn
2 . Other authors

e.g. Christofides and N. Alon have also investigated random Cayley graphs, but
with focus on Hamiltonicity, chromatic number, etc. The size of the generator
set, unlike in our case, in most studies are either very small (poly(log |A|)) or
very large (Ω(|A|)). Since spectra of random Cayley graphs have been studied,
it is conceivable that there is a shorter analytic proof to our statement. We use
simple combinatorics to prove our theorem.

We (non-crucially) set the Abelian group A to be the cyclic group Zμ, where μ
is a prime. Let 1 ≤ q ≤ μ arbitrary, but we will think of it as a small constant
power of μ, for instance q = μ0.1. For a set B ⊂ Zμ, |B| = q define

Q(μ, q,B) = max
X ,Z⊂Zµ,|X |=|Z|=q

|{(x, z) | z ∈ Z, x ∈ X , z − x ∈ B}| (6)

Expression (6) becomes a random variable Q(μ, q, .) as B ranges over all uni-
formly random B ⊆ Zμ of size q. The minimum value of this random variable
is at least q, because for any B one can choose Z = B and 0 ∈ X . We show
that if q is a small power of μ, the probability of the event that this random
variable much exceeds q is small. To obtain practical expressions in the theorem
and simpler formulas in the proof, we introduce μ = 2t and q = 2r.

Theorem 6. For 0 < r < t/4, and for every s, l > 0, 2s ≥ l2 it holds that

Pr[Q(2t, 2r) ≥ 2r+s] ≤ 2−DB+t

where D = �2s− r
l /(2l+ 2)� and B = t− l(r + 1).

Corollary 1. Let q = μa, where a ≤ 1/4. If q is large enough (while parameter
a is fixed), then

Pr[Q(μ, q) ≥ q1+2a] ≤ 2−qa/2

We defer the proof of the corollary to after that of the theorem.

Proof. (of Theorem 6) Let μ = 2t denote the size of the group, which we as-
sume to be Zμ, but this is not essential. We prove Theorem 6 by an informa-
tion compression argument. What we show is that a set B satisfying |B| = 2r,
Q(2t, 2r,B) ≥ 2r+s has a lot of constant size linear relations between its ele-

ments, which allows us to describe it with significantly less than log
(
2t

2r

)
bits.

In order to encode a B ⊆ Zμ for which |B| = 2r, Q(2t, 2r,B) ≥ 2r+s efficiently,
we show that any such B has a decomposition B = D ∪ D, where |D| = D as in
the theorem, D = B \ D, and there exist fixed x, z ∈ Zμ that the elements b of
D can be ordered suitably and be expressed as

b = ε(z − x)− ε1b1 − . . .− εl−1bl−1, (7)

where b1, . . . , bl−1 are either from D or from elements of D that are expressed
earlier. The numbers ε, ε1, . . . , εl−1 are all in {−1, 1}. The saving per every item
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in D is the difference measured in bits between its description length via (7)
versus their default information cost per item. The latter is:

log
(
2t

2r

)− log
(

2t

2r−D

)
D

∼ t− r

Since the sequence ε1, b1, . . . , εl−1, bl−1 together with ε can be described with
(l− 1)(r+1)+1 bits (each bi is element of B which is already on our list, so has
an r-bit description), our saving per item is

B = t− r − (l − 1)(r + 1)− 1 = t− l(r + 1)

bits. Our total saving is then DB − t, since we also need t bits to describe
z − x (once for the entire D). The upper bound on the probability of the event
Q(2t, 2r,B) ≥ 2r+s is then 2−DB+t.

We are left to construct the (D,D) decomposition and to calculateD. Consider
a B that satisfies Q(2t, 2r,B) ≥ 2r+s. Then there are X ,Z ⊆ Zμ, |X | = |Z| = 2r

such that |{(x, z) | x ∈ X , z ∈ Z, z − x ∈ B}| ≥ 2r+s. We fix such an X ,Z pair.
Let G be the bipartite graph with bipartition (X ,Z) and edge set

e(G) = {(x, z) | x ∈ X , z ∈ Z, z − x ∈ B}.

By our assumption |e(G)| ≥ 2r+s. If we iteratively remove the minimum degree
vertex from G until all degrees of the resulting graph are at least 2s/2 (i.e. the
average degree of G divided by two), it is easy to show that this process ends
up with a non-empty graph G′ with minimum degree at least 2s/2. Fix a vertex
x ∈ X ∩ V (G′) . Our proof hinges upon the following construction:

Definition 5. Let Pi for i = 1, 2, . . . be the set of all those (not necessarily
simple) paths π of length i in G′ (the length is the number of edges) that satisfy:

1. π starts at x
2. No two edges edges of π have identical labels, where a label of an edge (v, w)

(v ∈ X , w ∈ Z) is by definition w − v.

Let π be a path in Pi and let d = d(π) denote the degree of its end point z. All
edges incident to z have distinct labels, so the number of those edges incident
to z whose label do not coincide with any labels we already have in π is at least
d− i. Thus π has d− i ≥ 2s

2 − i continuations in Pi+1. Therefore, by induction,
for i ≥ 1:

|Pi| ≥
i−1∏
j=0

(
2s

2
− j

)
>

1

e

2is

2i
.

Consider the set Pl. Notice that if l is odd, then every path in Pl end in Z,
otherwise they all end in X . Since the nodes of G′ are from X ∪Z and |X |, |Z| =
2r, there must be a z ∈ X (if l is even) or z ∈ Z (if l is odd) such that at least
|Pl|
2r ≥ 1

e
2ls−r

2l paths from Pl end in z.
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Let T be the set of the paths in Pl that end in this z. We will use the paths in
T to find a lot of small linear relations among the elements of B. For a path π let
�(π) denote the set of labels that occur on its edges, and define D0 = ∪π∈T �(π),
which is just the collection of all labels that ever occur in those paths of Pl that
end in z. Of course, D0 ⊆ B, because all labels along the edges of G′ are in B. In
order to estimate |D0| we view a path π ∈ Pl as an ordered sequence of labels.
Each π ∈ Pl uniquely corresponds to such a sequence of length l (although not
necessarily every element of Dl

0 is an element of Pl). Since from an alphabet of
size |D0| we can create at most |D0|l different sequences of length l, we have that

|D0| ≥ |T |1/l ≥
(
1

e

2ls−r

2l

)1/l

≥ 2s−r/l/(2 + 2/l).

We are now ready to define the decomposition B = D ∪ D as promised in the
beginning. The role of x and z in expression (7) will be played by the common
starting- and end-point of all paths in T . For any path π ∈ T we have that

z − x = b1 − b2 + b3 − . . .+ bl (if l is odd, otherwise the last sign is a minus)

It is a trivial matter to transform the above equation into (7), where b is one of the
bis (our choice which one). What remains is to show is that starting from a subset
of T we can to generate all remaining elements by (7) such, that the number of
generated elements is no less than the bound we require. A combinatorial lemma
will help us in this.

Definition 6. We say that a set {h1, . . . , hl−1} of nodes in an undirected hyper-
graph H generates node h, if {h1, . . . , hl−1, h} is a hyper-edge. A generator set
for H is a subset of nodes from which we can iteratively generate the entire vertex
set of H.
Lemma 1. Let H be an hyper-graph on m nodes such that every edge is a set
of size at most l, and every node is contained in at least one hyper-edge. Then

H has a generator of size at most (l−1)m
l .

Proof. The proof is by induction on l. The claim is trivial for l = 1. Take
a minimal generator set X for H. If it does not satisfy our condition, then

|X | > (l−1)m
l . Consider the hyper-graph H′ we get from H by restricting all of

its nodes and edges to X . Since a minimal generator set in H cannot properly
contain any hyper-edge, every hyper-edge in H′ has size at most l − 1. Thus by

induction H′ has a generator set Y of size at least (l−2)|X|
l−1 . But Y ∪X generates

H, and it has size at most l−2
l−1 |X |+m− |X | ≤ (l−1)m

l .

We now apply this lemma for the hyper-graph, which has vertex set D0 and
edge set {�(π) | π ∈ T }. We get a generator set of size (l− 1)|D0|/l. We put the
elements of this generator set into D, as well as the elements of B that are not
in D0. We can generate the remaining elements of D0 out of these via (7), and

we let these form the set D. The size of D is |D0|/l = 2s−r/l

(2l+2) .
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Proof. (of Corollary 1) In Theorem 6 we set a = r/t, s = 2r2/t, l = 3t
4(r+1) . This

gives B = t/4 and

D =
exp2

(
2 r2

t − 4r(r+1)
3t

)
2l + 2

= q2
r
t − 4(r+1)

3t /(2l+ 2) ≥ qa/2

if q is large enough (above exp2(z) is by definition 2z). Thus 2−DB+t ≤ 2−qa/2

when q is sufficiently large.
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