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Abstract. We adapt the concept of a programmable hash function
(PHF, Crypto 2008) to a setting in which a multilinear map is avail-
able. This enables new PHFs with previously unachieved parameters.

To demonstrate their usefulness, we show how our (standard-model)
PHF's can replace random oracles in several well-known cryptographic
constructions. Namely, we obtain standard-model versions of the Boneh-
Franklin identity-based encryption scheme, the Boneh-Lynn-Shacham
signature scheme, and the Sakai-Ohgishi-Kasahara identity-based non-
interactive key exchange (ID-NIKE) scheme. The ID-NIKE scheme is the
first scheme of its kind in the standard model.

Our abstraction also allows to derive hierarchical versions of the above
schemes in settings with multilinear maps. This in particular yields sim-
ple and efficient hierarchical generalizations of the BF, BLS, and SOK
schemes. In the case of hierarchical ID-NIKE, ours is the first such scheme
with full security, in either the random oracle model or the standard model.

While our constructions are formulated with respect to a generic
multilinear map, we also outline the necessary adaptations required for
the recent “noisy” multilinear map candidate due to Garg, Gentry, and
Halevi.
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1 Introduction

Programmable Hash Functions. Programmable hash functions (PHF's) have
been proposed in |1§] as an abstraction of random oracles that can also be
instantiated in the standard model. In a nutshell, a PHF H maps a bitstring
X (e.g., a message to be signed) to a group element H(X); a special trapdoor
allows to decompose H(X) = cX h¥X for previously chosen c, h. In a larger proof,
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¢ will usually be a “challenge element” (e.g., a part of a given Diffie-Hellman
challenge), so that H(X) contains a challenge component if and only if ax # 0.

PHFs can be used to employ partitioning strategies: e.g., Waters’ CDH-based
signature scheme [24] (implicitly) uses a PHF to partition the set of all mes-
sages into “signable” and “unsignable” messages. (In his case, a message X is
signable iff ax # 0.) During the proof of unforgeability, we hope that all messages
for which an adversary requests a signature are signable, while the adversary’s
forgery corresponds to an unsignable message.

Limitations of PHFs. While initially meant as a standard-model replace-
ment for random oracles, many applications require a degree of “programmabil-
ity” that is not met by current PHF constructions. Technically, we have PHF
constructions with ax # 0 for most, but not all preimages X. Such PHF's are
suitable, e.g., in certain signature or identity-based encryption schemes |24, [18].

However, several prominent schemes that are formulated in the random oracle
model (e.g., |23, 4, 16]) would require a PHF with ax = 0 for most (but not all)
preimages. (Roughly speaking, in these schemes, adversarial queries X can be
handled iff the corresponding hash does not have a challenge component, i.e., if
ax = 0.) Unfortunately, a recent result [17] shows that no black-box construction
of such a PHF with ax = 0 for most (but not all) X exists.

Our Work. We construct PHFs with ax = 0 for most (but not all) X by slightl
adapting the PHF definition to a setting in which a multilinear map is available
We use our PHFs to give standard-model versions of prominent cryptographic
schemes whose security has so far only been proven in the random oracle model.
Specifically, we give standard-model versions of the Boneh-Franklin (BF) identity-
based encryption scheme [4], Boneh-Lynn-Shacham (BLS) signatures [6], and the
Sakai-Ohgishi-Kasahara (SOK) identity-based non-interactive key exchange (ID-
NIKE) [23]. We also use our PHFs to realise a completely new secure crypto-
graphic functionality: we present the first fully secure hierarchical ID-NIKE, with
security either in the standard-model or the random oracle model. Our construc-
tions assume the existence of an O(k)-linear map, where k is the security parame-
ter @ We use an abstraction of multilinear maps that is compatible with the recent
“noisy” candidate for multilinear maps of Garg, Gentry, and Halevi [13].

Some Technical Details. We circumvent the black-box impossibility result [17]
by slightly adapting the PHF definition to a setting with multilinear maps. Intu-
itively, [17] uses that ax is an exponent that can be viewed as a known function
in certain unknown variables. This function is linear, because all involved group
elements are from the same group, and only group operations are allowed. But
the number of zeros of such a (nontrivial) linear function can be reasonably upper
bounded. This contradicts the goal that ax = 0 for many, but not all X.

! Concretely, we construct (poly, n)-MPHFs for any constant n. This denotes a slight
variant of PHF's in a multilinear setting, with the following property. For any poly-
nomial number of X; and Z1, ..., Z, (with X; # Z;), we have ax, = 0 and az; #0
for all ¢, j with significant probability. The X;, Z; need not be known during setup.

2 In fact, our optimizations only require a O(k/log(k))-linear map.
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By moving to a multilinear setting, we essentially allow (a limited number of)
multiplications in the exponent. Hence, the exponent ax is now no longer limited
to be a linear function, but can be a multivariate polynomial. Such polynomials
can have exponentially many zeros. For instance, we could choose secret values
a;p (for 1 < i < |X|and b € {0,1}), such that exactly one element of each pair
(0,0, 0,1) is nonzero; say o p, 7 0. Then the function

| X|
ax = a(X) = Hai,Xi (1)

(where X; denotes the i-th bit of X') evaluates to zero everywhere except for X =
(b1,...,bx|). In fact, we implement a suitable variant of the function inin the
exponent (in the sense that H(X) = c®xhbx = ¢*(X)pbx for a suitable blinding
term h%x ) through multilinear mapsE In the process, we also recognize and refine
an admissible hash function (AHF [3,8,[1]) implicit in [19]. This yields the — by far
—most efficient known AHFs. As a result, we get PHFs in the multilinear setting
with ax = 0 for many (but not all) X.

Applications. To demonstrate their power, we use our new PHF's to replace
random oracles in three example applications. As one application, we obtain from
BLS signatures |6] an existing standard-model signature scheme due to Boneh
and Silverberg [5]; as a natural extension, we give a standard-model variant of the
Boneh-Franklin IBE scheme [4]. However, our central application is the SOK [23]
ID-NIKE scheme; from this scheme, we get the first fully secure ID-NIKE in the
standard model.

In all cases, the analysis is completely modular: we prove the security of
the PHF-based schemes solely from generic PHF properties. In particular, we
can also view (programmable) random oracles as PHFs to obtain the original
schemes, with essentially the original proofs@ We view these results as strong
evidence that PHFs are a useful abstraction of random oracles that also allows
for standard-model instantiations.

In addition, we give natural hierarchical versions of all schemes in a setting
with multilinear maps. (Recall that we require multilinear maps for our PHFs
anyway.) Again, we can either use random oracles as PHFs to obtain reasonably
efficient new schemes, or use our new PHFs to obtain (somewhat less efficient)
standard-model versions.

More on Our ID-NIKE Schemes. In the signature and IBE applications,
we mainly explain (and slightly improve) existing schemes through PHFs. While
this already hints at the potential of our notion of PHF's, their actual usefulness

3 We stress that these ideas are not new; essentially the same function in the exponent
has been considered by Boneh and Silverberg [5] for a concrete signature scheme,
building on work of Lysyanskaya [19]. Our contribution here is an abstraction (along
with a few quantitative optimizations) that enables new applications.

* The exception is the SOK scheme, for which we only get a proof under a slightly
stronger computational assumption.
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in building novel cryptographic functionalities is best demonstrated by our ap-
plication to ID-NIKE.

Loosely speaking, a non-interactive key exchange (NIKE) provides any two
parties registered in the system with a unique shared key, without any inter-
action. For NIKE in the identity-based setting, there is a single master public
key held by a trusted authority (TA); each party additionally gets an individual
user secret key from the TA, and combines its secret key with the identity of
the other party to compute the shared key. This primitive is a powerful one.
For one thing, it implies secure IBE under a minor technical requirement [20].
More importantly, it has important applications in managing keys and enabling
secure communications in mobile ad hoc and sensor networks, where the energy
cost of communication is at a premium [14, |9]. In the hierarchical setting, H-
ID-NIKE allows the same functionality, but also allows the TA’s operations to
be distributed over a hierarchy, which is well-suited to military and emergency
response scenarios. The advantages of ID-NIKE, in terms of reducing communi-
cation costs and latency in a realistic adversarial environment, are demonstrated
in |9]. For further discussion of applications of NIKE and ID-NIKE, see [14, [12].

However, ID-NIKE has proven surprisingly hard to instantiate in the standard
model, even more so in a hierarchical setting. Currently, to the best of our
knowledge, there is precisely one efficient, secure ID-NIKE scheme with a proof
of security in the random oracle model, namely the SOK scheme [23] (with
security models and analysis in [11, 20]). There are no schemes secure in the
standard model. One might think that such schemes could easily be obtained
from known standard-model-secure IBE schemes, but this is not the case; the
essential technical barrier seems to be the randomised key derivation in these
IBE schemes.

In the hierarchical setting, Gennaro et al. |14] constructed H-ID-NIKE schemes
that are secure under certain classes of key exposure, but which do not offer full
security, the desirable and natural generalisation of the existing ID-NIKE se-
curity notion from [20] to the hierarchical setting. Moreover, their schemes do
not scale well to large numbers of levels. The same criticisms apply to earlier
schemes |2, 121] on which the scheme of Gennaro et al. [14] is based. Indeed,
one of the open problems left in [14] is to construct a H-ID-NIKE scheme with
security against not only compromise of any number of leaves, but also against
any number of nodes at higher levels of the hierarchyﬁ

By substituting the random oracles in the SOK scheme [23] with our new
PHF's, we obtain the first secure ID-NIKE schemes in the standard model. Fur-
thermore, our construction extends naturally to the hierarchical setting, yielding
the first fully secure H-ID-NIKE schemes. The construction can be instantiated
using random oracles to obtain a reasonably efficient scheme, or using PHFs for
security in the standard model. In the full version, we also show how multilinear
maps can be used to achieve security in the broader scenario of multiple TAs,
and for shared keys among whole groups of parties.

® We note that there are other papers claiming to solve this open problem (eg. [16]),
but these can be easily shown to provide insecure schemes.
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Note on the Recent Candidate for Multilinear Maps. Recently, Garg,
Gentry, and Halevi [13] have announced a candidate for a family of cryptographi-
cally interesting multilinear maps. Their candidate is lattice-based, heavily relies
on the notion of noise, and thus does not provide groups in the usual sense. We
comment on the necessary adaptations of our schemes to their setting inside.

2 Preliminaries

Notation. Forn € R, let [n] := {1,...,|n]}. Throughout the paper, k& € N
denotes the security parameter. For a finite set S, we denote by s <— S the pro-
cess of sampling s uniformly from S. For sets S',S?,... and n € N, we write
S§=n:=J_, S'. For a probabilistic algorithm A, we write y < A(z) for the pro-
cess of running A on input x with uniformly chosen random coins, and assigning
y the result. If A’s running time is polynomial in k, then A is called probabilistic
polynomial-time (PPT). A function f : N — R is negligible if it vanishes faster
than the inverse of any polynomial (i.e., if VeIkoVk > ko : |f(K)] < 1/k°). fis
significant if it dominates the inverse of some polynomial (i.e., if Je, koVk > ko :

f(k) = 1/k°).

Multilinear Maps. An /-group system consists of £ cyclic groups Gy, ..., G
of prime order p, along with bilinear maps e;; : G; x G; — Gy4; for all
i,j > 1 with ¢ + 5 < £. Let g; be a canonical generator of G; (included
in the group’s description). The map e; ; satisfies e; (gf,g;?) = gff;j (for all
a,b € Z,). When i,j are clear, we will simply write e instead of e, ;. It will
also be convenient to abbreviate e(h1, ..., hj) :=e(h1,e(he, ..., e(hj—1,h;)...))
for h; € G;; and i = (i1 +i2 + ... 4+ 4;) < £. By induction, it is easy to see
that this map is j-linear. Additionally, we define e(g) := g. Finally, it can also
be useful to define the group Gy = ZIJEL\ of exponents to which this pairing
family naturally extends. In the following, we will assume an f-group system
MPG, = {{Gi}ice, s {€ijtij>1,irj<e} generated by a multilinear maps pa-
rameter generator MG, on input a security parameter 1%.

The GGH Candidate. We currently do not have candidates for multilinear
maps between groups with cryptographically hard problems. However, Garg,
Gentry, and Halevi [13] (henceforth GGH) suggest a concrete candidate for an
“approximation” of multilinear maps, named graded encoding systems. With the
GGH candidate, group elements have a randomized (and thus non-unique) repre-
sentation dubbed “encoding”. While it is possible to extract a unique “canonical
bitstring” from an encoding, it is not possible to perform further computations
with this extracted bitstring. An encoding can be re-randomized (e.g., to hide
the sequence of operations that were performed), but only at the cost of in-
troducing an artificial “noise” term in the encoding. Further operations (and
re-randomizations) on this group element cause the noise to grow; once this
noise grows beyond a certain bound, encodings can no longer be worked with [

6 We further ignore a (negligible) error probability in most of the GGH procedures.
Technically, however, this leads to applications with, e.g., negligible correctness error.
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Our Abstraction. For readability and universality, we will generally use the
notation from the abstract notion of multilinear maps described above. When
instantiated with the GGH candidate, operations are meant to occur on en-
codings, without implicit re-randomizations. In particular, e.g., g now denotes
an encoding (not a group element). Additionally, we will employ the following
notation to indicate necessary re-randomizations, extractions, and comparisons
when using encodings instead of group elements.

— g + G; means choosing a random encoding g at level 4. (This corresponds
to uniformly choosing a group element from G;.) We assume that encodings
g chosen in such a way have a low noise level, say, 1.

— ¢ = h holds iff the encodings ¢ and h match.

— ¢ 2 h holds iff the group elements encoded by ¢ and h match, that is, iff
the GGH isZero procedure identifies g~'h as the neutral element [1

— reRand;(g) is the re-randomization of encoding g. This re-randomization in-
creases the noise level to a certain, a-priori fixed bound j. For simplicity, and
abstracting, we only consider noise levels j € IN. If ¢’s noise level is already
at least j (e.g., because g is the output of reRand;), then randomization fails.
We note that the distributions reRand;(g) and reRand;(h) are statistically

close for any two encodings g, h with g &P h and noise level less than 7j.
— ext(g) denotes the canonical bitstring extracted from encoding g. We have

ext(g) = ext(h) for any g, h with g £ h of sufficiently small noise level.

Like [13], we omit parameters (such as noise bounds) to computations; asymp-
totic parameters can be derived from the suggestions in |13, Section 4.2].

Hard Problems. The ¢-MDDH assumption is: given (g,g¢"!,...,g"+!), (for

g < Gp and uniform exponents z;), the element e(g*!,..., g% )%+ € Gy

is computationally indistinguishable from a uniform G-element. The (¢ + 1)-

power assumption is: given (g,¢”) (for g < G1 and uniform z), the element

e(g””, . ,gi )* € Gy is computationally indistinguishable from a uniformly cho-
~

¢ times
sen G g—elementﬁ

3 Programmable Hash Functions in the Multilinear
Setting

3.1 Motivation

Programmable hash functions (PHFs) have been defined in [18] as a special
type of a group hash function (i.e., a hash function with images in a group).

7 Technically, the GGH isZero procedure only allows to compare two encodings on the
“highest level” ¢. To compare two level-i encodings (for ¢ < £), we can first “lift”
both to level £ by pairing them with a nonzero level-(¢ — i) element.

8 We note that in the GGH setting, all elements g™ (resp. g*), and the challenge
e(g®,...,g%t)%+1) (resp. e(g”,...,¢%)%) are produced with knowledge of the ex-
ponents z,x; as fully randomized but low-noise encodings.
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Namely, the image H(X) of a PHF can always be explained as H(X) = c®x hbx
for externally given ¢, h. Usually, ¢ will be a “challenge element” (e.g., from a
Diffie-Hellman-like problem), and h will be a “controlled element” (e.g., with
known exponent relative to a fixed group generator) used for blinding purposes.
Intuitively, we require that both the events ax = 0 and ax # 0 occur with
significant probability. Even more, an (m,n)-PHF guarantees that with signifi-
cant probability, ax, = 0 for any m given inputs X;, while az, # 0 for any n
given inputs Z; (with X; # Z; of course). This means that the H(X;) contain
no challenge component, while all H(Z;) do.

For our purposes, we will strive to construct efficient (poly, n)-PHFs for con-
stant n (i.e., group hash functions which are (¢(k),n)-PHFs for any polynomial
q). However, there are indications that such PHFs do not exist [17], at least
according to the original definition from [18]. Thus, we will adapt the definition
of PHFs to the multilinear setting, and construct the “multilinear analog” of a
(poly,n)-PHF. Concretely, an (m,n)-PHF maps to a “target” group Gy. Here
instead of explaining H(X) as a product c¢®*h?x for ¢, h in the target group Gy
(as the case of PHF's), we will explain H(X) as a product e(cq, . .., ce)**¥e(Bx, h),
for externally given challenges ¢; € Gy (which means ¢ = e(cy,...,c) € Gy)
and controlled h € GG;. Note that the coefficient bx in the usual definition of a
PHF now becomes a preimage Bx € Gy—1 under a pairing operation.

3.2 Definitions

Definition 1 (Group hash function). 4 group hash function H into G con-
sists of two polynomial-time algorithms: the probabilistic algorithm HGen(1%)
outputs a key hk, and HEval(hk, X) (for a key hk and X € {0,1}*) determinis-
tically outputs an image Hp(X) € G.

Definition 2 (MPHF). Assume an ¢'-group system MPGy as generated by
MG (1F). Let H be a group hash function into G, (¢ < '), and let m,n € N.
We say that H is an (m,n)-programmable hash function in the multilinear setting
((m,n)-MPHF) if there are PPT algorithms TGen and TEval as follows.

— TGen(1% ¢1,...,co,h) (for ciyh € Gy and h g;ép 1) outputs a key hk and a
trapdoor td. We require that for all c;, h, the distribution of hk is statistically
close to the output of HGen

— TEval(td, X) (for a trapdoor td and X € {0,1}*) deterministically outputs
ax € Z and Bx € Gy_1 with Hp(X) £l e(c1y...,c0)®* - e(Bx,h). We
require that there is a polynomial p(k) such that for all hk and X1,..., X,
21,y dp € {O, 1}k with {Xz}z N {Zj}j = @,

Phrx.z;y = Prlax, =~ =ax, =0Aaz,...,az, #0] > 1/p(k), (2)

9 There is a subtlety here: in case of encoded group elements, the output of TGen may
consist of group elements whose noise level depends on the noise level of the ¢; or
h. Hence, we will assume a known a-priori bound on the noise level of the ¢; and h.
This assumption will be fulfilled in our applications.
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where the probability is over possible trapdoors td output by TGen along with

the given hk. Furthermore, we require that Py (x,y,{z,} s close to statis-

tically independent of hk. (Formally, |Puy (x.},(2,}y — Prrr {x:3.42,3] < v(k)

for all hk, hk" in the range of TGen, all {X;},{Z;}, and negligible v(k).)
We say that H is a (poly, n)-MPHF if it is a (q(k), n)-MPHF for every polynomial
q(k), analogously for (m, poly)-MPHFs.

Note that the TEval algorithm of an MPHF into G; yields Bx € Gy, i.e.,
exponents By. In fact, in this case, the MPHF definition coincides with the
original PHF definition from [18].

Readers interested only in how to use MPHFs in cryptographic constructions
may safely skip the remainder of this section.

3.3 Warmup: Programmable Random Oracles as MPHFs

A programmable random oracle RO with images in (G; can be interpreted as a
group hash function in the obvious way. (By “programmable”, we mean that
during a security proof, we can freely and adaptively determine images of RO,
even depending on the inputs of TGen. The only restriction of this programming
is that images should appear uniformly and independently distributed to an
adversary who sees only public information.) However, note for this modeling to
make sense in the first place, we should require that we can hash into Gy.

Theorem 1 (PROs as (poly,n)-MPHFSs). A programmable random oracle
RO (in the above sense) with images in Gi1 can be programmed to act as a
(poly,n)-MPHEF for any constant n.

Proof (Proof sketch.). Fix a polynomial ¢ = ¢(k). We show that RO is a (g, n)-
MPHF (with empty hk). For each new preimage X, we program RO(X) :=
c®* hBx for the inputs ¢ := ¢; and h to TGen, and a uniformly chosen exponent
Bx € Go = Zg,|- We choose ax = 1 with probability 1/2¢, and ax = 0 oth-
erwise. TEval outputs these ax, Bx, assigning them as necessary for previously
unqueried inputs X. For any pairwise different X1,..., Xy, Z1,..., Z,, we thus
have

Pr[Vz"a =0AVYj:a 7&0]— 1—1 q~ L n>1- a
FAx = RANY -6z, - 2 2) = 2 \2¢)

which is significant for polynomial ¢ and constant n. a

3.4 Ingredient: Efficient Admissible Hash Functions

At the heart of our standard-model constructions lies a primitive dubbed “ad-
missible hash function” (AHF) [3]. Unfortunately, the AHFs from [3] are not
very efficient (and in fact only achieve a weaker AHF definition, see [8]). How-
ever, luckily, an earlier work by Lysyanskaya [19] already contains an implicit
and much more efficient AHF.
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Intuitively, an AHF can be thought of as a combinatorial counterpart of
(poly, 1)-(M)PHFs. An AHF input X is mapped to an image AHF(X) in a way
that X can fall in the set of controlled, CO, inputs (meaning that we know a trap-
door that allows to answer adversary’s queries for that input) or uncontrolled,
UN, inputs (meaning that we do not know any trapdoor but hope to embed a
challenge element). (Unlike with (M)PHF's, however, this is a purely combinato-
rial property.) An AHF guarantees that for any X,..., X, Z, with significant
probability, all X; are controlled, and Z is uncontrolled.

We now give a definition that is a somewhat simpler variant of the AHF
definitions from |8, [Il], and then show a result implicit in [19].

Definition 3 (AHF). For a function AHF : {0,1}* — R’ (with a finite sef:d
R and polynomial £ = ¢(k)) and K € (R U {L})*, define the function Fi :
{0,1}* — {CO,UN} through Fx(X) = UN < Vi: K; = AHF(X); V K; = L,
where AHF(X); denotes the i-th component of AHF(X) We say that AHF is
q-admissible if there exists a PPT algorithm KGen and a polynomial p(k), such
that for all X1,..., X, Z € {0,1}* with Z ¢ {X;},

Pr[Fi(X)) = = Fx(X,) =C0 A Fi(Z) =UN] > 1/p(k), (3)

where the probability is over K < KGen(1¥). We say that AHF is an admissible
hash function (AHF) if AHF is g-admissible for all polynomials q = q(k).

Thus, X is controlled (i.e., Fx(X) = C0) if there is an ¢ with X; # K; # L.

Theorem 2 ([19]). Assume a family of codes {Cx} with Cy : {0,1}* — R®
denoting both the code and its encoding function. Suppose that Cy, has minimum
distance at least ¢ - £ for a fized constant ¢ > 0. (That is, X1 # X2 implies that
the vectors Ci(X1) and Ci(X2) differ in > c-€ positions.) Then {Cr} is an AHF.

Proof. Let ¢ = q(k) be a polynomial. We need to devise a PPT algorithm KGen
such that [(3)] holds. KGen(1%) sets d := |(In2q)/c] (so d is the smallest integer
such that (1 — c)d < 1/2q), and picks K uniformly among all elements from
(RU{L})* with exactly d non- L components. Hence, the set I := {i | K; # L}
is of size d.

Now fix Xi,...,X,,Z € {0,1}* with Z ¢ {X;}. Our choice of K implies
Pr[Fk(Z) = UN] = |R|~%. For any fixed i, we want to upper bound the prob-
ability Pr[Fk(X;) =UN| Fx(Z) = UN|. (This step loosely corresponds to [19,
Lemma 4].) Hence, assume Fi(Z) = UN; note that this conditioning leaves the
distribution of I uniform. Now Cp(X;) and Ci(Z) differ in a set A C [{] of
positions with |A| > ¢f. Hence, Fx (X;) = UN is equivalent to I N A = ). Thus,

Pr[Fg(X;)=UN|Fg(Z)=UN] = Pr[INA=0| Fx(Z) = UN]

1

2q°

1% One should have R = {0,1} in mind here. Larger R (e.g., R = [k]) lead to slightly

less pairing-intensive constructions of MPHF's, see the paragraph before [Theorem 41
1 That is, for R = {0, 1}, we have Fx(X) = C0 iff there is an i with K; = 1—AHF(X);.

d §€76d<

<(1-9
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A union bound over i gives Pr[Vi: Fi(X;) = UN | Fx(Z) = UN] < 1/2, so that

1 1 c-log| g (e)
Pr[Fi(Z) = UNAVi: Fie(Xi) =0l > - [R™" > | (2q> "

which is significant. O

3.5 Main Result: MPHFs from Multilinear Maps

Our main result in this section is a simple construction of a (poly, n)-MPHF
from an AHF.

Construction 1 (MM). Let AHF : {0,1}* — R’ be an admissible hash function
and assume an ¢’-group system MPG,. The group hash function MM into G,
(¢ < ?') is given by the following algorithms:
— HGen(1%) picks h; j + G1\{1} (fmiz ,7) € [(]x R), sets h; ; := reRanda(h; ;),
and outputs hk := {h; ’3}26[5 jGR
— HEval(hk, X)) computes (t1,...,t) := AHF(X) and outputs MMy, (X) :=
e(hl’tl, ey h@,tg)~

Theorem 3. The group hash function MM above is a (poly,1)-MPHF.

Proof. Fix a polynomial ¢ = g(k). We need to exhibit TGen and TEval algorithms
as in [Definition 20 TGen(1%, ¢y, ...,ce, h) invokes K < KGen(1*) and, for all
(1,7) € [¢] x R and uniform exponents r; ; # 0, it sets up
reRando(h™7) if K; # j and K; # L,
hij = T . . o (4)
reRanda(c;"?) if K;=jor K; = L.

For now, assume c¢; g;ép 1 for all 7, so our setup yields a perfectly distributed
key hk := {h;;}:, that is in fact independent of K[ The trapdoor is td :=
((ci)v h, K, (Ti,j))~
TEval(td, X) computes (t1,...,tr) := AHF(X) and distinguishes two cases:
Case Fx(X) =C0, i.e., there is at least an ¢* with K;« # t;» and K« # L. If
we set ax = 0 and

Tk 4
Bx i=e(hiys oy hie 1ty Rty -5 Pey) 70

for any chosen i*, we can decompose MM (X) £ e(cy, ..., c0)**e(Bx, h).

12 The additional re-randomization step guarantees that the noise levels in scheme and
simulation are the same. The concrete noise level of re-randomized elements depends
on the maximal noise considered in the arguments of TGen.

3 In case of randomized encodings, the distribution of kk in the simulation may (e.g.,
with the GGH candidate) only be statistically close to the one in the scheme.
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Case Fx(X) =UN, ie., K; =t; or K; = L for all 4. This means that h; 4, L

;" for all i, so MMy (X) £ e(cy, . . ., c0)**e(Bx, h) for ax =[], ris, and
BX = 1.

The AHF property implies (Note that Ppy ¢x,3,{z} only depends on K
but not on hk.)
grp

Finally, in case ¢; £ 1 for some 4, we have e(cr,...,c0) = 1. If we replace
all ¢; in[(4)] with h, we can explain any image MM (X) L e(h,..., hW)ILiriv as
MM, £ e(cry...,cp)*e(Bx,h) with arbitrary ax. Adjusting the probability
for ax # 0 in the order of 1/2¢ (as in the proof of [Theorem 1)) allows to prove
for p(k) =2 (29)™. O

Examples. For R = {0,1} and binary codes C : {0,1}* — R’ with large
minimum distance, we get the AHF implicit in |[19]. This yields MPHF's that use
O(k) groups G;, and have keys of 2k group elements. Larger R give new AHFs
that yield MPHF's that use fewer groups, but have larger keys. For instance, with
R = TFax, for k := |logy(k) |, along with MDS codes over R, we obtain MPHFs
that use O(k/log,(k)) groups, and have keys consisting of k2 group elements.

Theorem 4. Let n be a constant, ¢ = q(k) be a polynomial, and let H =
(HGen,HEval) be a (¢ + n — 1,1)-MPHF into Gy. Then the group hash func-
tion H' = (HGen’, HEval') with

— HGen'(1%) that outputs hk" = (hky)yepn) for hk, < HGen(1%), and

— HEval'(hk', X)) that outputs Hj,, (X) := [T ey Haw, (X)
is a (q,n)-MPHF into Gy.

Combining Theorems [ and [ yields a (poly, n)-MPHF for any constant n.

Proof. We construct suitable TGen’ and TEval’ algorithms from the respective
TGen and TEval algorithms for H:
— TGen' (1% ¢y, ..., co, h) Tuns (hk,, td,) < TGen(1¥ c1,...,co, h) for v € [n],
and outputs hk’ := (hk,) e[ and td' = (td,),ep).
— TEval'(hk’, X) invokes (a, x, By x)) <+ TEval(td,, X) and outputs ax :=
Zue[n} a,,x and Bx := Hue[n] B, x. This output can be justified with

e (X)) E T Hik (X) B T elen, ... e0)™ ¥ e(By.x, h)
ven

] ve(n]

£ e(cry...,c0)*e(Bx, h).

Now fix Xi,...,Xq,7Z1,...,7Z, with {X;} N {Z;} = 0. For each v, we hope
for the following event: a, x, = 0 for all i, and a,,z, = 0 exactly for j # v.
For fixed v, this event happens with probability at least 1/p(k) (over td,) for
some polynomial p. Since ax = ), a,,x, we get that with probability at least
(1/p(k))", we have ax, = 0 for all ¢ and az; = a; z; # 0 for all j. o
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4 (Hierarchical) ID-Based Non-interactive Key Exchange

Hierarchical identity-based non-interactive key exchange (H-ID-NIKE) is the
natural generalisation of ID-NIKE [23, [L1], [20] to the hierarchical setting: a root
authority calculates and distributes private keys to sub-authorities, who in turn
do the same for sub-sub-authorities, and so on, until leaf nodes are reached.
Each node is identified by a vector of identities, and any pair of nodes in the
tree should be able to non-interactively compute a common key based on their
private keys and identities. We recall from the introduction that H-ID-NIKE
schemes are rare, and, to the best of our knowledge, there are not even any
ROM constructions that meet all the desirable criteria (efficiency, scalability,
and full security in the sense of resilience to arbitrary node compromises).

Formally, an H-ID-NIKE scheme H-ID-NIKE consists of three PPT algorithms
(see below), an identity space ZD and shared-key space SHK. The users are
organized in a tree of depth L whose root (at level 0) is the trusted authority
(TA). The identity of a user at level d € [L] is represented by a vector id =
(idy, ..., idg) € TD?

Setup. The setup algorithm Setup(1*, L) is run by the TA. Given the security
parameter 1¥ and a parameter L € N, it outputs a master public key mpk
and a master secret key msk. We also interpret msk as the user secret key
uske for the empty identity e.

Key Delegation. The key delegation algorithm Del(mpk, uskiq, id’) can be run
by any user to generate a secret key for any of its children. Given the master
public key mpk, the user secret key usk;q for an identity id = (id1, ..., id4) €
ID?, the algorithm outputs a user secret key uskiq: for any of its children
id' = (idy, ..., idg, idgr) € TDT! (for 0 < d < L).

Shared Key Generation. Given the master public key mpk, a user secret
key wuskiq, for an identity id; € ID=E, and an identity id, € IDSE,
ShK(mpk, uskiq,,id2) outputs either a shared key Kiq, i, € SHK or a
failure symbol L. (If id; is an ancestor of ids (or vice-versa) the algorithm
is assumed to always output L ; here, id is in particular considered to be
an ancestor of itself. Otherwise the output is assumed to be in SHK.)

For correctness, we require that for any k,L € N, for any (mpk,msk)
Setup(1¥, L), for any pair of identities (id;,ids) € ID% x ID? | such that nei-
ther is an ancestor of the other, and corresponding user secret keys uskiq, and
uskiq, generated by repeated applications of Del from wusk. = msk, we have
ShK(mpk, uskiq, ,id2) = ShK(mpk, uskia,, id1).

A (non-hierarchical) ID-NIKE scheme is a H-ID-NIKE scheme in which the
depth L of the tree is fixed to L = 1. (Note that in this case, Del gets as input
uske = msk and outputs user secret keys for level-1 identities. We may thus also
speak of extraction of user secret keys.)

M 1f id; is an ancestor of id2, it can always compute the user secret key uskia,; a key
derived from wuskiq, can be used as a shared key between the two users.
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4.1 Security Definition for (H-)ID-NIKE

We present a security model for H-ID-NIKE that is the natural generalisation
of the PS model for ID-NIKE from [20] to the hierarchical setting. The model
significantly strengthens the previous model of Gennaro et al. |14] by being
fully adaptive, allowing arbitrary numbers of node corruptions, and allowing the
adversary access to shared keys as well as user secret keys of inner (i.e., non-leaf)
nodes. The model is defined in terms of a game between an adversary A and a
challenger C. C takes as input the security parameter 1¥ and a depth L, runs
algorithm Setup of the H-ID-NIKE scheme and gives A the master public key
mpk. It keeps the master secret key, msk, to itself. A then makes queries of the
following three types:

Extract: A supplies an identity id = (idy, ..., idq) € ITD? (for d € [L]). C uses
Del repeatedly, starting from msk, to derive uskiq and hands uskiq to A.

Reveal: Here A supplies a pair (idy,ids) € ID% x ID. O extracts uskiq, as
above, runs Kiq, id, < ShK(mpk, uskia,,idz), and hands Kiq, ia, to A.

Test: A supplies two target identities (id,id}) € ZD™ x TD® such that neither
is an ancestor of the other. C' computes Kid;,id; as above, and tosses a coin
b+« {0,1}. If b =0 then C gives Kias iaz to A; otherwise, if b = 1, then C gives
A a uniform element from SHK.

Finally, A outputs a guess b for b. In our security model, the adversary is allowed
to make an arbitrary (but polynomial) number of Extract and Reveal queries.
Furthermore, the adversary is fully adaptive, in the sense that it can compromise
nodes (by making Eztract and/or Reveal queries) in any order. In order to
prevent the adversary from trivially winning, we require that the adversary is
not allowed to make any Extract queries on an ancestor of id] or idj, and
no Reveal query on the pairs (idj,id;) and (id3,id]). The advantage of an
adversary A against a H-ID-NIKE scheme H-ID-NIKE is

AdVEB:I%I?NIKE(k) =

Prfb = b] - 1/2\

1/2

Pr[@:l\b:l}—Pr[f):l|b:0”.

We say that H-ID-NIKE is IND-SK secure iff AdvII\’IE_'%I_{N,KE(/{:) is negligible for
all PPT adversaries A.

In the non-hierarchical case (i.e., L = 1), we recover the definition and security
model for (non-hierarchical) ID-NIKE from [20]. Note also that versions of these
models in which multiple Test queries are permitted for a single bit b can be
shown to be polynomially equivalent to the versions with a single Test query
using standard hybrid arguments.

4.2 Fully-Secure ID-NIKE from MPHFs

In this section we revisit the ID-NIKE scheme of Sakai, Ohgishi and Kasahara
(SOK) [23]. We replace random oracles with (poly, 2)-MPHFs in their scheme
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and prove security of the generalized scheme. Using our standard-model MPHF's,
this yields the first standard-model ID-NIKE scheme['d We then consider a hi-
erarchical generalisation.

We assume a 2/-group system MPGap = {{G; }ic[20), Ps {€i5 }ij>1,i+j<20} gen-
erated by a multilinear maps parameter generator MGo,(1¥), and a (poly, 2)-
MPHF H = (HGen, HEval) with input length in {0,1}* and output in G,. The
component algorithms of our ID-NIKE scheme IDNIKEypnr are then defined in
Figure [l (For compatibility with existing notation, we present an extraction
algorithm Ext instead of an equivalent delegation algorithm.) Correctness of the
scheme is easy to verify.

Algorithm Ext(mpk, msk,id)

Algorithm Setup(1*) uskiq < reRandz (Hpx (id) ™)
MPGop Mggg(lk) return uskq
T < Zp, hk < HGen(1%)
mpk := (MPGaq, hk), msk := x Algorithm ShK(mpk, uskiad, , id2)
return (mpk, msk) Kidy idy := ext(e(uskiq, , Hue(id2)))

return Kiq, idy

Fig. 1. The ID-NIKE scheme IDNIKEwypne

Theorem 5 (Security of the MPHF-based ID-NIKE scheme). Assume
H is a (poly,2)-MPHF into Gy. Then IDNIKEmpur is IND-SK secure under the
(2¢ + 1)-power assumption.

Proof. See the full version (http://eprint.iacr.org/2013/354.pdf).

A Variant Secure under a Weaker Assumption. We can also construct an
ID-NIKE scheme in the standard model using two instances (with keys hkq, hko)
of a (poly, 1)-MPHEF instead of a single instance of a (poly, 2)-MPHF. Shared keys
are computed as K := ext(e(Hpx, (id1)™* Hu, (id2))); user secret keys are of the
form usk;q = (reRandz(Hpug, (id)™*), reRandz(Huk, (id)™*)). The benefit of this
variant is that it is possible to prove security under the 2-MDDH assumption
(as opposed to the potentially stronger (2¢+ 1)-power assumption we use above).

4.3 Extension to H-ID-NIKE

We can extend our ID-NIKE scheme to a H-ID-NIKE scheme of constant depth
L. To this end, we work in a 2¢L-group system MPGy.r, and use L instances
of a (poly,2)-MPHF H into G,. The resulting H-ID-NIKE scheme, denoted by

15 If we instantiate the MPHFs again with random oracles (using Em), we
retrieve the original SOK scheme in pairing-friendly groups, along with a security
proof. However, we note that our security proof uses a different, seemingly stronger
computational assumption.
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HIDNIKEwpyE, is given in In that description, and in the following, we
write idr; := (idy,...,id;) for an identity id = (idy,...,idq) and i < d. We
assume that all involved identities (including “shortened identities” id;) can be
uniquely encoded as k-bit strings. (If this is not the case, we can always first
apply a collision-resistant hash function.)

Algorithm Del(mpk, uskiq, id")
parse id’ =: (id1, ..., ida+1)
if id # (id1, ..., idq) return L
uskzid/ < reRanddH(e(uskid, Hhkd+1 (id/ﬂi+1)))
return usk;q-

Algorithm Setup(1*, L)
MPGopr, < MGor, (1F)
x < Zp, 0 < Gy, u < reRandz (@)
kN (s . —
hki < HGen(1%)(i € [L]); msk =« Algorithm ShK(mpk, uskia, ,idz2)
mpk = (MPGor, {hki}ticr), u) Yias = e(Haey (ida, 1), -+ ik, (ida,(a,))

return (mpk, msk) Kia, 1a, = ext(e(uskia, , Yid,, Uiy

~ 7
2L—dy—do times
return Kidq, id,

Fig. 2. The H-ID-NIKE scheme HIDNIKEmpur
Note. msk = usk. = x € Z, = Go, so Del can be used to derive level-1 user secret

keys from msk. (Recall that our definition of e is consistent with the implicit exponent
group Go = Zyp; e.g., e(z,g) = g° for € Go.)

Theorem 6 (Security of the MPHF-based H-ID-NIKE scheme). Let H
be a (poly,2)-MPHF into Gy. For fixed depth L € N, HIDNIKEuwpur is secure
under the (20L + 1)-power assumption.

Proof. See the full version (http://eprint.iacr.org/2013/354.pdf).

A More Efficient Variant in the Random Oracle Model. We can replace
the 2¢L-group system with a 2L-group system and the L different MPHFs with
a random oracle hashing into G; in the above scheme HIDNIKEypnrF to obtain
a second H-ID-NIKE scheme which can be proven secure in the random ora-
cle model. In this case, the 2L-group system can be instantiated with smaller
parameters than the 2¢L-group system required in our standard model scheme.

Security with Multiple TAs and Group-ID-NIKE. We can also achieve
security in the more general setting of multiple trusted authorities and shared
keys that can be computed by groups of parties instead of just pairs. The details
can be found in the full version.

5 IBE and Signature Schemes from MPHF's

Identity-Based Encryption. An identity-based encryption (IBE) scheme IBE
with identity space ZD and message space M consists of four PPT algorithms:
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Gen, Ext, Enc, Dec. Key generation Gen(1%), on input a security parameter 1%,
outputs a master public key mpk and a master secret key msk. Key extraction
Ext(msk, id), given msk and an identity id € ZD, outputs a user secret key usk;q.
Encryption Enc(mpk,id, M), given mpk, an identity id € ZD, and a message
M € M, outputs a ciphertext C. Decryption Dec(usk;q,C), given usk;q and a
ciphertext C, outputs a message M € MU{L}. For correctness, we require that
for any k € N, all (mpk, msk) < Gen(1%), all id € ID, all usk;q < Ext(msk, id),
all M € M, and all C' + Enc(mpk, id, M), Dec satisfies Dec(usk;q,C) = M.

IBE-IND-CPA Security. An IBE scheme IBE as above is IBE-IND-CPA se-
cure iff every PPT adversary A succeeds in the following experiment with prob-
ability at most negligibly larger than 1/2. First, A gets an honestly generated
master public key mpk; in all of the following, A has access to an Ext(msk,-)
oracle for the corresponding msk. Next, A selects an identity id* € ZD and
two equal-length messages My, M, € M. The experiment then computes C* +
Enc(mpk, id*, My) for uniformly chosen b + {0,1} and sends C* to A. Finally,
A outputs a guess b’ and succeeds iff b = b’ and it has not queried Ext with id™.

IBE from (poly, 1)-MPHFs. depicts IBEmpHE, which is the Boneh-
Franklin IBE scheme [4], implemented with (poly, 1)-MPHF's. Message and iden-
tity space are M = ID = {0, 1}¥. We assume an (/+1)-group system MPGy =
HGi}iepes1y, 0y {€i,j}ij>1,i45<e+1} generated by a multilinear maps parameter
generator MGy 1(1%), and a (poly, 1)-MPHF H into G. If we take a random
oracle as (poly, 1)-MPHF (as in [Theorem 1), then ¢ = 1, and we get the original
BF scheme. Correctness of IBEypyr is easy to verify.

Algorithm Gen(1%) Algorithm Enc(mpk,id, M)
MPG oy — MGe1(17) parse mpk =: (MPG41, hk, h,h)
hk <+ HGen(1%),h + G1,x + Z, T Zp
mpk := (MPG¢i1, hk, h,reRandz(h*)) C:= 3
msk := (hk, x) (reRanda(hY), ext(e(Hux (id), h)") & M)
return (mpk, msk) return C
Algorithm Ext(msk,id) Algorithm Dec(usk;q,C)
parse msk =: (hk, ) parse C =: (C1,C2)
return usk;q := reRands(Hpi (4d)%) return M := Co @ ext(e(uskiqd, C1))

Fig. 3. The IBE scheme from (poly, 1)-MPHF's

Theorem 7. Assume |BEvpur is implemented in an (£ + 1)-group system, and
with a (poly, 1)-MPHF H into G,. Then, under the (¢ + 1)-MDDH assumption,
IBEmpnEe is IBE-IND-CPA-secure.

Proof. See the full version (http://eprint.iacr.org/2013/354.pdf).
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Extension to HIBE. We can extend the above IBE scheme to a hierarchical
IBE (HIBE) scheme of constant depth D. This generalization works similarly
as in the ID-NIKE case. Hence, due to space constraints, we postpone a more
detailed exposition to the full version of this paper.

(Hierarchical) Signatures from (poly,1)-MPHFs. We can convert any
(H)IBE scheme into a (hierarchical) signature scheme using the techniques of |4,
15, [10]. If we apply this transformation to IBEmpur above, we obtain an abstrac-
tion of BLS signatures [7]. Indeed, if we instantiate the involved MPHF with a
random oracle, we get the original BLS scheme. On the other hand, if we use
the standard-model MPHF from [Theorem 3, we obtain (a slight variant of) the
signature scheme of Boneh and Silverberg [5]. In fact, with suitable parameters
(i.e., a larger R, see Section 3.5)), we obtain a signature scheme that uses only
O(k/log(k)) groups and multilinear operations (as opposed to O(k) groups and
multilinear operations in the Boneh-Silverberg scheme). It seems natural to ex-
pect that, using the techniques of |22], this also yields an aggregatable signature
scheme.
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