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Abstract. This work explores the use of social communications for epi-
demic disease control. Since the most infectious diseases spread through
human contacts, we focus on modeling the diffusion of diseases by an-
alyzing the social relationship among individuals. In other words, we
try to capture the interaction pattern among human beings using the
social contact information, and investigate its impact on the spread of
diseases. Particularly, we investigate the problem of minimizing the ex-
pected number of infected persons by treating a small fraction of the
population with vaccines. We prove that this problem is NP-hard, and
propose an approximate algorithm representing a preventive disease con-
trol strategy based on the social patterns. Simulation results confirm the
superiority of our strategy over existing ones.

Keywords: Preventive disease control, social networks, target vaccina-
tion.

1 Introduction

In this paper, we propose to use communication records to guide the use of
vaccines in a population to minimize the impact of epidemic disease. Infectious
diseases pose major risks to the human life and social development. In recent
years, various infectious diseases such as HIN1 and SARS have caused thou-
sands of deaths and severe economic loss. Most of the infectious diseases can
be transmitted from one person to another through personal contacts. With
rapidly growing global transportations, infectious diseases that formerly die out
in isolated areas may now spread worldwide. In order to stop infectious diseases
from spreading, a number of interventions are available with distinct benefits
or drawbacks. They either directly impact the transmission of diseases so that
the viruses/germs cannot easily spread through the population, or immunize
segments of a population. Considering the time that interventions are applied,
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strategies for controlling epidemic diseases can be classified into two categories:
1) preventive disease control that takes place before a disease occurs in a pop-
ulation; and 2) reactive disease control that stops a disease from spreading out
after the disease outbreak is detected in a population. Reactive strategies fo-
cus on individuals who are already infected and their close friends to protect
healthy people from being infected. Preventive strategies, on the other hand,
identify people at high infection risks to take vaccines, so that the disease can
be prevented from spreading out or even happening in a population.

In this paper, we design a preventive disease control strategy that takes action
to set up defenses against disease breakout ahead of time. In particular, we
attempt to immunize a small number of people who are in danger in advance,
so that we can prevent them from developing deadly infections and spreading to
others. Such preventive vaccination strategies are widely used to prevent diseases,
i.e., people are encouraged to take flu shot before the flu season starts. However,
current preventive disease control mainly relies on mass vaccination strategy,
which intends to immunize a major fraction of a population, leading to a high
economic expense and adverse side effects. Moreover, due to production cycle
and population growth, vaccines are often in short supply, making the mass
vaccination ineligible for a number of occasions. In light of the problems above,
we aim to select individuals to receive vaccines in advance based on information
extracted from people’s daily life data stream, so that the number of people
infected will be minimized if the population is exposed to a disease later.

Prior work that selects target individuals for vaccination mainly fall under
two categories: 1) node centrality methods, which rank nodes by measures such
as degree, shortest path, or random walk betweenness; and 2) influence cascade
methods, which select a subset of nodes that maximize information diffusion us-
ing independent cascade models or linear threshold models. The latter has been
widely adopted in many recent works due to the rising of the idea of viral mar-
keting, where commercial messages are sent to people who are socially important
in order to achieve marketing objectives. In this paper, on the contrary, we try
to minimize the diffusion of disease, rather than maximizing the spreading of a
piece of information. In particular, we show that our minimization problem is
NP-hard, and can be solved by an approximation algorithm following the infor-
mation cascade model. Our approach is evaluated over real world data set. The
results demonstrate that the proposed target immunization outperforms other
strategies in providing protection over the population.

Our contributions can be summarized as follows:

— We explore social communications to determine the pattern of disease trans-
missions among individuals.

— We attempt to minimize the expected number of infected individuals by
treating a small fraction of the population. This problem is proved to be
NP-hard in this paper and we propose an approximation algorithm that
provides a simple preventive disease control strategy.

— A comparison based simulation study over a real-world data set is conducted
to evaluate the performance of our preventive disease control strategy and
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the results indicate that the proposed strategy is superior over the most
popular existing ones.

The paper is organized as follows. Section [l presents the most related work.
Sections B discusses the preliminary knowledge to be used in this work. An
important metric, the transition probability, is defined and analyzed in section
@ The disease control minimization problem and an approximation solution are
detailed in section 5l The proposed strategy is evaluated under various scenarios
in section [fl We conclude our work in section [7

2 Related Work

Our work is built on considerable prior research on disease propagation and social
relationship identification. In this section, we review the most related work along
these directions.

Disease propagation has been studied for a long time in human contact net-
works [1H43], where human beings are interpreted as nodes and their interactions
are edges connecting nodes. Various mathematical models have been developed
to characterize the disease transmission in a contact network. Most of the ex-
isting models [4],]5] describe the spread of disease in a homogencously mixed
network, where an infected individual infects each of his/her neighbors in a uni-
formly random and independent way. Under the constraint of fixed network size,
differential equations can be written down to represent the movement of disease
in a network, from which the number of infected people can be estimated. How-
ever, in real world, an infected person does not infect his contacts with an equal
probability, as the length and the nature of the interactions among people can
vary greatly from one to another. In recent years, a few investigations have been
made to study the impact of variations in degree, infectiousness, and closeness of
interactions. For instance, different network topologies such as sparse networks
[6], clustered networks [2], and power-law networks [7], have been examined for
their effect on disease propagation process. In this research, we construct a con-
tact network based on social communications, and model the spread of disease
as a function of the social relationship between individuals.

Many works have offered practical insights into the impact of social rela-
tionship on the development of applications in various domains, ranging from
monitoring/tracking applications, to medical, emergency, and military applica-
tions |[8410]. Among them, a large body of research has addressed the problem
of viral marketing |11, [12], where the social connections are used to spread the
product information to achieve business objectives. The work by [13] studies
the information propagation in social networks using two information diffusion
models: independent cascade (IC) and linear threshold. The paper proves the
NP-hardness of the problem of finding a small number of influential nodes as
initial information adopters to maximize the expected number of nodes that
would adopt the information. In contrast to influence maximization (i.e., re-
cent research on viral marketing mentioned above) that attracts attention from
finance and social network communities, influence minimization has relatively
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been less investigated. Misinformation such as scams, false twitter or facebook
posts, have led to enormous social and economic issues. In order to minimize the
impact of misinformation, researchers have considered to block critical nodes to
prevent the false message from spreading out. Such an idea has been applied in
a number of contexts. In this work, we consider a similar minimization problem
which we prove it to be NP-hard.

3 Preliminary

3.1 Contact Network

We investigate the spread of diseases over a contact network constructed over
social communication records. Define the contact network as G(V, E, W), where
V denotes the node set, E denotes the edge set, and W represents the edge weight
set. A node v € V represents an individual, while an edge e;; between nodes i
and j indicates that there exist interactions between the two nodes. Attached to
the edge e;; is the weight w;;, which is used to quantify the interaction between
¢ and j. If the interaction is made through phone calls, then w;; can be the
total time used in the phone conversations. If the interaction is done through
messages, then w;; can include information such as the number of the messages
and the sizes of the messages.

3.2 The SIR Model

We use a SIR model to describe the progress of a disease in a single node. Nodes
may be either Susceptible to the disease, or Infected with the disease, or Recovered
from the disease. Assume an infective person stays Infected for o time intervals.
During each time interval, an Infected node ¢ infects a Susceptible node j that
has interactions with 4 with a probability p. After « time intervals, an Infected
node becomes Recovered. A Recovered node can not get infected or infect others.
Nodes that receive vaccinations become Recovered automatically. Notice that we
differentiate p from the transition probability defined in section[d] where p stands
for the probability that a disease is transmitted between two nodes during one
time interaction, while the transition probability states in general the probability
for a node to pass a disease to another node. For the sake of simplicity, we assume
p is the same for any two nodes. However, the transition probability, that we
will discuss later, relies on the variations in closeness of human connections.

3.3 IC Model

We employ an independent cascade (IC) model [13] to study the spread of disease
among people. In this model, the diffusion proceeds in discrete time intervals.
Nodes in this model are either active or inactive. The diffusion starts with an
initial active node set. Assume node i becomes active at step ¢t. Then i will
attempt to activate each of its inactive neighbors, j, with a transition probability
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t;;, which indicates the tendency of j to be activated by i. If ¢ succeeds, j becomes
active at step t + 1. If j has multiple active neighbors at step ¢, their activation
contacts with 7 would be sequenced in a random order. The IC process terminates
if no more activations are possible. Denote by o (i) the influence degree of a node
i, which is defined to be the expected number of nodes influenced by ¢ at the
end of the IC process. In this work, we aim to minimize the expected number of
infected people by vaccinating a small fraction of the population.

4 Transition Probability

Since infectious diseases spread through human contacts, the disease transition
probability strongly depends on the pattern of contacts between infected persons
and others. Many works assume that this probability is the same between any
two individuals, while in fact, it is obvious an infected person will not infect
all others with the same probability. For example, the probability of a disease
transmitted between two close friends is higher than the probability of disease
transmission between two strangers. A number of factors influence the transition
probability, including the vaccination history, the general health of the normal
person, the nature of the disease, and the nature of the interaction (e.g., time,
interaction type) between the individual and the infected person(s). In this work,
we try to capture these factors based on social communication records so that
we can predict how diseases are transmitted in a population.

Let T be a N x N matrix. Denote by ¢;; the element of T" at row ¢ and col-
umn 7, which states the transition probability describing how likely an epidemic
disease will be passed from node i to node j. Considering the IC process which
determines the diffusion of a disease, during each step, a disease only moves from
the current node to its immediate neighbors. Therefore, for a pair of nodes that
are not connected by edges, the transition probability between them is zero. For
a pair of connected nodes, it is widely accepted that the transition probabil-
ity between them depends on their interaction patterns |3, [14], since epidemic
diseases spread through human contacts. In this work, we model the transition
probability among individuals by analyzing the social relationship information in
G over their contact records. Following our preliminary work [15, [16], we define
the transition probability ¢;; as follows:

tij = f(dij, Ni, Nj, wij, Z Wik, Z Wik) (1)

kEV, ki kEV,k#j

where f is a multivariate function ranging from 0 to 1, N; represents the set of
nodes which communicate with v; directly, and d;; denotes the physical distance
between i and j, which can be roughly estimated through cell phone’s built-in
GPS, or through cell phone tower log. Note that two individuals who have a
large number of phone interactions may not have physical interactions through
which epidemic disease can be transmitted. Therefore, we include d;; to ensure
that ¢;; in the above case is not high. In addition, we let ¢;; = 0 to avoid self-loop.
The computation of ¢;; can be completed locally at ¢ and j, without requiring
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the global network information, which leads to low communication overhead.
Further discussions on ¢;; can be found in our preliminary work |15, [16].

5 Disease Influence Minimization

Different from target selection in viral marketing, which attempts to maximize
the number of nodes that can be affected by the target set, we try to minimize
the impact of disease over G by immunizing a small number of nodes. Denote by
K a pre-defined constant satisfying |K| < N. Given a network G(V, E, W) and
the transition matrix T, we aim to immune a set A of K nodes, A C V, so that
the number of nodes infected will be minimized if disease occurs. Assume that
disease appears at each node with a probability ¢, where q is a positive constant
less than 1. Thus after vaccinating nodes in A, the expected number of nodes
infected by v,v € A7, is ¢-0(v) yyer ga-» Where A~ is the complementary set of

A, and G4 is the subgraph of G induced by all the nodes in A~. Therefore, the
sum of the expected number of nodes infected by each node in A~, denoted by
AVG(A7),i8 Y pea- 4 0(V)gyer ga-- Then our goal is to find A of K nodes for
vaccination, so that AVG(A™) is minimized. Notice here AVG(A™) measures
the sum of the expected number of nodes infected by each node in A~, not
the sum of the union of the expected number of nodes infected, in case that
the nodes infected/influenced by i € A~ and the nodes infected/influenced by
j € A~ overlap. The definition of AVG(A™) is based on the consideration that
we attempt to minimize the impact of disease no matter which node the disease
starts with. Then the problem can be mathematically described as:

min AVG(A™) st |A| =K (2)
ACV
To solve (@), intuitively, we can check every possible set of K nodes in V', which
takes (% = O(n®) time. We will prove in the following section that this

minimization problem is NP-hard, which can not be solved efficiently. An ap-
proximation algorithm is then proposed to provide an approximate solution.

5.1 NP-hardness

Consider the following sum-of-squares partition problem [17]. Let G(V, E) be an
undirected graph, with a node set V' and an edge set E. Given a constant K, the
sum-of-squares problem attempts to partition G into disconnected components
Cy,...,C;, ... by removing a set A of at most K nodes such that >, |C;|? is
minimized. This problem is known to be NP-hard. We present in the follow-
ing, that we can reduce the sum-of-squares partition problem to the proposed
minimization problem in polynomial time when the transition probability is 1.

Theorem 1. When the transition probability is 1, finding a node set A C G, |A| =
K so that AVG(A™) < AVG(O™) for YO C V,|O| = K is a NP-hard problem.
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Proof. As the transition probability between any two nodes in G is 1, once
v € G is infected, all the nodes that can be reached from v will be infected.
Then for any node v in Cj, if v is infected, the expected number of influenced
nodes is |C;|. Thereby the sum of the expected number of infected nodes is
AVG(A™) =3, ¢ |Ci|>. As a result, minimizing Y, |C;|? is equivalent to min-
imizing AVG(A™) in G. Through the above steps, we successfully transform
the sum-of-squares partition problem to the problem of minimizing AVG(A™)
when the transition probability is 1 in polynomial time. Therefore, the problem
of minimizing AV G(A™) is NP-hard when the transition probability is 1.

Theorem 2. The influence minimization problem defined by (2) is NP-hard.

Proof. Since the problem considered in Theorem[Ilis a special case of minimizing
AV G(A™) when the transition probability varies at edges, the general AVG(A™)
minimization problem () is also NP-hard.

5.2 Approximation Algorithm

We design a simple approximation algorithm to find a set A of K nodes to solve
(@). Initially A = (. We add K nodes into A to maximize ), ., q- o(v)over -
The details of the algorithm are presented in Algorithm [

Algorithm 1. Approximation Algorithm(G)
Input:

— @G- the contact network
Output:

— A: a set of K nodes for vaccination

1: function APPROXIMATION ALGORITHM(G)

2 Let A= 0.

3 Sort nodes in V' in a decreasing order of g - o(v)over a.
4: Add the first K nodes in the sorted list into A.

5 Output A;

6: end function

6 Simulation Study

6.1 Simulation Set-Up

We validate the proposed disease control strategy over a real-world data set from
Facebook (http://snap.stanford.edu/data/egonets-Facebook.html), where facebook
friend information of 3959 individuals are collected. In this simulation, we let

P |NiﬁNj|+1.
YN UNG |+ 1
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Here, N; represents the set of nodes that are directly attached to i. The number
‘1" appearing on the numerator and denominator is used to prevent p;; from
becoming 0. This action is based on the idea that a node always has a potential
influence on any other node.

To verify the strength of the proposed strategy, we implement two other ap-
proaches for performance comparison. One approach employs a random alert
strategy in the sense that a number of individuals are randomly chosen to be
alerted for vaccination according to the number of available vaccines. This strat-
egy has been widely used in the literature and is denoted as RD in this paper.
Another implemented approach uses degree centrality, where the nodes with the
largest node degrees are chosen for vaccination according to the number of avail-
able vaccines. It is argued by the previous work [18] that degree centrality yields
promising results in predicting the risk of infection, compared to other centrality
metrics.

We define the final infection ratio as the ratio of the total number of infected
persons during the time of evaluation to the size of the entire population. The
final infection ratio will be used as the primary performance metric for the
evaluation of disease control strategies in our simulations.

We examine these strategies by varying different parameters such as the num-
ber of available vaccines, ¢, as well as the infection probability p mentioned in
section The initial infection ratio is defined as the total number of infected
persons on the first day divided by the size of the population. The initial infected
persons are chosen randomly in our simulations. We report our experimental re-
sults by an average of 50 runs.

6.2 Simulation Results

Fig. [ reports the final infection ratio vs. the number of available vaccines,
where we fix ¢ to be 0.003, and the infection probability p to be 0.05. From
the results, we observe that the final infection ratio declines as the number of
available vaccines increases. When the number of people who receive vaccines is
growing, more people are protected, and therefore the number of infected nodes
is decreasing. Overall, the target vaccination strategies (degree and the proposed
strategy) achieve a lower number of infected nodes than the random strategy,
which is consistent with the previous work [15], |[L6], [3] whose strategies have
resulted in less number of infections than the random strategy with the same
cost of vaccines. The proposed strategy achieves the lowest final infection ratio
when the number of available vaccines is less than 1000, and has almost the same
final infection ratio as the degree strategy when the number of vaccines is larger
than 1000. The results demonstrate that compared to the other two strategies,
the proposed method protects more people with the same number of vaccines
when there is a limited supply of vaccines.

In Fig. 2l we plot the final infection ratio vs. q, where the number of available
vaccines is 200, and p is 0.05. Notice that for all three strategies, the final infection
ratio increases as ¢ increases. This is because when the number of vaccines is
fixed, an increasing number of initial infected nodes will lead to a larger chance
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Fig. 1. Final Infection Ratio vs. Number Of Available Vaccines (¢ = 0.003, infection
probability = 0.05).
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Fig. 2. Final Infection Ratio vs. ¢ (Number of available vaccines = 200, infection
probability = 0.05)

of spreading diseases to more nodes. In general, target vaccination strategies
perform better than the random strategy, which is consistent with the results
in Fig. [l We also observe that the proposed strategy stands out from all others
under different ¢. This indicates that our approach has a more effective capability
to prevent disease from spreading no matter how seriously the disease starts
initially in a population.

We also evaluate the vaccination strategies under different infection probabil-
ities in Fig. Bl where the number of available vaccines is fixed to be 400, and ¢
is fixed to be 0.003. It is observed that the final infection ratio increases when
the infection probabilities grow larger. This is reasonable because for a single



Social Communications Assisted Epidemic Disease Influence Minimization 533

90% T T T T T T ]
..... 4
85% ol >
80%
75%
2
5 .
& 70%
< ==@==The proposed strategy
§ 65% = W = Degree
£ RD
E 60%
w
55%
50%
45%
40%— @ . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Infection Probability

Fig. 3. Final Infection Ratio vs. Infection Probability (Number of available vaccines
=400, ¢ = 0.003)

infected node, the number of nodes that might be infected by this node is a
monotonically increasing function of the infection probability. Since AVG(A™)
is the sum of the expected number of nodes infected by each node in A~ it is
also increasing as the infection probability ones. Our proposed strategy outper-
forms the other two under different p, again confirming the superiority of the
proposed strategy to existing strategies. However, as the infection probability
rises up, the superiority of the proposed strategy becomes less apparent. It can
be observed that the performance differences among all the three strategies de-
cline when the infection probability goes up. This reflects the real life scenario
that when the disease is highly transmissible, there is less need to target people
at risks, because everybody who has interactions with the infected person are
all likely to be infected.

7 Conclusion

In this paper, we design a preventive disease control strategy to set up defenses
against disease breakout ahead of time. The social communications are explored
to extract social information such that we can determine the pattern of disease
transmissions among individuals. We attempt to minimize the expected number
of infected individuals by treating a small fraction of the population; this mini-
mization problem is proved to be NP-hard in this paper and thus we propose an
approximation algorithm. Simulations and comparisons are conducted to evalu-
ate the performance of the proposed disease control strategy over a real-life data
set. The results indicate that the proposed strategy is superior over existing ones.



534

B. Zhang et al.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66, 016128
(2002)

Miller, J.C.: Spread of infectious diseases through clustered populations. Journal
of the Royal Society Interface 6(41), 1121-1134 (2009)

Ren, Y., Yang, J., Chuah, M.C., Chen, Y.: Mobile phone enabled social community
extraction for controlling of disease propagation in healthcare. In: 2011 IEEE 8th
International Conference on Mobile Adhoc and Sensor Systems (MASS), pp. 646
651. IEEE (2011)

Dimitrov, N.B., Meyers, L.A.: Mathematical approaches to infectious disease pre-
diction and control. In: Hasenbein, J.J. (ed.) Informs Tutorials in Operations Re-
search, vol. 7, pp. 1-25 (2010)

Hethcote, H.: The mathematics of infectious diseases. STAM Review 42(4), 599-653
(2000)

Anderson, R., May, R.: Infectious diseases of humans: dynamics and control. Ox-
ford University Press (1991)

Zhou, T., Yan, G., Wang, B.H.: Maximal planar networks with large clustering
coefficient and power-law degree distribution. Phys. Rev. E 71, 046141 (2005)
Meyers, L.A.: Contact network epidemiology: Bond percolation applied to infec-
tious disease prediction and control. Bull. Amer. Math. Soc. 44, 63-86 (2007)
Perisic, A., Bauch, C.T.: Social contact networks and disease eradicability under
voluntary vaccination. PLoS Comput. Biol. 5(2), e1000280 (2009)

Huang, S.: Probabilistic model checking of disease spread and prevention. In: Schol-
arly Paper for the Degree of Masters in University of Maryland (2009)

Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of informa-
tion propagation in the flickr social network. In: Proceedings of the 18th Interna-
tional Conference on World Wide Web, pp. 721-730. ACM (2009)

Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social
networks. In: Proceedings of the Third ACM International Conference on Web
Search and Data Mining, pp. 241-250. ACM (2010)

Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137-146. ACM (2003)
Liang, X., Lu, R., Chen, L., Lin, X., Shen, X.: Pec: A privacy-preserving emergency
call scheme for mobile healthcare social networks. Journal of Communications and
Networks 13(2), 102-112 (2011)

Zhang, B., Cheng, X., Bie, R., Chen, D.: A community based vaccination strat-
egy over mobile phone records. In: Proceedings of the Second ACM Workshop
on Mobile Systems, Applications, and Services for HealthCare. mHealthSys 2012,
pp. 2:1-2:6. ACM (2012)

Zhang, B., Gilani, S.M., Wu, D., Cheng, X., Bie, R.: Mobile phone based social rela-
tionship identification for target vaccination in mobile healthcare. In: Proceedings
of the Third International Workshop on Sensing Applications on Mobile Phones.
PhoneSense 2012, pp. 5:1-5:5. ACM (2012)

Aspnes, J., Chang, K., Yampolskiy, A.: Inoculation strategies for victims of viruses
and the sum-of-squares partition problem. Journal of Computer and System Sci-
ences 72(6), 1077-1093 (2006)

Han, B., Hui, P., Kumar, V.A., Marathe, M.V., Shao, J., Srinivasan, A.: Mobile
data offloading through opportunistic communications and social participation.
IEEE Transactions on Mobile Computing 11(5), 821-834 (2012)



	Social Communications Assisted Epidemic Disease Influence Minimization

	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Contact Network
	3.2 The SIR Model
	3.3 IC Model

	4 Transition Probability
	5 Disease Influence Minimization
	5.1 NP-hardness
	5.2 Approximation Algorithm

	6 Simulation Study
	6.1 Simulation Set-Up
	6.2 Simulation Results

	7 Conclusion
	References




