Skip to main content

Optimal Density in a Queue with Starting-Wave

  • Conference paper
  • First Online:
Traffic and Granular Flow '11

Abstract

The propagation speed of people’s reaction in a relaxation process of a queue, so-called starting-wave, has an essential role for pedestrians and vehicles to achieve smooth movement. For example, a queue of vehicles with appropriate headway (density) alleviates the traffic jams, since the delay of reaction to start is minimized. In the previous study (Tomoeda et al., Fifth international conference on pedestrian and evacuation dynamics. Springer), it was found that the fundamental relation between the propagation speed of starting-wave and density is well approximated by the power law function. We have revealed the existence of optimal density, where the travel time of last pedestrian in a queue with the starting-wave to pass the head position of the initial queue is minimized. This optimal density inevitably plays a significant role to achieve smooth movement of crowds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Tomoeda, D. Yanagisawa and K. Nishinari, Fifth International Conference on Pedestrian and Evacuation Dynamics, Springer.

    Google Scholar 

  2. D. Chowdhury, L. Santen and A. Schadschneider (2000), Phys. Rep. 329, 199.

    Article  MathSciNet  Google Scholar 

  3. D. Helbing (2001), Rev. Mod. Phys. 73, 1067.

    Article  Google Scholar 

  4. A. Schadschneider, D. Chowdhury and K. Nishinari (2010), StochasticC Transport in Complex Systems: From Molecules to Vehicles, Elsevier.

    Google Scholar 

  5. M. Bando, et al. (1995), Phys. Rev. E, 51, 1035.

    Article  Google Scholar 

  6. B. S. Kerner and P. Konhauser (1993), Phys. Rev. E, 48, R2335.

    Article  Google Scholar 

  7. M. Kanai, et al. (2005), Phys. Rev. E 72, 035102.

    Article  Google Scholar 

  8. D. Yanagisawa, et al. (2009), Phys. Rev. E, 80, 036110.

    Article  Google Scholar 

  9. A. John, et al. (2009), Phys. Rev. Lett., 102, 108001.

    Article  Google Scholar 

  10. K. Nishinari, et al. (2005), Phys. Rev. Lett. 95, 118101.

    Article  Google Scholar 

  11. A. Tomoeda, et al. (2007), Physica A, 384, 600.

    Article  Google Scholar 

  12. S. Wolfram (1984), Nature 311, 419.

    Article  Google Scholar 

  13. B. Derrida (1998), Phys. Rep. 301, 65.

    Article  MathSciNet  Google Scholar 

  14. N. Rajewsky, L. Santen, A. Schadschneider and M. Schreckenberg (1998), J. Stat. Phys. 92, 151.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. M. Schütz, in Phase Transitions and Critical Phenomena, vol. 19 (Acad. Press, 2001), G. M. Schütz (2003), J. Phys. A: Math. Gen. 36 R339.

    Google Scholar 

  16. F. Spitzer (1970), Adv. Math. 5, 246.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. R. Evans and T. Hanney (2005), J. Phys. A: Math. Gen. 38, R195.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Kanai (2007), J. Phys. A 40, 7127.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. D. Greenshields (1935), in Proceedings of the Highway Research Board, Washington, D. C., 14, 448.

    Google Scholar 

  20. A. Seyfried, et al. (2005), J. Stat. Mech., 10002.

    Google Scholar 

  21. H. J. Payne (1971), in Mathematical Models of Public Systems, edited by G. A. Bekey, 51.

    Google Scholar 

Download references

Acknowledgements

We thank Kozo Keikaku Engineering Inc. in Japan for the assistance of the experiments. The author (AT) is supported by the Meiji University Global COE Program “Formation and Development of Mathematical Sciences Based on Modeling and Analysis”. We acknowledge the support of Japan Society for the Promotion of Science and Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyasu Tomoeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tomoeda, A., Yanagisawa, D., Imamura, T., Nishinari, K. (2013). Optimal Density in a Queue with Starting-Wave. In: Kozlov, V., Buslaev, A., Bugaev, A., Yashina, M., Schadschneider, A., Schreckenberg, M. (eds) Traffic and Granular Flow '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39669-4_17

Download citation

Publish with us

Policies and ethics