Skip to main content

Counterflow in Evacuations

  • Conference paper
  • First Online:
Traffic and Granular Flow '11

Abstract

It is shown in this work that the average individual egress time and other performance indicators for egress of people from a building can be improved under certain circumstances if counterflow occurs. The circumstances include widely varying walking speeds and two differently far located exits with different capacity. The result is achieved both with a paper and pencil calculation as well as with a micro simulation of an example scenario. As the difficulty of exit signage with counterflow remains one cannot conclude from the result that an emergency evacuation procedure with counterflow would really be the better variant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.M. Simon and H.A. Gutowitz. A cellular automaton model for bi-directional traffic. Phys. Rev. E, 57:2441, 1998.

    Article  Google Scholar 

  2. M. Muramatsu, T. Irie, and T. Nagatani. Jamming transition in pedestrian counter flow. Physica A, 267:487–498, 1999.

    Article  Google Scholar 

  3. V.J. Blue and J.L. Adler. Cellular Automata Microsimulation of Bi-Directional Pedestrian Flows. Transp. Res. Rec., 1678:135–141, 2000.

    Article  Google Scholar 

  4. S.A.H. AlGadhi, H.S. Mahmassani, and R. Herman. A Speed-Concentration Relation for Bi-Directional Crowd Movements with Strong Interaction. In Schreckenberg and Sharma [34], pages 3–20.

    Google Scholar 

  5. Y. Tajima, K. Takimoto, and T. Nagatani. Pattern formation and jamming transition in pedestrian counter flow. Physica A, 313:709–723, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Isobe, T. Adachi, and T. Nagatani. Experiment and simulation of pedestrian counter flow. Physica A, 336:638–650, 2004.

    Article  Google Scholar 

  7. T. Kretz, A. Grünebohm, M. Kaufman, F. Mazur, and M. Schreckenberg. Experimental study of pedestrian counterflow in a corridor. J. Stat. Mech., P10001, 2006.

    Google Scholar 

  8. T. Kretz, M. Kaufman, and M. Schreckenberg. Counterflow Extension for the F.A.S.T.-Model. Lect. Notes Comp. Sc., 5191:555–558, 2008.

    Google Scholar 

  9. A. Schadschneider, W. Klingsch, H. Klüpfel, T. Kretz, C. Rogsch, and A. Seyfried. Evacuation Dynamics: Empirical Results, Modeling and Applications. In R.A. Meyers, editor, Encyclopedia of Complexity and System Science, page 3142. Springer, 2009.

    Google Scholar 

  10. A. Schadschneider, H. Klüpfel, T. Kretz, C. Rogsch, and A. Seyfried. Fundamentals of Pedestrian and Evacuation Dynamics. In A. Bazzan and F. Klügl, editors, Multi-Agent Systems for Traffic and Transportation Engineering, pages 124–154. Information Science Reference, USA, 2009.

    Chapter  Google Scholar 

  11. M.G.H. Bell and Y. Iida. Transportation network analysis. Wiley, 1997.

    Google Scholar 

  12. IMO. Interim Guidelines for Evacuation Analyses for New and Existing Passenger Ships. Technical Report MSC/Circ. 1238, IMO, 2007.

    Google Scholar 

  13. T. Kretz, S. Hengst, and P. Vortisch. Pedestrian Flow at Bottlenecks – Validation and Calibration of VISSIM’s Social Force Model of Pedestrian Traffic and its Empirical Foundations. In M. Sarvi, editor, ISTS08, 2008.

    Google Scholar 

  14. M. Fellendorf and P. Vortisch. Microscopic Traffc Flow Simulator VISSIM. Fundamentals of Traffic Simulation, pages 63–94, 2010.

    Google Scholar 

  15. PTV. VISSIM 5.30 User Manual. Karlsruhe, DE, 2010.

    Google Scholar 

  16. A. Johansson, D. Helbing, and P.K. Shukla. Specification of the Social Force Pedestrian Model by Evolutionary Adjustment to Video Tracking Data. Adv. Compl. Sys., 10(4):271–288, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Helbing and A. Johansson. Pedestrian, Crowd and Evacuation Dynamics. In R.A. Meyers, editor, Encyclopedia of Complexity and System Science, volume 16, page 6476. Springer, 2009.

    Google Scholar 

  18. D.M. Kreps. Game theory and economic modelling. OUP Catalogue, 1992.

    Google Scholar 

  19. C. Camerer and Russell Sage Foundation. Behavioral game theory: Experiments in strategic interaction, Vol. 9. Princeton Univ. Press, 2003.

    Google Scholar 

  20. M.J. Osborne. An introduction to game theory, 2004.

    Google Scholar 

  21. T. Kretz. A Round-Robin Tournament of the Iterated Prisoner’s Dilemma with Complete Memory-Size-Three Strategies. Complex Systems, 19(4):363–389, 2011.

    MathSciNet  MATH  Google Scholar 

  22. T. Kretz. Pedestrian Traffic: on the Quickest Path. J. Stat. Mech., P03012, 2009.

    Google Scholar 

  23. E. Kirik, T. Yurgel’yan, and D. Krouglov. The shortest time and/or the shortest path strategies in a ca ff pedestrian dynamics model. Journal of Siberian Federal University. Mathematics & Physics, 2(3):271–278, 2009.

    Google Scholar 

  24. T. Kretz. The use of dynamic distance potential fields for pedestrian flow around corners. In ICEM 2009. TU Delft, 2009.

    Google Scholar 

  25. T. Kretz. Applications of the Dynamic Distance Potential Field Method. In Dai, S. et al., editor, TGF ’09, 2009. submitted.

    Google Scholar 

  26. T. Kretz. The Dynamic Distance Potential Field in a Situation with Asymmetric Bottleneck Capacities. Lect. Notes Comp. Sc., 6350:480–488, 2010.

    Article  Google Scholar 

  27. J. Ondřej, J. Pettré, A.H. Olivier, and S. Donikian. A synthetic-vision based steering approach for crowd simulation. ACM TOG, 29(4):1–9, 2010.

    Article  Google Scholar 

  28. D. Dressler, M. Groß, J.P. Kappmeier, T. Kelter, J. Kulbatzki, D. Plümpe, G. Schlechter, M. Schmidt, M. Skutella, and S. Temme. On the use of network flow techniques for assigning evacuees to exits. Procedia Engineering, 3:205–215, 2010.

    Article  Google Scholar 

  29. M. Höcker, V. Berkhahn, A. Kneidl, A. Borrmann, and W. Klein. Graph-based approaches for simulating pedestrian dynamics in building models. In ECPPM 2010, 2010.

    Google Scholar 

  30. M. Moussaïd, D. Helbing, and G. Theraulaz. How simple rules determine pedestrian behavior and crowd disasters. PNAS, 108(17):6884, 2011.

    Google Scholar 

  31. A.U. Kemloh Wagoum, A. Seyfried, and S. Holl. Modelling the dynamic route choice of pedestrians to assess the criticality of building evacuation. Adv. Compl. Sys., 15: 1250029, 2012.

    Article  MathSciNet  Google Scholar 

  32. T. Kretz, A. Große, S. Hengst, L. Kautzsch, A. Pohlmann, P. Vortisch. Quickest Paths in Simulations of Pedestrians. Adv. Compl. Sys., 14:733, 2011.

    Article  Google Scholar 

  33. H. Klüpfel, A. Seyfried, S. Holl, M. Boltes, M. Chraibi, U. Kemloh, A. Portz, J. Liddle, T. Rupprecht, A. Winkens, W. Klingsch, C. Eilhardt, S. Nowak, A. Schadschneider, T. Kretz, and M. Krabbe. HERMES – Evacuation Assistant for Arenas. In Future Security, 2010. eprint.

    Google Scholar 

  34. M. Schreckenberg and S.D. Sharma, editors. Pedestrian and Evacuation Dynamics. Springer, 2002.

    Google Scholar 

  35. R.D. Peacock, E.D. Kuligowski, and J.D. Averill, editors. Pedestrian and Evacuation Dynamics. Springer, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Kretz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kretz, T. (2013). Counterflow in Evacuations. In: Kozlov, V., Buslaev, A., Bugaev, A., Yashina, M., Schadschneider, A., Schreckenberg, M. (eds) Traffic and Granular Flow '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39669-4_13

Download citation

Publish with us

Policies and ethics