Skip to main content

The Fundamental Diagram on the Ring Geometry for Particle Processes with Acceleration/Braking Asymmetry

  • Conference paper
  • First Online:
Traffic and Granular Flow '11

Abstract

The slow-to-start mechanism is known to play an important role in the particular shape of the fundamental diagram of traffic and to be associated to hysteresis effects of traffic flow. We study this question in the context of stochastic processes, namely exclusion and queueing processes, by including explicitly an asymmetry between deceleration and acceleration in their formulation. Spatial condensation phenomena and metastability are observed, depending on the level of the aforementioned asymmetry. The relationship between these two families of models is analyzed on the ring geometry, to yield a large deviations formulation of the fundamental diagram (FD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Schreckenberg, A. Schadschneider, K. Nagel, and N. Ito. Discrete stochastic models for traffic flow. Phys. Rev., E51:2339, 1995.

    Google Scholar 

  2. B.S. Kerner. The Physics of Traffic. Springer Verlag, 2005.

    Google Scholar 

  3. Y. Sugiyama et al. Traffic jams without bottlenecks: experimental evidence for the physical mechanism of the formation of a jam. New Jrl. Phys., 10:1–7, 2008.

    MathSciNet  Google Scholar 

  4. K. Nagel and M. Schreckenberg. A cellular automaton model for freeway traffic. J. Phys. I,2:2221–2229, 1992.

    Google Scholar 

  5. R. Barlović, L. Santen, A. Schadschneider, and M. Schreckenberg. Metastable states in cellular automata for traffic flow. Eur. Phys. J., B5:793, 1998.

    Article  Google Scholar 

  6. M. Blank. Hysteresis phenomenon in deterministic traffic flows. J. Stat. Phys., 120:627–658, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Appert and L. Santen. Boundary induced phase transitions in driven lattice gases with meta-stable states. Phys. Rev. Lett., 86:2498, 2001.

    Article  Google Scholar 

  8. T. M. Liggett. Interacting Particle Systems. Springer, Berlin, 2005.

    MATH  Google Scholar 

  9. F. Spitzer. Interaction of Markov processes. Adv. Math., 5:246, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Samsonov, C. Furtlehner, and J.-M. Lasgouttes. Exactly solvable stochastic processes for traffic modelling. Technical Report 7278, INRIA, 2010.

    Google Scholar 

  11. C. Furtlehner and J.-M. Lasgouttes. A queueing theory approach for a multi-speed exclusion process. In Traffic and Granular Flow ’ 07, pages 129–138, 2007.

    Google Scholar 

  12. J. Kaupuz̃s, R. Mahnke, and R. J. Harris. Zero-range model of traffic flow. Phys. Rev. E, 72:056125, 2005.

    Google Scholar 

  13. M. R. Evans, S. N. Majumdar, and R. K. P. Zia. Canonical analysis of condensation in factorized steady states. J. Stat. Phys., 123(2):357–390, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  14. C.M. Harris. Queues with state-dependant stochastic service rate. Operation Research, 15:117–130, 1967.

    Article  MATH  Google Scholar 

  15. C. Furtlehner, J.-M. Lasgouttes, and M. Samsonov. One-dimensional particle processes with acceleration/braking asymmetry. J. Stat. Phys., 147:1113:1144, 2012.

    Google Scholar 

  16. K. Nagel and M. Paczuski. Emergent traffic jams. Phys. Rev. E, 51(4):2909–2918, 1995.

    Article  Google Scholar 

  17. F. P. Kelly. Reversibility and stochastic networks. John Wiley & Sons Ltd., 1979. Wiley Series in Probability and Mathematical Statistics.

    Google Scholar 

  18. H. Touchette. The large deviation approach to statistical mechanics. Physics Reports, 478:1–69, 2009.

    Article  MathSciNet  Google Scholar 

  19. G. Fayolle and J.-M. Lasgouttes. Asymptotics and scalings for large closed product-form networks via the Central Limit Theorem. Markov Proc. Rel. Fields, 2(2):317–348, 1996.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the French National Research Agency (ANR) grant No ANR-08-SYSC-017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Furtlehner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Furtlehner, C., Lasgouttes, JM., Samsonov, M. (2013). The Fundamental Diagram on the Ring Geometry for Particle Processes with Acceleration/Braking Asymmetry. In: Kozlov, V., Buslaev, A., Bugaev, A., Yashina, M., Schadschneider, A., Schreckenberg, M. (eds) Traffic and Granular Flow '11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39669-4_1

Download citation

Publish with us

Policies and ethics