Skip to main content

Prediction Model of Human Thermal Sensation Under Low-Air-Pressure Environment

  • Conference paper
  • First Online:
Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 261))

Abstract

Passengers in aircraft cabins experience a low-air-pressure environment in most time of the flying period. So the influence of low air pressure on passengers’ comfort needs further research. The most commonly used model to predict human comfort is predicted mean vote (PMV) model. But PMV is designed for standard atmospheric environment, not for low-pressure environment. Researchers have confirmed that under low-pressure environment, human body heat loss through convection will decrease while through evaporation will increase. Thus, PMV model is not suitable for prediction under low-pressure environment and needed to be revised. The main purpose of this study was to investigate human body heat loss under low-pressure environment through both theoretical derivation and experimental validation, thus the model to predict human thermal comfort under low-air-pressure environment could be promoted. The heat loss was divided into four parts: convection heat loss, skin evaporation heat loss, radiation heat loss, and respiration heat loss. From theoretical derivation, following conclusion could be obtained. Radiation heat loss is more related to temperature, and the influence of air pressure is not significant. The convection heat loss will decrease and skin evaporation heat loss will increase under low pressure environment. Heat loss through respiration increases under low-pressure environment. The total heat loss will increase under low-pressure environment. Experimental validation was conducted with six experiment conditions: 22 and 27 °C (1.0/0.9/0.8 atm). Thirty subjects were recruited, and thermal sensation was significantly lower under low-pressure environment than standard pressure environment. Linear regression was analyzed between the value of thermal sensation vote and human thermal storage rate. Instead of the value PMV model predicted which was significantly higher than thermal sensation vote, the new model developed was more effective in predicting human thermal comfort under low-pressure environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haghighat F, Allard F, Megri AC et al (1999) Measurement of thermal comfort and indoor air quality aboard 43 flights on commercial airlines. Indoor Built Environ 8:58–66

    Article  Google Scholar 

  2. Li XQ, Sheng XY, Xin YZ, Liu GD (2009) A primary study on human heat release characteristics under low-pressure environment. J Qingdao Technol Univ 30(5):8–13

    Google Scholar 

  3. Fanger PO (1982) Thermal comfort. Robert E. Krieger Publishing Company, Malabar

    Google Scholar 

Download references

Acknowledgments

The research presented in this paper was financially supported by the National Key Basic Research and Development Program of China (the 973 program), through Grant Number 2012CB720110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxin Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cui, W., Ouyang, Q., Zhu, Y., Hu, S. (2014). Prediction Model of Human Thermal Sensation Under Low-Air-Pressure Environment. In: Li, A., Zhu, Y., Li, Y. (eds) Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning. Lecture Notes in Electrical Engineering, vol 261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39584-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39584-0_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39583-3

  • Online ISBN: 978-3-642-39584-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics