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Abstract. Electroencephalogram (EEG) data can provide information
on cognitive states and processes with high temporal resolution, but to
take full advantage of this temporal resolution, common transients such
as blinks and eye movements must be accounted for without censor-
ing data. This can require additional hardware, large amounts of data,
or manual inspection. In this paper we introduce a greedy, template-
based method for modeling and removing transient activity. The method
iteratively models an input and updates a template; a process which
quickly converges to a unique and efficient approximation of the input.
When combined with standard source separation techniques such as In-
dependent Component Analysis (ICA) or Principal Component Analysis
(PCA), the method shows promise for the automatic and data driven
removal of ocular artifacts from EEG data. In this paper we outline
our method, provide evidence for its effectiveness using synthetic EEG
data, and demonstrate its effect on real EEG data recorded as part of a
minimally constrained cognitive task.
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1 Introduction

1.1 EOG Removal from EEG for Cognitive State Estimation

EEG is being actively investigated as a method for creating advanced human-
computer interfaces, in which cortical activity patterns are used to infer the
cognitive state of users or to control external devices.

Cognitive state estimation systems allow for estimates of latent cognitive prop-
erties such as mental workload, estimates which can then be used to regulate
information provided to a user as part of an augmented cognition system, or
for the development of new methods for assessing specific cognitive deficits and
tailoring cognitive rehabilitation. Brain-computer interface (BCI) systems may
allow patients with motor disabilities to interact with the world by controlling
external devices through cortical activity. Devices include traditional computer
control devices (such as mice), text communication systems, and robotic limbs.
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In both cases, granular measures and high temporal resolution are desirable
factors, as they allows for the production of more sensitive control mechanisms
and a more detailed investigation of cognitive processing. Temporal resolution
is easily hindered by physiological contamination from ocular and muscular ac-
tivity. Recorded blinks and eye movements can be particularly disruptive due to
their high amplitude and impulse-like shapes. These impulses disrupt both seg-
ment comparisons and local frequency estimates common in BCI and cognitive
state estimation systems. The frequency with which these events occur makes the
development of automatic systems for removing artifacts (rather than identifying
and rejecting them) an important step in developing new tools built on EEG.

1.2 Existing EOG Removal Methods

A 2007 review by Fatourechi, et al. documents the common methods for re-
moving such contaminants from EEG in BCI systems, their benefits and short-
comings, and the frequency with which they are employed in published work
[1]. Although most studies neglect to discuss how ocular artifacts are treated
(53.7%), the majority of those that employ automatic ocular artifact removal
employ an electrooculogram (EOG) paired with a simple linear model (69.7%).
This combination consists of dedicated electrodes placed around the eyes and
a linear regression model that relates some portion of the signal recorded by
each electrode of the EEG to an EOG component. In addition to requiring addi-
tional hardware and a more involved setup process, the relationship between the
recorded EOG signal and the EEG is not entirely linear. The activity associated
to the EOG during different eye movements varies depending on the type of
eye-movement [2].

The second most common method for ocular component removal, being re-
ported in 9.1% of papers, is blind source separation, usually in the form of inde-
pendent component analysis (ICA). ICA is a statistical method that separates
additively mixed, independent signals through the optimization of a measure
of non-normality in the resulting component signals. ICA may be used with or
without an EOG [3,4], and depends on both a large amount of data (for the
optimization process) and a manual identification step (to identify components
associated with the type of contamination in question).

Only 6.1% of automatic EOG artifact removal is performed with principal
component analysis (PCA), an eigendecomposition based method for identify-
ing uncorrelated components. The rarity with which PCA is used is probably
due to EOG components and cortical activity not meeting the condition that
components be orthogonal. PCA decompositions will produce components that
contain combinations of activity from unrelated sources (such as ocular activity
and frontal cortical activity). Yet, PCA remains a tempting method because
the decomposition is deterministic, fast, and requires less data (when compared
to ICA).
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ICA and PCA perform a similar task, using statistical properties to iden-
tify spatial components that have some sort of coherent activation pattern.
However, they differ in terms of assumptions about the data and the difficulty
with which projections can be derived from the data. PCA alone is a poor match
for the removal of EOG artifacts due to an orthogonality assumption not met
by EEG data [5]. However, dropping this assumption and further optimizing
for independence makes ICA a more difficult method to employ, in terms of
data requirements and derivation properties. For both methods, it is likely the
case that the estimated EOG component also contains cortical activity, possibly
due to unmet requirements for full separation under PCA, and to suboptimal
projections being derived through the optimization for non-normality [5,6].

1.3 Using Temporal Shape for Artifact Removal

In this paper, we describe an extension of ICA-based or PCA-based EOG arti-
fact removal that further constrains the attribution of signal to ocular activity
by leveraging the conserved temporal shape of common transients. Our method
uses a modified version of matching pursuit, a method by which signals are rep-
resented as a linear combination of elements from an over-complete dictionary
[8]. Matching pursuit results in a sparse signal representation which has been
found to be useful in signal classification and compression contexts. However, the
modeling process is prohibitively slow when using common dictionaries, making
it unsuitable for online applications [9]. Although applied to EEG soon after its
development [7], matching pursuit is rarely applied in the context (not appearing
in Fatourechi’s survey of artifact removal techniques) due to this poor runtime
performance. Methods for accelerating matching pursuit rely on efficient im-
plementation and careful pruning of the dictionary elements considered during
signal modeling. Although the gains from these approaches can be substantial,
the runtime remains bound to the cardinality of the dictionary being used, which
is usually large [9]. We find that artifacts in EEG are sufficiently modeled using
a very simple dictionary, consisting of only a few entries. Our approach modifies
the matching pursuit process by comparing dictionary elements to the signal at
all possible offsets, reducing the dictionary size to only a few elements that can
be learned from the data, and are constructed to model an individual subjects
ocular artifacts for removal.

Evaluation of EEG processing methods presents an inherent challenge, as we
lack a ground truth signal against which processed signals can be compared.
For this reason, processing methods are sometimes evaluated using synthetic
data, where conclusions regarding a method can only be drawn in so far as the
synthetic data is a meaningful approximation of real data. We will demonstrate
our method in this synthetic context first, where assumptions will be made
explicit and efficacy can be demonstrated clearly, and then we will demonstrate
the method using real EEG data, which can not be evaluated for correctness,
but compares favorably to the synthetic results.
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2 Methods

2.1 Data Collection

We developed our technique for removing ocular artifacts while investigating
EEG data collected during performance of a naturalistic reading task. Subjects
read passages under a high-workload condition, where text came from sources
such as the New Yorker and a challenging time constraint was imposed, or under
a low-workload condition, which used easier passages and little time constraint.
The nature of the task made it unreasonable to discourage eye-movements, and
frequency with which they occurred made rejection unreasonable, so we had to
remove the EOG from the recorded data.1

The frequency of eye movements made ICA quite effective in producing an
independent ocular component using only a few minutes of recorded data. The
component was found and identified using the methods described in Jung, et al.
[4]. To further isolate ocular activity, we modeled the activation time-course of
this channel using our template based method. The modeled ocular activity was
then subtracted from this component, leaving other activity as a residual that
could be re-integrated into the data at large. A mathematical description of the
modeling process follows.

2.2 Processing

The component recognized as containing ocular activity, x = (x1, x2, ..., xn), is
modeled using a shape template h = (h1, h2, ..., hm) and a scaling coefficient
sequence c = (c1, c2, ..., cn).

The signal model m is constructed by the convolution m = h ∗ c. From the
signal x and this model m, we generate the residual r = x−m.

For convenience, let Nm(xi) = (xi−m
2
, ..., xi+m

2
), that is, an m unit neighbor-

hood of xi. We initialize h by taking the point-wise average of signal segments
that are centered on local amplitude extrema.

W = {wi : max(|Nm(xi)|) = |xi|},

where wi =
Nm(xi)

stdev(Nm(xi))

h = E(W )

The coefficient sequence c is initialized with ci = 0 for all i. We greedily add
single coefficients using the following update procedure.

i∗ = argmax
i

cov(h, Nm(ri))

1 EEG data was recorded from standard scalp locations using a 64-channel
BiosemiTMActiveTwoTMsystem. Data was down-sampled to 256Hz during recording
and was high-pass filtered at 1 Hz using an 8th order Butterworth filter. Additional
details regarding the experiment and the collection of this data can be found in the
Engineering in Medicine and Biology 2010 conference proceedings [10].
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a∗ = argmin
a

∑
(ah−Nm(ri∗))

2

ci∗ = a∗

Update m = h ∗ c and r = x−m

Each iteration selects a location from the current residual, fits a scaling coef-
ficient, and updates the model and residual. These steps are repeated until a
termination condition is met, which can be based on a limit on the number of
non-zero elements of c, a threshold on a∗, or reaching a target residual variance.

After the signal has been modeled, we update the template.

Let r◦i = x− h ∗ (c1, c2, ..., ci−1, 0, ci+1, ..., cn),

W = {Nm(r◦i ) : ci �= 0},
h = E(W ).

r◦i shows us our current residual modified such that a single transient remains
unmodeled. This allows us approximate the event at i in isolation, reducing the
effect of overlapping occurrences of the transient.

Repeating this process of modeling and template updating based on covariance
guides the model toward a group of transients with a similar shape, producing
a template increasingly fitting the transient of interest. A final signal estimate
mfinal is built using the same matching pursuit process that is used during each
of the update steps. Additional transients may be modeled by repeating the
entire process, starting with x−mfinal.

3 Results

3.1 Synthetic Data

To evaluate how well our method for modeling transients decomposes an EEG
signal containing both cortical and EOG components, we generated synthetic
EEG data with an additive combination of a stable random signal and a sequence
of transients generated from a conserved temporal shape. That is, xEEG =
xstable+

∑
i hi ∗ci, where hi is a transient, and ci is a sparse activation sequence

for hi.
Transients are often impulse like (and therefor broadband), so their frequency

distributions overlap with that of the stable signal. We generated a transient
by producing a random .5 second signal in the 1-8Hz band, and scaling it to
have unit variance. There were 30 activations with coefficients in the range .75
to 1.25. The random signal was from the 1Hz to 20Hz frequency range and had
variance of .25. This process produced the signal seen in Figure 1. Although
not a sophisticated model of EEG activity, the components overlap in frequency
distribution, and are reminiscent of contaminated EEG components.
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Fig. 1. We model EEG data as the additive combination of a stable random signal
between 1 and 20 Hz and repeated activations of a transient in the range 1 to 8
Hz. Our model includes substantial activity not associated with the transient, which
would indicate poor separation of signal components when applying a source separation
technique to real EEG data.

Initializing the template using signal segments of high local variance produces
a fairly poor result. However, applying our template updating procedure several
times produces a reasonable approximation, as can be seen in Figure 2. Using
the resulting template approximation, the signal is separated into a transient
activation sequence and a residual signal, shown in Figure 3

Fig. 2. Our method for modeling a repeated transient produces a good approximation
of the generating transient signal, despite a poor initial estimate. The ground truth
transient shape is shown on the left, the initial estimate is shown in the middle, and
the final approximation is shown on the right.

As we iterated between signal modeling and template updating, we see in
Figure 4 that the residual error, the squared sum of the difference between our
model residual and the stable random signal, quickly drops off to a constant near
the original variance. Although the error cannot be monitored during application
to a real signal, the residual variance can be monitored. Figure 4 also shows that
when the remaining residual variance stabilizes, there is also little change in the
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Fig. 3. The modeled signal produces a close approximation of the two contributing
signal sources (seen in Figure 1) from a single channel. In conjunction with source
separation techniques that use spatial information, our method may produce a more
complete separation of contributing sources.

Fig. 4. The residual error closely tracks the total remaining variance in the signal. This
provides useful information for constructing an appropriate termination condition when
using real data, where error cannot be monitored.

residual error. If this relationship between residual variance and error remains
consistent when using real data, it contributes to a natural termination condition
for the signal modeling procedure.

3.2 EEG Data

To demonstrate our method for modeling ocular transients, we use a component
from a PCA decomposition of the aforementioned data recorded during a reading
task. Although our method works well in conjunction with ICA, PCA quickly
produces a robust decomposition from which components associated with ocular
activity might be more easily identified through automated processes. However,
the ocular activity is less isolated when using PCA. Our template approach
addresses this issue by introducing the additional shape constraint.
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PCA was applied to our recorded EEG data. We selected the component con-
taining blink activity based by examining the scalp distribution of PCA weights.
Our signal modeling technique was applied to the the activation time-course of
this component. As before, the template modeling method converges on a rea-
sonable approximation of the time-course of the most common transient, as can
be seen in Figure 5. Using this template, the activation time-course of the se-
lected PCA component is decomposed into two parts: the modeled transient
activation and the residual activity, which is presumably cortical in nature. This
further decomposition can be seen in Figure 6. Again, the modeled signal closely
tracks what appear to be instances of the transient activity, without introducing
obvious artifacts or removing additional activity.

Fig. 5. The estimated transient converges quickly to a plausible shape for common
ocular artifacts. The frequency of blinks in rapid succession contributes to an elevated
amplitude leading and following the main amplitude spike by about .25 seconds. These
sorts of artifacts associated with overlapping transients are reduced by the local mod-
eling used when learning the transient shape.

Using this method allowed us to perform our analyses of data recorded dur-
ing the reading-task, which included the extraction of local frequency features,
without corruption from impulse-like activations.

4 Discussion

In this paper we introduced a template based approach to modeling transients in
EEG data. We provided evidence for the efficacy of the method in the context of
synthetic data, and demonstrated the result of applying the process to real EEG
data. The method provides the benefit of being able to remove common ocular
contaminants from recorded EEG signals without rejecting data; without the
use of additional hardware; and, when combined with PCA, without requiring
large amounts of data or a detailed analysis of separated components.
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Fig. 6. On ocular and frontal activity component (in black) is split into a transient com-
ponent (in red) and a locally stationary signal (in blue). It appears that this separation,
using a component derived using PCA, creates for a more easily automated method for
removing ocular contamination in EEG when compared to ICA based methods, which
usually require the attention of a researcher to identify ocular components.

There are several natural concerns associated with the method, including im-
plementation details such as termination conditions and the potential for learn-
ing degenerate templates that model more than the intended transient activity.
Additionally, the known shortcomings of matching pursuit remain applicable,
with the potential for highly suboptimal signal representations to occur when
transients overlap frequently. Furthermore, we have only peripherally discussed
the situation where multiple transient patterns occur within the same signal. For
example, transients associated with left-to-right and right-to-left eye movements
usually share a component when identified using PCA or ICA, but may not be
appropriately modeled with a single template.

In practice, many of these concerns can be mitigated, without significant ef-
fort, by empirically adjusting the few parameters in the system, such as the
width of the transient model and the threshold on activation coefficients. The
presence of multiple transient shapes requires a bit more engineering, but ini-
tial results using clustering of signal segments (rather than a simple mean), or
sequential application of the method, are encouraging.

Several additional experiments remain future work, including: comparing our
method to EOG signals gathered with dedicated electrodes, further automation
through the integration of priors for the spatial distribution of common ocular
contaminants, and the modeling and detection of evoked response potentials
without the use of a time-lock.
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