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Abstract. Workload classification Augmented Cognition systems aim
to detect when an operator is in a high or low workload state, and then
to modify their work flow and operating environment based upon this
knowledge. This paper reviews state-of-the-art electroencephalography
(EEG) recorders for use in such systems and investigates the impact of
EEG noise on an example system performance. It is found that adding
up to 15 µVRMS of artificially generated noise still leaves EEG signals
that have correlations in-line with the correlations found between con-
ventional wet EEG electrodes and new dry electrodes. The workload clas-
sification system is found to be robust in the presence of small amounts
of noise, and there is initial evidence of small stochastic resonance effects
whereby better performance can actually be obtained in the noisy case
compared to the traditional noise-less case.

Keywords: EEG, Augmented Cognition, Workload classification,
Noise-enhanced signal processing.

1 Introduction

Augmented Cognition is a recent research concept focusing on creating the next
generation of Human-Computer Interaction devices. Closed-loop Brain Com-
puter Interfaces (BCIs) are a classic example of such next generation systems.
In these, a human operator uses a computer and interacts with changes on the
screen; whilst simultaneously the computer monitors the human and changes its
outputs based upon the results. For example, workload monitoring systems aim
to detect when an operator is in a high or a low workload state, and use this
knowledge to change the speed at which information is presented to the oper-
ator. As such the work flow and operating environment can be optimized in a
real-time and time-varying manner.

Successful BCI Augmented Cognition intrinsically relies on the availability of
portable and easy-to-use brain monitoring technologies. For this there are two
practical modalities, functional near-infrared (fNIR) and electroencephalogra-
phy (EEG). The EEG is the non-invasive recording of brainwaves performed
non-invasively by placing electrodes on the scalp, and is by far the most com-
monly used modality. As a result, in recent years there has been a huge amount
of research dedicated to improving the EEG unit and the overall recording
experience. [1]–[6] represent a small selection of such papers.
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Although both have seen considerable process in recent years the two principle
focuses in EEG unit research are well known, and remain: power consumption
and dry electrode design. In Section 2 this paper presents a brief review of
state-of-art EEG technology for use in Augmented Cognition, highlighting the
recent improvements on these two fronts. An in-depth analysis on the impact
of recording noise on Augmented Cognition performance is then presented in
Section 3. Excess noise in the EEG recording is related to the use of dry electrodes
through the correlation coefficients obtained as clean EEG signals are corrupted
by artificially generated noise. By injecting small amounts of artificial noise into
the EEG collected from a workload monitoring task it is shown that the task
performance is robust under noisy EEG recordings. Further, initial evidence
of small stochastic resonance effects, where the system performance actually
improves in noisy conditions, is found.

2 Portable EEG for Augmented Cognition

2.1 EEG Recorders

Table 1 summarises the features of state-of-the-art low channel count EEG sys-
tems that are potentially suitable for non-obtrusive EEG brain monitoring in
Augmented Cognition applications. Low channel counts are sufficient for many
applications, and for Augmented Cognition the need for recorders that are dis-
crete, socially acceptable, and quick to set up, places a strong emphasis on the
use of a low number of channels.

From Table 1 it can be seen that a number of high quality, highly miniaturised
units are now available commercially. These can easily offer over 8 hours of
recording time, likely sufficient for any individual protocol in an Augmented
Cognition experiment. Nevertheless, one day of recording, allowing a complete
sleep-wake cycle to be captured, should be the aim for future high-quality units.
(In any case, even the best clinically attached wet electrodes begin to fall off
after this time.) This 24 hour level of power consumption is starting to be met
by research stage units.

However this still falls far short of pick up and use devices. Substantial im-
provements in system power consumptions will be required to realise units that
can be trusted to be re-usable session after session. Although current batteries
guarantee that a wanted protocol is feasible, it remains a common experience to
have to worry about battery charge, or to have to adjust experiment timings af-
ter discovering that a unit was not adequately charged. Tackling this is essential
for engendering user trust and reliability in Augmented Cognition systems. On-
board signal processing for providing the first level analysis of the EEG data is a
promising approach for further power consumption reductions, but implement-
ing complete and accurate algorithms within the limited power budget available
remains a major challenge [1].

Looking further ahead, the EEG technology itself is evolving. For example, [4]
reported the use of very small, flexible, textile based EEG units. These are ap-
plied directly to the scalp as a tattoo and, if forehead only channels are required,
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eliminate much of the wiring involved in the EEG collection and are very in-
conspicuous. [18] presented a new approach for recording the EEG from the ear
canal using a modified hearing aid. This is a very interesting development be-
cause the recording location is accessible, it intrinsically holds the electrodes in
place, and hearing aids are already very socially acceptable. It also allows a sin-
gle unit that can collect free-running EEG and auditory steady state responses,
while simultaneously collecting a heartbeat record and providing classic hearing
aid functionality. Both of these developments are at an early stage, but hold
significant promise for future use in Augmented Cognition applications.

2.2 Electrode Technologies

Also apparent from Table 1 is the increasing availability of dry EEG electrodes
which do not require a conductive gel to operate. Most of these electrodes are
now based upon having fingered electrodes, rather than discs, for easier pene-
tration through the hair (see for example [19]). It is clear that making a funda-
mentally gel free recording is no longer a major challenge. However, there are
outstanding challenges in how to actually keep the electrodes in place without a
cap or tight headband. Furthermore, electrode availability does not mean that
these electrodes get comparable performance to conventional wet Ag/AgCl EEG
recording electrodes.

In-depth measurements of dry electrode performance have been presented [6],
[20], [21] but most studies only report a correlation coefficient between EEG
recorded at nearby locations with wet and dry electrodes. Typical values re-
ported are: >0.93 [3]; 0.89 [22]; 0.83 [23]; 0.81–0.98 [15]; 0.68–0.90 [16]; 0.39–
0.85 [24]. For greater acceptance of dry electrodes the wider reporting of the
second order electrode properties is essential. In particular: the half-cell poten-
tial, the long term stability and the contact noise. The latter is known to be
a function of electrode contact area [25], which is decreasing with the move to
fingered electrodes. To begin to evaluate the impact of this, the remainder of this
paper investigates the effect of excess recording noise on a workload monitoring
Augmented Cognition task.

3 Noise-Enhanced Augmented Cognition

3.1 Noise Correlation

Noise robustness is a clear requirement of Augmented Cognition systems that
must operate in non-controlled environments. Excess recording noise from any
source cannot be allowed to have a substantial detrimental effect on the system
performance. To investigate this, Fig. 1 shows the correlation coefficient calcu-
lated between a raw recorded EEG trace and the same EEG trace after it has
had artificial white Gaussian noise deliberately added to it. The additive noise
generation procedure is detailed in [26]. In Fig. 1, the artificial noise is added to
a complete 12.5 hour EEG recording (using the publicly available data from [27],
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[28]). This long EEG record is then split into multiple shorter duration EEG sec-
tions, and the correlation in each section plotted against the duration of these
shorter sections. This allows the maximum, minimum and median correlation
coefficients over time to be found.
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Fig. 1. Correlation coefficients between a raw EEG trace and a noise corrupted copy
of the same EEG trace as the EEG section length used for calculation is changed.
Vertical lines show the maximum, minimum and median correlation values found over
a complete 12.5 hour EEG recording.

From Fig. 1 it is clearly seen that the underlying correlation present is not
accurately estimated when very short sections of data are analysed. There is a
consistent tendency for the median correlation to be underestimated at the cost
of much larger variances. As a result, in some cases only testing the correlation in
short EEG records will lead to a significant overestimation of the true correlation
present. Importantly, even with up to 15 µVRMS of artificial noise added to the
raw EEG traces, correlations in-line with those reported for dry electrodes are
found.

It is therefore essential to investigate the impact of this noise on Augmented
Cognition system performance. Moreover, recent results have shown that some
EEG applications are not only robust in the presence of more noise, but actually
get better performance [26]. Such stochastic resonance has been observed in
many physical systems [29] and could have a big impact on EEG in Augmented
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Cognition. For example, is it necessary to design electrodes to have the minimum
contact noise anyway?

3.2 Noise-Enhanced Processing

These effects are investigated here using an EEG workload classification system
based upon the publicly available data from the 2011 Cognitive State Assessment
Competition [30], [31]. In this, participants were asked to perform a workload
engagement task [32], [33] which altered the difficultly and required attention
level between high and low workload states. Nineteen channels of EEG data
were recorded, and the experiment was run on each person multiple times on
the same day, and on different days. The objective is to use only the EEG data
to recognise the operator’s state as either high or low workload.

Fig. 2 shows the performance of a new Artificial Neural Network based work-
load monitor on the data from two subjects. The used network is a simple feed-
forward patternnet with 10 hidden neurons with features from standard FFT
frequency bands and time domain features including line-length. These are cal-
culated from all 19 EEG channels. The used Artificial Neural Network is trained
using the first recording session from day 1. The test data is then taken as the
two other recording sessions on day 1, and the three from day 2. Fig. 2 shows
that the Artificial Neural Network performs well on day 1, the same day as the
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Fig. 2. Performance of an Artificial Neural Network workload monitor using data from
two subjects recorded on two subsequent days. Data is taken from the 2011 Cognitive
State Assessment Competition [30], [31].
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training data is from. However, by day 2 (the next day) the network performance
has degraded substantially and is no better than chance.

This result, using a different Artificial Neural Network, replicates the results
reported in [30], [31] which demonstrated that the performance of some workload
classification systems degraded significantly as the time gap between the training
and testing sessions increased. Clearly such systems are not reliable and reusable.
Re-training of the network is required each day and this comes with a high time
cost. There are now open research questions over the causes of these performance
decreases, and potential approaches for mitigating them.

The impact on this situation from adding artificially generated noise to the
raw EEG traces is shown in Fig. 3. Training with noise is a common technique
used to increase the accuracy of Artificial Neural Networks by adding small lev-
els of noise to the training data before training the network [34]. The aim is
to do this multiple times and make the available training data more variable
and more representative of future unknown data. Testing with noise is a novel
approach introduced here where independently generated noise is also added to
the EEG data used for testing. This therefore simulates the use of a more noisy
EEG recorder for obtaining the test data. It also simulates the potential use of
low-power, low-accuracy circuit structures in the EEG unit in place of conven-
tional higher-accuracy, higher-power structures. As such the noise results here
are useful for creating even low power consumption EEG processing electronics.

0 5 10 15 20
40

60

80

Added noise / µVrms

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 / 

%

Subject E

0 5 10 15 20
40

50

60

Added noise / µVrms

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 / 

%

0 5 10 15 20
40

60

80

100

Added noise / µVrms

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 / 

%

Subject F

0 5 10 15 20
40

50

60

Added noise / µVrms

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 / 

%

 

 

Training with noise
Testing with noise

Day 1

Day 2

Day 1

Day 2

Fig. 3. Performance of an Artificial Neural Network workload monitor as artificial noise
is deliberately added to the training and test data. Plotted results show the average
performance the test sessions on each day (two on day 1 and three on day 2).
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From Fig. 3, in both subjects the presence of excess noise in the EEG record-
ing does not intrinsically stop the workload classification process. Robust per-
formance is maintained when small amounts of noise are present. Moreover,
several instances of performance improvements are present. Considering day 1,
in Subject E a small performance resonance is present with better classification
accuracies being obtained when 5 µVRMS of noise is deliberately added to the
EEG signals. In Subject F no resonance is seen, but there is no substantial de-
crease in performance. On day 2, better classification performance is obtained
at many different noise levels compared to the no noise case. This effect is small,
and the issue with performance degradation over time is not fixed: in neither of
the cases considered here does the performance improve to a level substantially
above chance classification. Nevertheless, this demonstration of stochastic reso-
nance effects is an important new result for Augmented Cognition systems. If
this effect can be isolated and improved upon, noise enhanced processing could
be an important new tool for creating robust and reusable Augmented Cognition
systems that can work autonomously over a number of days.

4 Conclusions

Stochastic resonance is an effect whereby noise embedded in a signal leads to
better overall performance compared to a no noise case. This paper has demon-
strated that EEG systems are now readily available with dry EEG electrodes for
quick and easy set ups. These electrodes produce EEG signals with high corre-
lations when compared to conventional wet electrodes, but similar correlations
can be obtained when using EEG signals which have been artificially corrupted
by up to 15 µVRMS of noise. Using an EEG based Artificial Neural Network
workload classification system as an example this paper has shown that the sys-
tem performance is maintained under such noise levels. Indeed there is initial
evidence of stochastic resonance effects, with consistently better performance
being obtained on next day workload classifications tests as more noise is added
to the EEG data. At present these stochastic resonance effects are very small,
but suggestive, and future work investigate their full exploitation.
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