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Abstract. In this publication, we present a Motor Imagery (MI) based Brain-
Computer Interface (BCI) for neurologic rehabilitation. The BCI is able to 
control two different feedback devices. The first one is a rehabilitation robot, 
moving the fingers of the affected hand according to the detected MI. The 
second one presents feedback via virtual reality (VR) to the subject. The latter 
one visualizes two hands that the user sees in a first perspective view, which 
open and close according to the detected MI. Four healthy users participated in 
tests with the rehabilitation robot, and eleven post stroke patients and eleven 
healthy users participated to tests with the VR system. We present all subjects’ 
control accuracy, including a comparison between healthy users and people 
who suffered stroke. Five of the stroke patients also agreed to participate in 
further sessions, and we explored possible improvements in accuracy due to 
training effects.  
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1 Introduction 

Brain-computer interface (BCI) technology has been used widely for communication 
and device control in a closed loop system [1]. The choice of the BCI approach 
depends on which device the user wants to control. The P300 and steady state visual 
evoked potentials (SSVEP) approaches are based on evoked potentials. Hence, they 
need an external stimulation device, and are not useful for people suffering from 
visual impairments if visual stimulation is used. The approach based on changes in 
sensorimotor rhythms (SMR) is the third popular one. These BCIs rely on power 
changes in the mu- (8Hz-12Hz) and beta bands (18Hz-26Hz) over regions active 
during motor imagery (MI). These rhythms are associated with the cortical areas most 
directly connected to the brain’s normal neuromuscular outputs [1]. The MI based 
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BCI was already successfully used for helping people suffering motor impairments. 
Pfurtscheller et al. demonstrated the MI-BCI based control of functional electrical 
stimulation for restoring hand grasp in a patient with tetraplegia [2], Millan et al. 
controlled an intelligent wheelchair via executing three different mental tasks [3], and 
other systems have been described (e.g. [4], [5]). Recently, the idea of utilizing the MI 
for neurological rehabilitation became popular. The idea is to use the BCI not to 
replace lost motor function, but to improve motor functions in patients.  

Prior research showed that mentally rehearsing movements (that is, performing 
MI) could be used as an effective therapy in stroke rehabilitation [6] even if no 
feedback about the performance is given to the user. MI may be a method to 
overcome learned nonuse in chronic stroke patients, and could also be practiced by 
patients with poor motor performance, which otherwise excludes four out of five 
patients from active movement therapies [7]. A review, comparing the effects of 
conventional therapy plus MI to those of only conventional therapy proved the 
positive effects of MI interventions [8]. Zimmermann-Schlatter et al. identified four 
studies performed in Asia and North America. Two of them found significant effects 
on the Fugl-Meyer Assessment (FMA) score and in the Action Research Arm Test. 
One study only found significant effects in the task related outcomes.  

The additional advantages of not only performing MI, but also tracking MI with a 
BCI and presenting online feedback to the user, seem clear: (i) the feedback helps and 
motivates the patient to perform accurate MI, (ii) the therapist gets feedback about the 
performance of MI and can track changes over time, and (iii) real-time feedback may 
increase Hebbian plasticity, which is likely to increase cortical activity [9]. To test 
this approach, Ang et al. compared rehabilitation success across 54 hemiparetic stroke 
patients who received either standard robotic rehabilitation or rehabilitation with a 
MI-BCI and robotic feedback [10]. They showed that significant gains in FMA scores 
were observed in both groups at post-rehabilitation and 2-month post-rehabilitation, 
but no significant differences were observed between groups. Furthermore, they 
proved that hemiparetic stroke patients can operate EEG-based MI-BCI, and that 
EEG-based MI-BCI with robotic feedback neurorehabilitation is effective in restoring 
upper extremity motor function after stroke.  

This manuscript presents a MI based Brain-Computer Interface (BCI) that can 
control different feedback devices. The BCI was connected either to an upper limb 
rehabilitation robot (Amadeo, Tyromotion GmbH, Austria) or a Virtual Reality (VR) 
system (gVRsys, g.tec medical engineering GmbH, Austria). Both the VR system and 
the rehabilitation robot provide online feedback to the user about the detected MI. A 
total of eleven post-stroke patients and a control group of eleven healthy people took 
part in the VR based experiment. First results from 4 healthy users performing the 
experiment with sensory feedback with the rehabilitation robot are presented.  

2 Methods 

2.1 Detection and Classification of MI 

For better classification of MI via a Linear Discriminant Analysis (LDA), the EEG 
channels are spatially filtered with Common Spatial Patterns (CSP). This method 
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yields a set of spatial filters designed to minimize the variance of one class while 
maximizing variance for the other class. For proper classification, it is sufficient to 
choose only the four best discriminating filters. These are the two filters leading to the 
highest variance of class one, and the two filters generating the highest variance of 
class two (while each of the four filters minimizes the variance of the other class). Given 
N channels of EEG for each left and right trial, the CSP method provides an N x N 
projection matrix. This matrix is a set of subject-dependent spatial patterns, which 
reflect the specific activation of cortical areas during hand movement imagination. With 
the projection matrix W, the decomposition of a trial X is described by 

 Z = WX (1) 

This transformation projects the variance of X onto the rows of Z and results in N 
new time series. The columns of W-1 are a set of CSPs and can be considered as time-
invariant EEG source distributions. Due to the definition of W, the variance for a left 
hand movement imagination is largest in the first row of Z and decreases as the 
number of subsequent rows increases. The opposite occurs for a trial with right hand 
motor imagery. For classification of the left and right trials, the variances have to be 
extracted as reliable features of the newly designed N time series. However, it is not 
necessary to calculate the variances of all N time series. The method provides a 
dimensionality reduction of the EEG. Mueller-Gerking et al. [11] showed that the 
optimal number of CSPs is four. Following their results, after building the projection 
matrix W from an artifact corrected training set XT, only the first and last two rows 
(p=4) of W are used to process new input data X. Then the variance (VARp) of the 
resulting four time series is calculated for a time window T. These values are 
normalized and log transformed according to the formula:   

   (2) 

Where fp (p=1..4) are the normalized feature vectors and VARp is the variance of the 
p-th spatially filtered signal. These four features can be classified with a linear  
 

 

Fig. 1.  

 



 Human-Computer Confluence for Rehabilitation Purposes after Stroke 77 

 

discriminant analysis (LDA) classifier. For a very good overview of the CSP method, 
please see [12], [13]. 

2.2 Experimental Workflow 

The BCI experiment was set up with g.BCIsys, as shown in the Simulink model in 
Fig. 1. The data were recorded over 64 positions (see Fig. 2A) distributed over the 
cortex and sampled at 256 Hz. Active EEG electrodes (g.LADYbird) were used to 
make the preparation procedure faster and easier and to increase data quality. A 
g.HIamp biosignal amplifier (g.tec medical engineering GmbH, Austria) was used for 
data recording. The unit has 256 ADCs with 24 bit precision and performs 
oversampling to increase the signal to noise ratio. Before applying the spatial filters, 
the EEG data were converted to double precision and bandpass filtered between 8 and 
30 Hz. Then, the variance was calculated within a time-window of 1.5s length. These 
features were normalized, log transformed and classified with the LDA. The LDA 
classification result drives the BCI Paradigm feedback block. This block controls the 
paradigm timing and sends the feedback commands to the external feedback device, 
either the rehabilitation robot or the VR system. The block ReceiveGRIPS_Signals 
tracks the actions of the rehabilitation robot and saves this data in synchrony with the 
EEG data for offline analysis. 

2.3 Session Timing 

One experimental run lasted about six minutes and contained 40 randomized 
commands of either left-hand or right-hand MI. Fig. 1B shows the trial timing. One 
trial lasted eight seconds. A random intertrial interval between 0.5 and 1.5 seconds 
was included between each trial. The cue (command) was presented at 3 seconds. The 
feedback phase lasted from three seconds until the end of the trial. 

2.4 Robotic Feedback Paradigm 

Four healthy subjects (mean age 24 ± 5.2 years, 2 left-handed, 2 right-handed) 
participated in the tests with the rehabilitation robot Amadeo (see Fig. 3B). The 
Amadeo is a mechatronic finger rehabilitation device that allows each individual 
finger, including the thumb, to move independently and separately. The positions, as 
well as the forces of each finger, were measured constantly during the paradigm and 
saved with the EEG data, allowing detailed offline analysis. One experimental 
paradigm consisted of 4 runs. With the data of the first 3 training runs, a specific 
classifier for detecting the MI was generated. No feedback was presented during the 
training runs. In the following run, this classifier was tested and the online error rate 
was calculated with the novel run. The robot gave feedback to only one of the two 
hands. In a real rehabilitation session, this would be the affected side. For the healthy 
subjects, we selected the dominant hand to receive robotic feedback. The cue was 
given via a red arrow, pointing either to the left side or the right side of a computer  
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Fig. 2. A: Positions of the 64 active EEG electrodes. The ground electrode was placed on the 
forehead (near FPz) and the reference on the right earlobe. B: Timing of one feedback trial for 
either the robotic feedback paradigm or VR feedback paradigm. 

screen. If the cue pointed to the side that was not fixed in the rehabilitation robot, the 
subject was asked to perform a real (not imagined) full flexion and extension of 
his/her fingers. If the cue pointed to the other hand, the subject was asked to instead 
imagine the same movement. When the correct MI was detected, the robot provided 
feedback by performing a flexion and extension of the five fingers. Within one trial, 
only one full flexion and extension was done. If no correct MI was detected during 
the feedback phase of the trial, then the robot performed no movement.  

2.5 VR Paradigm 

Eleven post-stroke patients (mean age 67.5 ± 10.3 years) and eleven healthy subjects 
(mean age 22.3 ± 4.2 years) participated in the tests with the VR system. The 
measurements with stroke patients were performed at the Krzeszowice Rehabilitation 
Center, Poland. The measurements with the healthy users were performed at Guger 
Technologies OG, Austria. Because the patients were not able to participate in longer 
sessions, the number of runs was reduced to either three, or sometimes two, runs per 
session. Two runs were conducted if the user was very tired or did not feel good. 
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Fig. 3. The two feedback strategies. (A) VR paradigm. (B) Robotic feedback paradigm. 

Hence, training data recorded during such sessions were not sufficient to set up a 
subject specific classifier. Therefore a generic classifier (generated from a large pool of 
previously recorded MI sessions of other users) was used. For comparison, the same 
procedure was tested on the group of eleven healthy users, using the identical generic 
classifier and always with three runs. Feedback was presented for both hands, 
visualizing the user’s hand in VR as they seen in the user’s first perspective (see 
Fig.3A). The cue was presented by flexion and extension of the left or right hand. After 
the cue phase, the user had to imagine the same flexion and extension as seen during 
the cue phase. A beep indicated the start of the cue phase. A second beep indicated the 
end of it and the beginning of the feedback phase. The feedback was then presented as 
flexion and extension of the detected hand side of MI, thus presenting real-time online 
feedback to the user. If during the feedback phase the detected hand side changed, then 
the feedback also flipped from one hand to the other.  

3 Results 

Table 1 shows the mean accuracy of the group of eleven stroke patients and the 
control group of eleven healthy users. Five of the stroke patients participated in four 
further sessions. For this extra comparison, the results of this group after the first 
session and after the fourth session are depicted in the last two columns. 

Table 2 shows the results of the healthy users performing the robotic feedback 
sessions. The mean accuracy across the four users was 86.55%. The accuracy level is 
averaged over 40 trials. 

Table 1. Mean accuracy rates of the two groups participating in the VR paradigm 

  Healthy Stroke  

Session # 1 1 1 4 

Participants 11 11 5 5 

Mean Acc. 63.77 60.67 59.7 72.48 

SD 16.52 13.05 6.08 8.45 
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Table 2. Accuracy rates of the healthy users participating in the robotic feedback paradigm 

Session # Accuracy (%) 

1 92.50 

2 95.00 

3 68.70 

4 90,00 

mean Acc. 86.55 

SD 13.97 

4 Discussion 

The aim of this study was to evaluate a novel rehabilitation strategy, which can 
present feedback either via a rehabilitation robot or a VR system. The error rate 
during online control was calculated. The robotic feedback was tested only on healthy 
users with a specific classifier for each session. The groups testing the VR feedback 
used a generic classifier. This is the reason why the classification result of the latter 
groups is lower than for the robotic feedback group. The difference in control 
accuracy between healthy users and stroke patients is only about 3% on average, 
although the mean age of the stroke patients (67.5 years) is much higher than that of 
the healthy control group (22.3 years). One very important finding of the study is the 
improvement of control accuracy of the stroke patients during only 4 training 
sessions. As could be seen in Table 1, they improved from 59.7% to 72.48%. The 
motivation of the user and the advances in the rehabilitation process due to the BCI 
approach depends on the accuracy of the BCI, hence these improvements seem very 
promising. 

One difference between the two feedback approaches was the delay in presenting 
the feedback. The VR feedback gave feedback in real-time and in synchrony to the 
MI. If the MI changed during the feedback phase, then also the feedback changed. For 
the robotic feedback, the user had to first perform the MI, then a full flexion and 
extension was performed by the robot, regardless of what the user did while the robot 
moved. In a recent publication, Ramos-Murguialday et al. called this approach 
discrete proprioceptive feedback, and stated that the feedback contingency is of vital 
importance to enable neuro-motor-rehabilitation [14]. Gomez-Rodriguez et al. also 
wrote that synchronization is likely to increase cortical plasticity due to Hebbian-type 
learning, and could improve the functional recovery [9]. For future studies, we aim to 
adapt the robotic feedback that way to deliver synchronized online feedback, similar 
to the VR feedback approach. 

The advantage of the robot is that it delivers both visual and proprioceptive 
feedback, which can stimulate the afferent pathways even more than the VR based 
feedback and thereby could be more effective. Another future goal will be to 
investigate the combination of the two rehabilitation strategies.  



 Human-Computer Confluence for Rehabilitation Purposes after Stroke 81 

 

The BCI communicates to the VR system and the robot via an interface that is 
based on UDP (g.UDPinterface, g.tec medical engineering GmbH, Austria). With this 
generic interface, it is easy to create other feedback devices, and we will also evaluate 
functional electrical stimulation. 
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