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Abstract. Recent evidence supports the positive effects of external intervention 
during specific sleep stages (e.g. enhanced memory consolidation and depres-
sion relief). To enable timely intervention, online automated sleep staging is re-
quired and preferably with short latency. In this paper, we propose an approach 
to achieve this based on the analysis of spectral features of a single electroence-
phalogram (EEG) channel and the use of Gaussian Mixture Models. We com-
pare among several choices for the EEG signal location, the type of spectral 
features, and the duration of the signal segment (epoch) that is required to au-
tomatically identify the sleep stage. The performance metric used for compari-
son purposes is the kappa statistic, which measures the agreement between the 
automatic and manual sleep staging. The performance is higher when central 
EEG locations (C3, C4), longer epochs, and the power in five frequency bands 
are used. However, good results (kappa=0.6) can also be obtained for an epoch 
duration of 12 seconds. 

Keywords: automatic sleep staging, online, single EEG signal, spectral fea-
tures, GMM. 

1 Introduction 

Sleep is a state of reversible disconnection from the environment characterized by 
quiescence and reduced vigilance. Although the precise function of sleep remains to 
be elucidated, it appears that sleep primarily benefits the brain. For example accord-
ing to the synaptic homeostasis hypothesis (SHY) [1], plastic processes occurring 
during wakefulness result in a net increase in synaptic strength in many cortical cir-
cuits, and sleep is needed to renormalize synaptic strength in a way that is beneficial 
to nerve cells and to memory. SHY also emphasizes that when cortical neurons begin 
oscillating at low frequencies during non-rapid eye movement sleep, these oscillations 
become synchronized. This is why the electroencephalogram (EEG) exhibits high 
power in the delta band (0.5-4 Hz) particularly at the beginning of a sleep episode. 
SHY also claims that slow waves in sleep do not merely reflect synaptic strength, but 
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also play a functional role in “renormalizing” synaptic strength to a baseline level that 
is energetically sustainable and beneficial for performance [1].  

Recent research evidence indicates that modulating sleep activity patterns, specifi-
cally slow waves via sensory, magnetic, or electric stimuli at specific sleep stages can 
be beneficial in a wide range of contexts including memory acquisition and consolida-
tion [2][3] and relief from depression [4][5]. To verify the validity of such interven-
tions in practice requires conducting research in a larger population using automated 
means for online sleep staging with low latency to allow timely intervention.  

Conventional sleep staging relies on various bio-signals (polysomnography) for 
human experts to decide on sleep stages typically on the basis of 30-second long seg-
ments. Real-time sleep staging is proposed in [6] using EEG, electro-oculogram 
(EOG), and electro-myogram signals (EMG). We consider here the option of achiev-
ing online automatic sleep staging on the basis of a single channel (or signal). EOG 
and EEG electrodes are considered for this purpose. Using a single signal permits to 
simplify the research setup and increases the subject comfort.  

This paper is organized as follows. Section 2 presents an overview of the time 
course of the EEG signal during sleep. Section 3 describes the methods used for au-
tomatic sleep staging. The results in terms of performance are presented in Section 4. 
Section 5 concludes the paper. 

2 EEG during Sleep 

Two distinct types of sleep occur in humans: rapid eye movement (REM) sleep, and 
non–REM sleep. Compared to the low voltage, high frequency patterns appearing in 
the awake EEG, non–REM (NREM) sleep is associated with a synchronized EEG 
pattern. NREM is subdivided into stages N1, N2, and N3. During REM, the EEG 
exhibits a pattern similar to that observed during wakefulness [7].  

Global trends for the EEG power during sleep in the classical frequency bands: 
delta (0.5–4 Hz), theta (4-8 Hz), alpha (8-12 Hz), sigma (11-15 Hz), and beta (15-30 
Hz) are analyzed in detail in [8]. Fig. 1a summarizes the typical time courses of the 
power in those bands depending on the sequence of sleep stages as indicated by the 
hypnogram (top graph in Fig. 1a). The power in Fig. 1a is reported in RMS units 
which are obtained by calculating the square root from the average energy (in a win-
dow of a given duration) of the signal band-pas filtered in the frequency of interest. 
As sleep deepens the power in the delta and theta bands increase whereas the power in 
the alpha, sigma, and beta bands follow a quasi-opposite trend.  

A more detailed view of the power trends during non-REM (NREM) can be ob-
served in Fig. 1b where the average power in all frequency bands over 10 subjects is 
portrayed. The time was normalized to percent units to account for the difference in 
NREM duration for different subjects. The power was also normalized (by scaling 
w.r.t. the highest value) to facilitate the comparison. The power in delta and theta 
increase at the beginning of the NREM episode, remains high for most of the NREM 
duration, and decreases at the end of NREM (i.e. following an inverted-U trend). The 
power in alpha, sigma, and beta rapidly increases at the beginning of the NREM  
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paper, we consider epochs with durations: 6, 12, 18, 24, and 30 seconds. The classifi-
er is trained with ground truth data, i.e. epochs for which the sleep stage is known 
(annotated by the human expert). 

Spectral Features per Epoch 
Spectral features from the epochs are first extracted by calculating the log of the esti-
mated power (in RMS units) in the delta, theta, alpha, sigma, and beta frequency 
bands (δ, θ, α, σ, and β are used to refer to the log of the power in RMS units). The 
logarithm is extracted to equalize the feature range across frequency bands (especially 
relevant for delta because the power in this band is higher than in other bands, see 
Fig. 1a) as this prevents the estimation of singular covariance matrices [10]. A combi-
nation of spectral features (e.g. δ and β) defines a feature vector associated with each 
epoch. For a sleep night recording, the number of feature vectors corresponds to the 
number of epochs in the recording. 

The spectral combinations considered are: 

1) Two-band spectral combinations between i) the bands where the power fol-
lows an inverted-U trend during NREM (i.e. δ and θ according to Fig. 1b) and 
ii) the bands where the power trend quasi-mirrors that of δ and θ during 
NREM (i.e. α, σ, and β according to Fig. 1b). This results in 6 two-band spec-
tral combinations where the feature vectors have two components. 

2) All possible four-band spectral combinations. This amounts to five combina-
tions: δθασ, δθαβ, δθσβ, δασβ, and θασβ where the feature vectors have four 
components. 

3) The combination of all five bands which results in feature vectors with five 
components. 

Classifier 
The classifier decides on the sleep stage for a given epoch on the basis of that epoch’s 
feature vector (referred to as x , d is the feature vector dimension). The classification 
approach in this paper is based on the estimation of the probability that a given feature 
vector belongs to each sleep stage, referred to as ( )p x stage , and select the sleep 

stage ( xs ) for which the likelihood is the largest (see Eq. 1). 

 { }
{ , , 1, 2, 3}
arg max ( )x

stage W R N N N
s p x stage

=
=  (1) 

The probability density function ( )p x stage  is estimated using a Gaussian Mixture 

Model (GMM) [11] and can be written as: 

 ( )
1

( ) , ,
M

m
m

p x stage a p x stage m
=

=  (2) 
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where ma is the m-th mixture coefficient, 
1

1
M

m
m

a
=

= , and ( ),p x stage m  is the  

m-th multimodal Gaussian mixture which can be written as in Eq. 3 (the “stage” sub-
indices were removed in this equation for convenience of notation). 

 ( ) ( )1
1/2/2

1 1
( ) exp ,

2(2 )

T

m m md
m

p x m x xμ μ
π

− = − − Σ − 
 Σ

 (3) 

where mΣ is the d d× covariance matrix, and mμ is the mean vector having d ele-

ments. The mixture model can approximate any probability density function arbitrari-
ly closely provided that it contains enough components[12].  

The GMM parameters are estimated using data from a training set. Given the order 
of the model M, the mixture coefficients, covariance matrices, and the mean vectors 
are estimated using the expectation maximization algorithm. This algorithm is de-
scribed in detail in[10]. The order of the model is chosen in such a way so as to bal-
ance the model complexity (the higher M is, the higher the complexity is) and the fit 
with the data. For the data considered in this paper, we use M=2. 

3.3 Performance Evaluation 

Evaluation of the automated staging performance was made following a leave-one-
subject-out procedure where the data from all the subjects but one in the dataset is 
used to estimate the GMMs for each sleep stage. The data from the remaining subject 
(e.g. subject k) is used to test the models and estimate a 5 5× confusion matrix kC
where the i, j element represents the number of times an epoch manually scored as 
belonging to sleep stage i, was classified as belonging to sleep stage j. The correspon-
dence between numeric indices and sleep stages is as follows: 1) W, 2) R, 3) N1, 4) 
N2, and 5) N3. A visualization of the performance evaluation is illustrated in Fig. 2, 
where N is the number of subjects (10 in this paper), and

,1 ,2,k kF F are the feature vec-

tors of the epochs of subject k corresponding to the first and second nights respective-
ly. The training data consists of the epochs for both nights of all other (N-1) subjects 
in the dataset (i.e. 1 1, , Nk k k− ≠ ). The training data is organized per sleep stage and 

the corresponding GMMs are estimated. 
Although the confusion matrix provides sufficient information to assess the auto-

matic staging performance, comparing the performance for different feature selections 
and electrode locations is facilitated by extracting a single quantity that reflects the 
information contained in the confusion matrix. This can be accomplished by estimat-
ing the so-called kappa statistic [13] from the global confusion matrix kk

C C= .  

Kappa measures the agreement between the manual and automatic sleep staging and 
is defined as: ( ) / (1 )a e eP P Pκ = − − , where aP is the relative observed agreement, and 

eP is the hypothetical probability of chance agreement. aP and eP can be obtained  
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from the confusion matrix as: 
5 5 5

, ,
1 1 1

/a i i i j
i i j

P C C
= = =

=  and 
2

5 5 5

:, ,: ,
1 1 1

/e i i i j
i i j

P S S C
= = =

 
=  

 
  , 

where :,iS and :,iS are respectively the sums across columns and rows of the confusion 

matrix C.  
As discussed in [14], kappa values greater than 0.80 represent almost perfect, be-

tween 0.61 and 0.80 substantial, between 0.41 and 0.60 moderate, between 0.21 and 
0.40 fair and between 0 and 0.21 slight agreement. The average kappa value characte-
rizing the agreement between two human experts is 0.87 [15]. For illustration, the 
automatically generated hypnograms when κ=0.6 and κ=0.4 are represented in Fig. 5. 

 

Fig. 2. Visualization of the performance evaluation method. A leave-one-subject-out procedure 
is used and the corresponding κ is estimated.  

4 Results and Discussion 

4.1 Two-Band Spectral Combinations 

The results in terms of kappa for the six two-band spectral combinations (δα, δσ, δβ, 
θα, θσ, θβ) are represented in Fig. 3a. The electrode location and the epoch duration 
are also considered as independent variables. 

As expected, kappa increases when the epoch duration increases. As for the elec-
trode locations, the highest kappas are reached on central locations (C3 and C4), the 
lowest kappas are for EOG electrodes, and intermediate kappa values are for frontal 
and occipital locations. The maximum kappa is 0.42 (moderate agreement) for loca-
tion C3, epoch duration 24 seconds, and the combination δσ.  

If θ is used instead of δ, kappa decreases which suggests that δ plays a key role in 
defining the sleep stages. An illustration of the mapping of sleep stages in the δ-β 
plane is depicted in Fig. 3b. 

4.2 Four-Band and Five-Band Spectral Combinations 

The kappa results for all possible four-band spectral combinations and the five-band 
spectral combination are represented in Fig. 4. The electrode location and the epoch  
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frequency bands were to be used (e.g. delta and sigma), the performance is moderate 
(kappa=0.4).  

Interestingly, shorter epochs (6 and 12 seconds) can be used at an acceptable level 
of performance, kappa=0.56 (6 seconds, C4) and kappa=0.6 (12 seconds, C4). The 
sleep stage can then be decided for each 12-second long epoch independently from 
the stage of the previous epochs. This permits almost real-time operation and timely 
intervention during sleep. 

Since the decision on the sleep stage to which an epoch belongs is taken indepen-
dently from previous epochs, an obvious performance improvement step would con-
sist in smoothing the results by considering the sleep stages from previous epochs. 
This step however, could increase the latency which may adversely impact online 
operation. 

The use of standard manually scored 30-second long epochs as reference for the 
staging of shorter epochs may not be the best choice because this is a standard for 
offline analyses that was established in the clinical framework. 
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