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Abstract. This paper focuses on a facilitated and intuitive representation of up-
per-body gestures for developers. The representation is based on the user mo-
tion parameters, particularly the rotational and translational components of 
body segments during a gesture. The developed static representation aims to 
provide a rapid visualization of the complexity for each body segment involved 
in the gesture for static representations. The model and algorithms used to pro-
duce the representation have been applied to a dataset of 10 representative ges-
tures to illustrate the model.  
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1 Introduction 

Recent advances in computer-vision and in low-cost hardware and embedded systems 
are widening the real-time methods used to recognize body and hands gestures. A few 
years ago, most systems were restricted to research and game industry; nowadays the 
miniaturization of hardware such as inertial motion units (IMU) allows embedding 
them in innovative devices such as watch, clothes, etc. [1-2]; while advances in com-
puter-vision allows efficient recognition of body movements through camera  and 
depth sensing cameras [3]. These advances and the growing number of different types 
of sensors available imply more work on the design of gestures for Human-Computer 
Interaction in order to develop gestures that can be recognized by most sensors indi-
vidually. 

When designing applications for Human-Computer Interaction relying on air ges-
tures, the developers have a large choice of potential gestures from literature and 
many sensors available on the market. However, they are not always aware of the 
implications of their preliminary choices. Developers usually design gestures for a 
specific system with limited considerations for the portability of the gestures to other 
technologies. However, the recognition rate might largely vary depending on the type 
of sensors and their location for a same gesture. The representation developed in this 
work should help providing a facilitated solution to visualize and characterize ges-
tures from a developer point of view by helping them to design gestures and their 
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motion with a particular focus on recognition using specific sensor in the best location 
or to design specific gestures that can comply all types of sensors by automatically 
identifying the most significant motion components of gestures. This work focuses on 
identifying the main motion components involved in a gesture, as retrieved by inertial 
motion units to infer a characterization for each body segment of the upper-body 

This work takes place in the context of the FEOGARM project [4] which goal is to 
provide a comprehensive framework for facilitating gesture evaluation and recogni-
tion methods. This work intends to provide guidelines on how to choose and design 
gestures depending on the types of sensors considered.  

2 Related Work 

In the literature, different approaches to classify, characterize and represent gestures 
have been developed. Classification and taxonomy of the different gestures is a theo-
retical solution to describe a gesture; discriminating gestures according to their se-
mantic. Textual or visual representations of the motion of gestures is a more practical 
solution, which uses different methods to describe, illustrate or store the information 
related to a gesture;  such as mathematical definitions, specific file formats or visua-
lization and characterization tools.  

Gesture taxonomy and classification has been widely studied by psychologists and 
computer scientists in the context of human-human interaction [5-6] and in the con-
text of human-computer [7-9] and human-robot interaction [10]. In these researches, 
several classifications and taxonomies have been proposed. The taxonomy from Pav-
lovic [9], which divides meaningful gestures from unintentional movements, has been 
often reused and extended by researchers in the literature. The meaningful gestures 
are subdivided in different classes according to the presence or not of motion and also 
according to their semantic meaning. In the work of Aigner & al. [11], they propose 
an interesting extension of the taxonomy through a schema resuming the information 
with a visual example for each class of gesture. The meaningful gestures are divided 
in several sub-categories: pointing gestures, semaphoric gestures (static, dynamic and 
stroke) are completely unrelated to the meaning and strictly learned; pantomimic ges-
tures represent a specific task being performed, iconic (static and dynamic) gestures 
are used to convey information about objects or entities such as shape or size or mo-
tion path; finally manipulative gestures involve real object manipulation. These classi-
fications are often slightly modified according to the exact subject of application. 
Such taxonomies are interesting for researchers to share a common language and also 
important when designing gestures to produce intuitive gestures according to their 
intended function and taxonomy. 

The storage and visual representation of motion has been mostly studied in works 
related to music and dance, often taking inspiration from the Laban notation providing 
a similar idea as partitions for music [12–14]. A specific storage format linking music 
and gesture has been produced in the form of the GDIF format [3]. This format has 
been developed as a tool for standardizing the way music-related movement data are 
described, stored and streamed. Storage of the motion information is sensor  
dependent; the information cannot be stored similarly for video streams or for accele-
rometers. 
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 In the HCI domain, less research has been developed toward a standardized repre-
sentation of gestures. Formal definitions have been developed, for example Pavlovic 
& al. [9] developed the following mathematical definition in the context of a hand 
gesture: “Let ࢎሺݐሻ א  ࡿ   be a vector that describes the pose of hands and/or arms and 
their spatial position within an environment at time ࢚in the parameter space ࡿ. A 
hand gesture is represented by a trajectory in the parameter space ࡿ  over a suitably 
defined interval ࡵ”. This definition illustrates perfectly what a dynamic gesture is in 
mathematical terms and is useful when developing algorithms to clarify what to 
process and recognize; although it can efficiently visually illustrate the translation of 
gestures involving a single element, it is less suitable to illustrate gestures involving 
more elements. The visualization of the motion of gestures usually adopts a represen-
tation based on the kinematic properties of the human skeleton; a kinematic tree con-
sisting of segments that are linked by joints [15]. This solution is widely used 
amongst researchers and quite efficient to understand the motion of a particular ges-
ture however it generally requires either video or multiple consecutive pictures to 
illustrate a dynamic gesture. In works presenting databases of gestures, the gestures 
are generally illustrated using several classical approaches: with one or more pictures 
containing arrows to indicate the movement of a subject such as in the work of Song 
& al. [5], with dashed lines to indicate the final posture of the body such as in the 
NASA standards1 or with videos available on a website [2]. 

In various fields, the characterization of specific features of gestures is used to im-
prove or optimize processes involving motion. In the medical fields, different studies 
try to characterize medical gestures to improve their efficiency. In [16], they characte-
rized the motion during chest physiotherapy; which can be seen as a repetitive tangi-
ble dynamic gesture; they monitored the force and trajectories of the hands of the 
physiotherapist to infer quality of the medical act to potentially to improve it. In [17], 
the information retrieved from a Kinect sensor is used to monitor the motion of pa-
tients effectuating in-home rehabilitation in order to characterize and improves the 
gestures. In the musical field, a similar approach has been developed; they use the 
characterization of the motion of a musician while playing to infer the relation be-
tween the sounds produced and the gestures [18]. 

Recently, in the work by Glomb et al. [1], focusing on the creation of a dataset of 
hand gestures for HCI, a table illustrating the gestures was partially characterizing the 
complexity of the gestures by using the most significant motion components of the 
hand and fingers. The work presented in this paper brings that model further by cha-
racterizing automatically each segment of the arm through its main motion compo-
nents and providing a visual tool to intuitively represent the information.   

3 Model 

The model developed has several key points: the definition of the terms used to de-
scribe the motion components, the segments that have been taken into account, the 
terms to define the quantity of motion and finally the visualization tool to provide the  
 

                                                           
1 http://msis.jsc.nasa.gov/ 
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information to the users. Note that the plans and axes described in the following sec-
tions reference the definitions from the chapter “Anthropometry and Biomechanics” 
in Man-Systems Integration standards document from the NASA2.  

The terms that have been chosen to represent the significant component(s) of the 
motion of a particular segment are “None”, “Static”, “Translational”, “Rotational” 
and “Complex”. The “None” component represents the fact that the motion of the 
segment is not significant for the gesture. This can be inferred by detecting significant 
variations of the motion of a segment between different occurrences of a same ges-
ture. The “Static” component represents the absence of motion of a particular  
segment during a gesture. If the segment is not static, the gesture would not be recog-
nized. The “Translational” component represents linear motion along one of the 
transverse, vertical or sagittal plane. The “Rotational” component represents the 
rotation of a segment along its axis. The rotations along the two other axes are not 
considered in the present work as they do not have as much implications for the rec-
ognition using visual recognition. This component is mostly represented in the fo-
rearm and hand segments for the present work. The “Complex” component, also 
referred as “Trans&Rot” in the visual representation, indicates that both translation 
and rotational motions of the segment occurred during the gesture. 

The gestures considered in this paper are limited to one-hand gestures and there-
fore, only segments corresponding to the right part of the upper-body are mentioned. 
We considered the assumption that the unreferenced segments are labeled “None” and 
thus are not significant for the gestures. The “Torso” segment is mostly used as refer-
ence as it tends to be static or not significant during gestures; it corresponds to the 
upper torso, the IMU sensor is placed on the back of the neck of the subject. The 
“Arm” segment corresponds to the right upper-arm; the sensor is placed just above 
the elbow. The “Forearm” segment corresponds to the right forearm of the subject. 
The sensor is placed right before the wrist where the translation and rotation of the 
segment is maximal. Finally the “Hand” segment corresponds to the right hand of the 
subject; the sensor is placed in the palm of the hand to avoid providing visual clues to 
video sensors. Note that the arm, forearm and hand IMUs are placed such that they all 
bear the same orientation with z-axis upward when the subject performs a T-pose.   

To classify the quantity of motion in several meaningful classes, a specific color 
code for the visual representation has been defined along with terms to describe each 
class. A “Grey” color represents the absence of signification of the segment for the 
considered gesture. A “Black” color represents a static component, the “Red” color 
represents a small quantity of motion, the “Orange” color represents a medium quan-
tity of motion and the “Green” color represents a large quantity of motion.  

Finally the visualization tool provides a mean to rapidly and intuitively visualize 
the final characterization of a particular gesture. A synthetic representation of the 
human upper right body part has been chosen, on top of which are displayed the 
processed information from the algorithm.  

 

                                                           
2 http://msis.jsc.nasa.gov/ 
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Fig. 1. An illustration of the visual representation tool. On the left, the template illustrating the 
considered body segments. On the right, a fictive example with a « dynamic pointing» gesture 
using the arm and hand only. 

4 Method 

4.1 Data Acquisition 

The data has been acquired using the FEOGARM framework [4]. The FEOGARM 
software allows recording multiple sensors synchronously using distributed comput-
ers. To record the gesture database, subjects were carefully equipped with the accele-
rometers and asked to sit in front of a computer screen. The subject then had to read 
indication on what was going to happen. Once ready, the recording session started. 
The information was displayed to the user as in a slideshow. For each gesture, the 
name of the gesture was displayed on the screen along with a pre-recorded video 
showing the user what gesture he will have to perform; then after a short delay, the 
same video was replayed and the user mimics the movement simultaneously to the 
video. Such a method allows for automatic segmentation and annotation of the data 
across all sensors. 

The dataset contains 10 commonly used gestures in the HCI literature recorded by 
10 different subjects. Each gesture has been recorded twice per subject with 3 differ-
ent resting postures and with two different lightning conditions. It contains a total of 
1200 annotated gesture occurrences. The dataset contains all the raw data as acquired 
from the 4 Xsens MTw IMUs3 and from one Microsoft Kinect for Windows4. 

4.2 Model Generation 

In this work, in order to characterize a gesture, we processed the data acquired from 
the 4 IMUs. The algorithm developed automatically extracts the information corres-
ponding to each gesture from the whole dataset using the provided annotations. Once 

                                                           
3 http://www.xsens.com/en/mtw 
4 http://www.microsoft.com/en-us/kinectforwindows 
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extracted, we obtain, for each of the 10 gestures the 120 occurrences stored in a list. 
Each occurrence contains the data frames of the gesture and each data frame contains 
the measured linear acceleration (LinAcc), angular velocity (AngVel), Euler orienta-
tion and orientation quaternion. The linear acceleration is processed to remove the 
gravity component computed using the orientation quaternion. 

The average quantities of motion for both the translation (1) and the rotation (2) are 
retrieved by summing the absolute values for each frame for a particular gesture and 
then averaging over all occurrences of a gesture. 

ݎܶ݃ݒܣ  ൌ  ∑ |௅௜௡஺௖௖ି௚௥௔௩௜௧௬|೑బ ௙  (1) 

ݐ݋ܴ݃ݒܣ  ൌ  ∑ |஺௡௚௏௘௟|೑బ ௙   (2) 

Then the principle motion components are defined according to the computed average 
quantities of motion. A simple comparison between the two motion values using spe-
cific threshold allows inferring the most significant component as described by the 
pseudo-code below: 

if((AvgTr > TrTh) && (AvgRot > RotTh)){Complex-Trans&Rot} 
if((AvgTr > TrTh) && (AvgRot < RotTh)){Translation} 
if((AvgTr < TrTh) && (AvgRot > RotTh)){Rotation} 
if((AvgTr < TrTh) && (AvgRot < RotTh)){Static} 

Note that the “None” component could currently not be implemented due to the 
strong homogeneity of the dataset. The translation thresholds “TrTh” and the rotation 
thresholds “RotTh” have been inferred empirically by performing various gestures 
and recording their average motion quantities; in the pseudo-code, they correspond to 
the smallest values of the range “small motion quantity”. Depending on the value of 
each component, the quantity of motion is characterized using the terms defined in 
section 3. The distinction between the classes is assessed using the following ranges; 
for the translation: static  [0.0, 0.2], small ]0.2, 0.5], medium ]0.5,3] and large 
]3,infinite]; for the rotation: static [0.0, 0.3], small ]0.3, 0.5], medium ]0.5,1], large 
]1,infinite]. 

5 Results 

The algorithms developed generated the values illustrated on Table 1, an intermediary 
phase before the automatic creation of the final visualization. Note that this table al-
ready presents the results; for example, the “WaveHello” gesture has the following 
translation values; large for the hand (4.94), medium for the fore-arm (1.34) and a 
small translation for the arm (0.30). This clearly indicates larger translation of the 
hand and that a sensor sensitive to translation should focus on that particular segment. 
However this representation in a table is not intuitive to read and complex to under-
stand, therefore the algorithm converts it into a more human-friendly representation as 
shown on Fig. 2 and Fig. 3. 
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Table 1. The motion quantities obtained for the gesture and their motion components with 
respect to each segment (Hand, Fore-arm, Arm and Torso) 

GestureName Translation (H,F,A,T) Rotation(H,F,A,T) 
TakeFromScreen (0.65,0.63,0.17, 0.07) (0.31,0.26,0.27, 0.02) 
PushToScreen (0.61,0.62,0.26,0.09) (0.26,0.23,0.20, 0.09) 
CirclePalmRotation (0.63,0.59,0.38, 0.13) (0.65,0.58,0.29, 0.08) 
CirclePalmDown (0.54,0.46,0.25, 0.09 ) (0.31,0.26,0.25, 0.08) 
WaveHello (4.96,1.34,0.30, 0.05) (1.43,1.25,0.42, 0.013) 
ShakeHand (5,63,0.9,0.27, 0.07) (2.24,1.45,0.86, 0.16) 
SwipeRight (0.55,0.51,0.10, 0.11) (0.55,0.37,0.29,0.04) 
SwipeLeft (0.56,0.52,0.08, 0.12) (0.57, 0.42,0.29, 0.04) 
PalmUpRotation (0.13,0.19,0.02, 0.08) (0.76,0.65,0.13, 0.03) 
PalmDownRotation (0.05,0.03,0.08, 0.04) (0.87,0.72,0.18, 0.03) 

As previously stated, the final results are the pictures automatically generated for 
each gesture where the information is rapidly readable, even on a static display such 
as a sheet of paper. 

 

Fig. 2. The resulting characterization figures for the gestures “TakeFromScreen”, “PushTo-
Screen”, “WaveHello” and “ShakeHand” 

Using these representations, the developer can rapidly identify segments where the 
motion occurs and which motion component in particular is present and may pose 
problems or should be focused to optimize recognition. In Fig. 2 and Fig. 3, the ges-
tures have been grouped by pairs of similar gestures. For example, “TakeFrom-
Screen” and “PushToScreen” are very similar gestures where the user moved his arm 
towards and from the screen, the main difference being a small rotation of the hand 
for the first gesture while the other remains on the same posture. On the contrary, 
looking at representation of the gestures “PushToScreen” and “WaveHello”, there is 
an obvious difference between the two gestures; for the latter the quantity of motion is  
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larger and rotation occurs; a developer might infer that a gesture containing only 
small or medium rotation might be more difficult to recognize using video sensors 
that a gesture containing large translation.   

 

Fig. 3. The resulting characterization figures for the gestures “PalmUpRotation”, “PalmDow-
nRotation”, “CirclePalmRotation” and “CirclePalmDown” 

Such a representation also provides information on which segment should be moni-
tored for optimal results. When designing gestures that should be portable across mul-
tiple types of sensors, such a representation should help to rapidly identify a common 
set of gestures, notably for sensors with specific body placement such as a smart-
watch.  

6 Conclusion and Future Work 

In this paper we presented a simple and intuitive representation to characterize air 
gestures in the context of close human-computer interaction. The strength of the re-
presentation consists in providing developers a tool to identify the main motion com-
ponents in a gesture; using this information, specific features might be added or re-
moved in order to optimize gesture recognition with a particular type of sensor. 
Therefore it provides an interesting tool when designing gestures to be ported across 
multiple types of sensors by identifying, depending on the sensors capabilities, which 
segments and features to focus on. However some critics can be made about the cur-
rent model; the tool does not process the data deep enough to clearly identify motion 
components on each plan and axes; this should be enhanced to provide more precise 
data and thus improve the visualization tool.   

Simple and intuitive visualization and characterization tools for air gesture should 
become more spread as the algorithms are becoming standards. As the number of 
sensors on the market grows, the research should tend to focus on global gestures 
designed for all the heterogeneous sensors technologies used for human-computer 
interaction. 
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The algorithm should be applied to a larger dataset and more heterogeneous dataset 
to assess its reproducibility on other gestures and develop the “None” component 
class. The representation should also be enhanced to be more precise and provide 
more information to the developer. In order to improve the precision, the exact posi-
tion and orientation of each body-segment should be computed for the whole gesture 
using a direct kinematic algorithm using the data from IMUs or using the skeleton 
data from the Kinect to define the exact space covered by each segment during a ges-
ture. To provide more information, the obtained result should also be compared with 
state-of-the-art algorithms; once enough algorithms and sensors compared, an estima-
tion of the global recognition complexity of a gesture with a particular sensor could 
be inferred from the motion components and quantity of a gesture. Finally, the prac-
tical utility of the visualization tool should be assessed by gesture design-
er/developers.  
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