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Abstract. The development of estimation systems based on Kalman fil-
ters requires several design choices. Among others, these are the methods
used for linearization, coordinate systems for measurement representa-
tions, and approximations such as how to handle multiple simultaneous
observations per time step. This paper evaluates these different choices
with respect to their influence on the system’s estimation quality and
points out simple yet effective solutions. Camera-based localization for
a humanoid robot is chosen as an example application and the localiza-
tion benefit of different approaches is evaluated using real and simulated
feature perceptions.

1 Introduction

Localization is essential for mobile robots. When facing the task of designing
a localization algorithm for an autonomous robot, one may pick from a vast
number of different approaches. While there exist many different strategies such
as multi-angulation methods [1] or constraint based localization [2], most al-
gorithms follow the concepts of recursive Bayesian filtering [3]. The two main
representatives of this category are Kalman and particle filters. Gutmann and
Fox state the common impression that “Markov localization is more robust than
Kalman filtering while the latter can be more accurate than the former” in [4].
An additional argument for particle filtering is the easy representation of multi-
modal belief states. However, Gaussian mixtures allow the same for Kalman
filters, and recently such multiple model Kalman filters have been applied with
great success even on robot platforms with very limited resources [5,6], allowing
superior localization quality and robustness to comparable particle filters, but
at lower computational costs in case of [6].

Kalman filters have been applied in many tasks and are covered extensively in
literature. Designing a Kalman filter for localization is therefore not a significant
challenge. However, this filter will often not perform to its full potential. The im-
plementation process presents several design choices, some of which are discussed
frequently, while others are generally neglected or only mentioned briefly. Spe-
cialized references such as [7] as well as the most standard books [3,8] leave the
impression that the most important decision is whether to address the system’s
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non-linearity by Taylor series expansion such as in the Extended Kalman filter
(EKF) or by use of the Unscented transform as in the Unscented Kalman filter
(UKF). This will be addressed only briefly in Section 2. Other influences will be
discussed in the course of this paper in Section 3 and 4. Those may seem trivial
at first and their importance not obvious, but their significant influence on the
outcome will be shown for the example of localization for a humanoid robot. As
such, it is this paper’s main contribution to point out simple design choices which
will lead to significant localization quality improvement with minimal effort.

2 Addressing Non-linearity by Taylor Series Expansion
or Unscented Transform

The Kalman filter in its original form is optimal for systems which fulfill a num-
ber of assumptions, such as only involvement of zero mean Gaussian noise and
a known and linear system to model. This is rarely given for practical appli-
cations, since most systems of interest are non-linear in one aspect or another.
The Kalman concept is popular and successful nonetheless, which is due to the
possibility to linearize the non-linear models around the current estimate. This
provides a decent enough approximation to allow the tracking.

In general, two different concepts are commonly used: the Extended and the
Unscented Kalman filter. The Extended Kalman filter employs a Taylor series
for linearization, which in effects means to simply substitute Jacobi matrices for
the linear transformations in the original Kalman filter equations. This method
is and has been widely used for the last four decades. See [3] for further details.
Of course the linearization may result in different approximation qualities of
the uncertainty propagation, depending on each individual use case. Further
limitations of this approach arise in cases of discontinuous systems or such with
singularities. Additionally, it is often perceived by developers that “calculating
Jacobian matrices can be a very difficult and error-prone process” [7] due to
the manual derivation of the Jacobians and possible translation errors in their
subsequent conversion to code.

The Unscented Kalman filter offers a different approach to estimate the differ-
ent expectations necessary to apply the standard Kalman equations, namely the
predictions of state and observation and the cross-covariance between the two.
This is done by deterministically sampling the state space around the current
mean and covariance, applying the non-linear transformation to those sigma
points, and then recovering the transformed mean and covariance. Significant
improvements of applying the unscented transformation compared to analytical
linearization have been shown in [7].

Those findings have led to the impression that choosing an Unscented Kalman
filter instead of an Extended Kalman filter will be a major source of improvement
in most systems, and that this will be the main design choice in developing an
estimation system for a given application. In the course of this paper we will
show that much easier alterations may have much bigger effects.
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3 Measurement Coordinate System Choices

To illustrate the effect of measurement coordinate system choices, we assume
as an example application the problem of estimating the localization of a hu-
manoid robot, so the state to be estimated is the robot’s pose x = (px, py, pθ)

T .
The robot perceives point features on the ground around it, e.g. by means of
processing images recorded by one or several cameras mounted in its head. Each
point feature corresponds to a landmark with known global position l = (lxly)

T .
Those expected and actual perceptions, z and z respectively, can by expressed in
different coordinate systems, each of which may be used to formulate the sensor
model of the Kalman filter.

In the following, let

Ω(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
(1)

be the rotation around α and (lx, ly) the global coordinates of a known landmark
which is part of the robot’s map of the environment. The time index t is omitted
in all following equations for the sake of simplicity.

3.1 Measurements in Cartesian Coordinates

As the localization problem is expressed as an orientation and a position in global
Cartesian coordinates, a first intuitive choice is to express a measurement on
the ground around the robot in robot-centric Cartesian coordinates as shown in
Figure 1. The sensor model to calculate the expected measurement z = (zx, zy)

T

for the current robot pose x = (px, py, pθ)
T and a correspondence to the land-

mark with known global position l = (lxly)
T is then given in Equation 2 and the

corresponding Jacobi matrix in Equation 3.

z =

(
zx
zy

)
= h(x, l) = Ω(−pθ) ·

[(
lx
ly

)
−
(
px
py

)]
(2)

Fig. 1. Observation given in euclidean coordinates
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H =
∂h(x, l)

∂x
=

(
∂zx
∂px

∂zx
∂py

∂zx
∂pθ

∂zy
∂px

∂zy
∂py

∂zy
∂pθ

)
(3)

=

(− cospθ − sin pθ −(lx − px) sin pθ + (ly − py) cos pθ
sinpθ − cos pθ −(lx − px) cos pθ − (ly − py) sin pθ

)

3.2 Measurements in Cylindrical Coordinates

Measurements can also be expressed in cylindrical coordinates, i.e. range
and bearing, to indicate the distance and direction of the observed feature
(cf. Figure 2).

Fig. 2. Observation given as range and bearing

This is often the first choice of those familiar with laser scanners or devel-
opers of robot-centric path planning algorithms. In this case, the Sensor model
function and Jacobi matrix are given by Equation 4 and 5, respectively, with the
abbreviation d2 = (lx − px)

2 + (ly − py)
2.

z =

(
zr
zb

)
= h(x, l) =

( √
(lx − px)2 + (ly − py)2

atan2(ly − py, lx − px)− pθ

)
(4)

H =
∂h(x, l)

∂x
=

(
∂zr
∂px

∂zr
∂py

∂zr
∂pθ

∂zb
∂px

∂zb
∂py

∂zb
∂pθ

)
(5)

=

(
(−lx + px)d

−1 (−ly + py)d
−1 0

(ly − py)d
−2 (−lx + px)d

−2 −1

)

3.3 Measurements in Spherical Coordinates

A third coordinate system choice is given by using the vertical and horizontal
angles α1 and α2 as indicated in Figure 3. While the meaning of the vertical
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Fig. 3. Observation given in angular coordinates

angle may not be intuitive for any direct further use, this is the coordinate
system which is closest to the actual perception process in this example. With
the same abbreviation of d2 = (lx − px)

2 + (ly − py)
2 as used above and the

height of the camera hcamera, the sensor model function and Jacobi matrix are
given in Equation 6 and 7.

z =

(
zα1

zα2

)
= h(x, l, hcamera) (6)

=

(
atan2(hcamera,

√
(lx − px)2 + (ly − py)2)

atan2(ly − py, lx − px)− pθ

)

H =
∂h(x, l)

∂x
=

(
∂zα1

∂px

∂zα1

∂py

∂zα1

∂pθ
∂zα2

∂px

∂zα2

∂py

∂zα2

∂pθ

)
(7)

=

(
hcamera(lx−px)
d(h2

camera+d2)
hcamera(ly−py)
d(h2

camera+d2) 0

(ly − py)d
−2 (−lx + px)d

−2 −1

)

3.4 Experimental Comparison

Two experiments are set up to compare the effects of the sensor model design
choices described so far.

Simulated Perception. A simulation is set up to test the correctness of the
implementation and the conformity with related work’s results. Localization al-
gorithms are used with the above mentioned different linearization and coor-
dinate system choices and parametrized using fixed measurement covariances,
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which were chosen to be optimal for each approach separately. This simula-
tion assumes a humanoid robot with noisy odometry and a perception process
which measures randomly distributed landmarks with unique correspondences
and contains errors mainly from the cameras unknown orientation, i.e. the errors
originate from normally distributed noise in the spherical coordinate system. As
expected, Figure 4 shows the localization to be best using this spherical repre-
sentation. Furthermore, the classical example of transforming between spheri-
cal/cylindrical and Cartesian coordinates is handled much better by the UKF
than by the EKF as predicted for example by [7].

Fig. 4. Comparison between localization quality using different linearization
approaches and sensor model coordinate systems with simulated perceptions

Real Perception Process on the Nao. To evaluate the impact on a real
system, observations are recorded using a Nao, a humanoid robot which is 58 cm
tall and equipped with two cameras in its head with non-overlapping fields of
view. The environment is a robot soccer field as used in the Standard Platform
League. Any ambiguous observations are associated with maximum likelihood
correspondences based on the true robot position. The perception process also
produces sporadic false positives. Those sets of observations and correspondences
together with artificially generated odometry errors serve as input for all differ-
ent configurations, whereas each generated set is processed by all approaches so
that the random component in the input presents no source of bias. Note that
these localization results will not diverge due to the usual problem of wrong cor-
respondence choices once the position estimate contains a certain error, as this
experiment is set up to test the sensor models, not the correctness of correspon-
dence choices. The odometry errors contain white noise and a drift component,
as this is the usual behavior of real Nao robots which are worn out or even heated
up slightly asymmetrically.
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An important factor for each algorithm is its parametrization. All different
approaches in this experiment use the same motion update and the same process
noise, which is chosen to be a certain amount above the artificially generated
white noise component to compensate the drift. In common applications the
measurement noise magnitudes are normally constants which are part of the
parametrization and subject to a tuning process by the developer. Here, they are
optimized separately for the approaches using a randomly picked measurement
subset which is not used for the following evaluation afterwards. Thus each
approach is performing with the parametrization which empirically provides the
least squared localization errors.

Fig. 5. Comparison between localization quality using different linearization
approaches and sensor model coordinate systems with real observations recorded on a
Nao

Figure 5 shows the distribution of the sums of localization errors for 1000 sets
of measurements and odometry errors. It can be seen that the effect of the coor-
dinate system choice is in general more significant than the distinction between
Extended or Unscented Kalman filter. These real world results mostly verify the
tendency of the assumptions in the simulated experiments, but also show dis-
crepancies for example in the results using Cartesian coordinates. This implies
that the underlying process is not fully described by assuming only normally dis-
tributed angular errors in the camera orientation. Expressing the measurement
in spherical coordinates, which is intuitively the closest to the underlying pro-
cess of perception, still clearly outperforms the other coordinate systems’ sensor
models. To use these results as a basis for development recommendations, the
EKF/UKF choice is clearly second to the angular coordinate representation of
the robot’s measurements.
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3.5 Hybrid Modifications

The empirical results above raise the question if already implemented systems
which did not use the spherical coordinate system for the sensor model design
can still make use of this information. One possibility is to adapt the measure-
ment noise covariance matrix to better reflect the properties of the perception
process, e.g. to scale the uncertainty depending on the distance of the observed
feature. This has not led to any significant improvements in case of the Carte-
sian representation, for which more complex modification would be necessary to
adapt it to reflect the spherical coordinate system’s properties. The cylindrical
representation however offers an easy improvement.

Both the cylindrical and the spherical coordinate system already share the
horizontal angle; they only differ in distance against vertical angle. Applying
the knowledge that errors in the distance mainly result from variations in said
vertical angle, it is possible to derive an appropriate scaling factor β for the
distance measurement’s uncertainty.

zr =
hcamera

sin zα1

(8)

∂zr
∂zα1

= −hcamera

sin2 zα1

· cos zα1 (9)

β ∝ hcamera

sin2 atan2(hcamera, zr)
· cos atan2(hcamera, zr) (10)

Equation 8 gives the relation between range observation zr and vertical angle zα1

and Equation 9 denotes their partial derivative. Therefore, using the first rows
of Equation 6 and 4, the scaling factor β in Equation 10 can be derived. Scaling
the (newly tuned) expected range error with β or the corresponding entry in the
measurement covariance matrix with β2 results in the hybrid localization ap-
proach with cylindrical coordinates and distance scaled measurement covariance
in Figure 6 and 7. While this one presents a significant improvement over the
cylindrical coordinates with constant measurement covariance and comes close
to the approach in spherical coordinates, the latter one is still superior.

4 Multiple Simultaneous Measurements

Practical Kalman implementations rarely go by the theory of one motion update
and one sensor update per time step. Instead there are usually many time steps
in which no observation is made, so the sensor update is omitted. In other
time steps, several observations are made at once, i.e. several different features
are detected in the same time step. The common implementation is usually to
execute several consecutive sensor updates. The quality of this approximation
however depends on the perception process by which those features have been
observed.
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Fig. 6. Comparison between localization quality using different linearization
approaches and sensor model coordinate systems with simulated perceptions

Fig. 7. Comparison between localization quality using different linearization
approaches and sensor model coordinate systems with real observations recorded on a
Nao

Now consider 2-dimensional feature observations as described above, each with
a separate measurement covariance as in Equation 11.

C =

(
s21 0
0 s22

)
(11)

The stochastically correct sensor update for n detected features would be to
execute a single 2n-dimensional measurement update instead of n separate 2-
dimensional updates. In case the different measurements are stochastically in-
dependent of each other, i.e. all off-diagonal inter-feature entries of the 2n× 2n
measurement covariance are zero, then a single 2n-dimensional measurement
update is approximated well by n 2-dimensional updates.
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If multiple measurements originate from the same perception source and are
correlated, then this simple approximation neglects potentially useful informa-
tion and consequently looses in approximation quality. Taking a humanoid robot
with camera based perception again as in Section 3.4, multiple observations orig-
inate from the processing of a single camera image and it stands to reason that
the main source of measurement error is the inaccurately estimated camera ori-
entation due to the walking motion. Such simultaneous measurements would
therefore contain nearly the same angular errors. Assuming a spherical coordi-
nate representation for the measurements as described in Section 3.3, the result-
ing covariance for 2 simultaneous observations is given in Equation 12 with γ
close to 1, while γ = 0 would neglect any dependence between both observations.

C′ =
(

C γC
γC C

)
(12)

Figure 8 shows evaluations with simulated test runs consisting exclusively of
multiple observations per time step, and illustrates the differences in local-
ization quality for iterative execution of 2-dimensional sensor updates, for 2n-
dimensional updates which neglect the covariance (i.e. with γ = 0), and for 2n-
dimensional updates with full covariances as in Equation 12. All sensor updates
in this example utilize spherical coordinate representations for the observations.
As expected, the multiple 2-dimensional updates are an appropriate approxima-
tion as long as the separate measurements are independent. When observations
are correlated, then significant benefits can be drawn from the information en-
coded in the full covariance matrix. Note that some Unscented Kalman filter
implementations may become unstable for a γ too close to 1, as C′ will still be a

Fig. 8. Comparison between different methods to handle multiple measurements at
one time step
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valid covariance matrix and therefore positive semi-definite, but very close to not
being positive definite any more, which will cause the frequently used Cholesky
decomposition to become numerically instable.

5 Conclusion

This paper gives an overview about common design choices which researchers
face when developing localization algorithms based on Kalman filters. The most
prominent choice between the Extended and Unscented Kalman filter is widely
discussed in common literature, but this is by far overrated, which has been
illustrated in the previous sections using the example application of camera-
based humanoid robot localization. The choice of the measurement’s coordinate
system representation is mostly disregarded in most publications as well as in
common educational books, but provides a simple way to improve localization
quality. The same holds for the correct handling of simultaneous observations
originating from processing the same camera image.

As such, this paper provides the means for a better understanding of differ-
ent approximations’ impacts when applying Kalman filters, and presents simple
guidelines to develop optimal solutions for localization and tracking systems.
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