Parallel Rendering of Human-Computer
Interaction Industrial Applications on
Multi-/Many-Core Platforms

Sven Hermann, Arquimedes Canedo, and Lingyun (Max) Wang

Siemens Corporation, Corporate Technology
Princeton, NJ, USA
{sven.hermann,arquimedes.canedo,max.wang}@siemens.com

Abstract. Industrial Human Computer Interaction (Industrial HCI)
devices are beginning the transition from single-core to multi-/many-
core technology. In practice, improving the real-time response time
of graphical user interface (GUI) applications in multi-/many-core is
difficult. This paper presents a novel parallel rendering approach targeted
to improve the performance of Industrial HCI applications in multi-
/many-core technology. This is accomplished through the identification
of coarse-grain parallelism during the application design, and the
exploitation of fine-grain parallelism during runtime using a dynamic
scheduling algorithm and true parallel execution of GUI workloads. Using
a real benchmark application, we show that response time can be reduce
by up to 217% in a quad-core processor.

1 Introduction

Industrial HCI (Human Computer Interaction) devices are real-time embedded
computer systems, based on Graphical User Interface (GUT) applications, which
allow humans to interact with and control complex industrial processes such
as power plants, manufacturing lines, chemical processes, and transportation
systems. The performance gap between high-end and low-end Industrial HCIs
is quite substantial, and this causes additional design, development, manufac-
turing, and maintenance costs for Industrial HCI manufacturers. For example,
multimedia and video processing in Industrial HCIs requires high-performance
CPUs and GPUs, while basic input/output processing requires low-power em-
bedded processors. The technological shift from single-core processors to multi-
/many-core processors is very attractive for Industrial HCI vendors because the
performance gap in multiple products can be eliminated by consolidating a line
of Industrial HCIs with the same multi-/many-core processor rather than having
different custom processors for different product configurations. While it is clear
that multi-/many-core processors provide better performance, energy efficiency,
scalability, consolidation, and redundancy than single-core processors, it is still
an open question how to best utilize the additional cores for improving the
performance and response time of GUI applications.

M. Kurosu (Ed.): Human-Computer Interaction, Part I, HCII 2013, LNCS 8004, pp. 350-B60] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Parallel Rendering of Human-Computer Interaction Industrial Applications 351

This paper presents a novel “parallel rendering approach for GUI
applications”, defined as the process by which an image is generated coop-
eratively and concurrently by independent computation threads running on
different cores. Our approach aims at accelerating the response time
of Industrial HCI Devices through parallel execution of GUI-related
workload in multi-/many-core processors. Finding parallelism at the GUI
object level is challenging and we identify three steps that are necessary to expose
and exploit it. First, the application is analyzed for object dependencies using
data flow analysis in a process we refer to as dependency-based load balancing
where independent clusters of GUI objects are scheduled into different cores.
Second, the worker threads execute workload in parallel and are allowed to
modify the objects’ data directly. Third, after the worker threads have finished,
or a display update event is received, the “flush thread” optimizes the sequential
access to the display by minimizing the number of pixels and the number of
draw function calls. Our original contributions are:

— A method for parallel rendering of GUI applications in multi-/many-core
based Industrial HCI devices.

— The extraction of object-level parallelism based on a dependency-based load
balancing algorithm.

— The execution of GUI objects’ in parallel through privatized memory.

— The reduction of display access through a flush call optimization.

— An implementation of our method on a quad-core system and its evaluation
using an Industrial HCI benchmark.

The rest of this paper is organized as follows. Section 2 describes the limitations
of the current Industrial HCIs and motivates the need for multi-/many-core-
based Industrial HCIs. Section 3 presents the parallel rendering method including
the load balancing, parallel execution, and flush optimization algorithms. Section
4 presents our experimental results on a soft real-time quad- core-based
Industrial HCI. Section 5 concludes the paper and sets the direction for future
work.

2 Industrial HCIs — A Review of the State-of-the-Art

Industrial HCI applications have two phases: the engineering phase, and the
runtime phase. The engineering refers to the design of the screen and the
definition of its functionality. For example, buttons to trigger certain actions,
image display, drawings, status bars, file system menus, communication with
Programmable Logic Controllers (PLC), etc. The runtime, on the other hand,
refers to the actual execution of these programs in an embedded computer system
and it is necessary for users to interact with the GUI. In this Section, we present
the state-of-the-art in engineering and runtime implementations of Industrial
HCIs to motivate and highlight the need for parallel computing.

352 S. Hermann, A. Canedo, and L. (Max) Wang

2.1 Engineering System

Industrial HCI vendors hide the complexity of the underlying architecture to
the Industrial HCI application designer for various reasons. First, a single
engineering system is used for multiple Industrial HCI devices with different
capabilities and this level of abstraction allows the same application to have
the same look and feel in all the Industrial HCIs. Second, the job of the
designer should be focused on dealing with GUI objects and their associated
actions and attributes, and not on dealing with the underlying computer system.
The programming abstractions introduced by the current engineering
systems, unfortunately, are not suitable for the next generation
of computation elements because they assume that the underly-
ing computation element is always a single-core processor. Embed-
ded processor manufacturers are moving towards multi-/many-core technology
[1H3] and we expect the next-generation Industrial HCI devices to adopt parallel
processing technology. Typically, Industrial HCI screens consist of several objects
positioned and configured by the application developer. Each object may include
a list of Actions that, on every cycle or when an event occurs, the Industrial
HCI runtime will execute. These Actions range from changing values (e.g.
SetValue) of variables (Tags), to changing the appearance and properties of
the objects themselves (e.g. color, X-position, Y-position). In a single-core
implementation, the runtime system executes all the objects’ Actions, one by
one. Clearly, this approach does not scale anymore as single-core processors
have reached a speed plateau. In a multi-/many-core system, the runtime can
implicitly exploit parallelism by assigning these Actions to different threads and
scheduling these into different cores. However, it is critical that the parallelization
is done carefully in order to obtain performance benefits from multi-/many-
core. Poor parallelization of multi-threaded programs often leads to performance
degradations when compared to single core due to excessive synchronization and
communication overhead.

2.2 Runtime

The runtime is responsible for executing the Industrial HCI application created
with the engineering system in a timely manner in order to comply with the real-
time requirements. Figure [Il shows the conventional implementation of runtime
systems for GUI applications. GUI applications are driven by user triggered
events such as a mouse click and/or system events such as timer and alarms.
These events are detected by a single “GUI thread” responsible for handling
all events and managing all the GUI-related objects and operations such as
updating the display. To maintain the application response time as short as
possible, the GUI thread runs under an infinite loop that detects and dispatches
events to the event handling functions allocated to worker threads that perform
the handling of the event. Whenever the GUI thread is not processing events
in a timely manner, the users may experience an unresponsive application that
“freezes”. Although this model decouples event detection from event handling

Parallel Rendering of Human-Computer Interaction Industrial Applications 353

in multiple worker threads, it does not scale well in multi-/many-core processors
because these worker threads must use the GUI thread to modify GUI objects’
data and the display as shown in Figure [[I Unfortunately, this creates a
serialization bottleneck that eliminates any possibilities of improving
the response time with multi-/many-core because all the GUI related
workload is concentrated on a single thread. The main observation is that
the existing runtime model suffers from a performance bottleneck when executed
in multi-/many-core processors because worker threads are not allowed to modify
GUI objects directly. Instead, the GUI thread is responsible for all GUI-related
data and this inhibits scalability in modern multi-/many-core processors. Worker
threads have to enqueue 'Update object Events’ back to the GUI thread which
then will handle all the GUI object related workload, e.g. updating the color
change of a pressed button, in a serialized manner.

&
& &
‘3\60(\
&
GUI Thread - v@
& @ @Q’i\\ &
A (é\@\’?’ GUI Update Handler ————»
Event Loop '—»‘ ‘ ‘ ! |
Task Dispatcher i
——— l::_7 Display
A
@ ‘Worker | Worker [Worker |
6\0 Thread Thread Thread
0\5\ | [Handle Task ‘ | Handle Task ‘ ‘ Handle Task]

/

/
Not Allowed J

.......

Fig. 1. The existing GUI application model suffers from a performance bottleneck in
multi-/many-core processors because worker threads are not allowed to modify GUI
objects

Current Industrial HCI runtime systems are also affected by their limited
ability to transfer GUI objects to the screen after all the tasks are executed
and the data has been updated by the worker threads. This transfer, referred
to as flushing, can be performed one object at a time, or bundling several
objects into a single flush call. Both approaches have advantages and limitations.
Flushing single objects is simpler and faster but the number of flush calls
can be a performance penalty in some systems. Bundling multiple objects
and flushing once reduces the number of flush calls but increases the memory
bandwidth requirements. Unfortunately, the flushing strategy greatly depends on
the underlying hardware configuration. Current Industrial HCI runtime systems
often perform the flush operations based on the objects’ bounding boxes and
clustering them according to the order by which they were created during the
engineering phase. For example, existing runtime systems would group the 12

354 S. Hermann, A. Canedo, and L. (Max) Wang

Fig. 2. Naive clustering of GUI objects based on their creation order incurs in area
overlaps that generate additional unnecessary work

GUI objects in a large capacity water tank control system shown in Figure[2into
three sets < 1,2,3,4 >, <5,6,7,8 >, <9,10,11,12 > in order to perform three
flush operations. Notice that the objects are clustered according to their creation
index. Although clustering multiple objects reduces the total number of calls, it
incurs in additional overhead related to calculating the size of the aggregated
bounding box that encloses the objects in a set. Also, notice that there may
be clusters that overlap in space and this creates unnecessary and redundant
flushing. This shows that a redesign of the runtime system for Industrial HCIs
is also necessary for the adoption of multi-/many-core technology. In this paper,
we focus on two key aspects of the design: effective multi-threading in multi-
/many-core, and optimization of the flushing operations.

2.3 Related Work

Our work relates to the desktop application parallelization research. In M], the
authors present an object-oriented parallel programming library for GUI appli-
cations and a dynamic runtime system that allows the parallelization of image
processing applications in multi-/many-core processors. Due to the streaming
nature of multimedia applications, other researchers have demonstrated that
vectorization ﬂa,] and custom parallel hardware ﬂﬂ] are other effective means to
accelerate desktop applications. The common aspect to all the related work is
the focus on the parallelization of non-real-time multimedia applications that are
known to take advantage of parallel processing E] Our work, on the other hand,
focuses on the parallelization of real-time sub-millisecond applications with tight
dependencies between user-actions and data processing.

Parallel Rendering of Human-Computer Interaction Industrial Applications 355

3 Parallel Rendering for Industrial HCIs

In order to improve the performance, energy efficiency, scalability, consolidation,
and redundancy in Industrial HCIs, we propose a novel parallel rendering
technology that effectively uses multi-/many-core processor technology to
reduce the response time of GUI applications bound to real-time requirements.
To overcome the sequential computation limitations inherent to the current
Industrial HCT programming (See Section [2)), we propose a parallel rendering
method in both the engineering system and the runtime system to exploit
parallelism in these applications.

3.1 Identifying Coarse-Grain Parallelism in the Engineering System

In our system, parallelization may begin at the engineering system. The GUI
designer is often the best person to identify coarse-grain parallelism opportunities
because the layout and functionality of an Industrial HCI screen is closely
related to the underlying industrial automation pyramid [9] consisting of sensors,
actuators, controllers, SCADA (Supervisory Control and Data Acquisition),
MES (Manufacturing Execution Systems), and ERP (Enterprise Resource
Planning) systems. We strongly believe that this intuition provides an excellent
opportunity for our system to expose an initial coarse-grain concurrency. Figure[3]
shows the process of identifying coarse-grain parallelism at the engineering
system. The execution group (EG) selection step is introduced to the GUT design
process to bind the Actions in the objects on the screen to suggested logical
threads. It must be noted, however, that these are simply hints provided by the
Industrial HCI designer and the ultimate execution of Actions in specific cores
is up to the runtime scheduling algorithms. In addition to the list of available
EGs, the “Default” setting is the default assignment for Actions and it implies
that the designer is unsure about the assignment and it is completely up to the
runtime to decide how Actions are executed in the available cores in the system.

3.2 Exploiting Fine-Grain Parallelism in the Runtime System

Although our engineering system exposes coarse-grain parallelism, this paral-
lelism is still subject to the existing runtime system limitations discussed in
Section Even though multiple threads exist in the application, these are not
allowed to modify GUI objects’ data directly. Thus, a serialization bottleneck
prevents threads to take advantage of multi-/many-core processors. To eliminate
this serialization bottleneck, we propose a runtime system that allows different
threads to access a privatized memory area and this allows the application to
truly execute GUI applications in parallel. The responsibility of our runtime
system is to schedule the execution of Actions of the objects to different CPU in
such a way that the response time of the Industrial HCI application is reduced.

Figure @ highlights the three main differences between our parallel rendering
runtime system and conventional runtime systems. Although our approach also
uses a GUI thread to enqueue input events (e.g. user inputs, system events,

356 S. Hermann, A. Canedo, and L. (Max) Wang

= =

e} £ Current Flow +0l/min
Cowtopen| Cosed Open
] 1] Target Flow +20i/min

Wl Level | +500
Fill Max +501
FllMin +100

///:'

o) SELPe] Current Flow +0ljmin | ——]
Gored Ogen

Cosed Cosa
- A | Terget Alow +20/min '—

Fig. 3. Identifying coarse grain parallelism through EG selection during application
engineering

)
& @
SN &
<
System 54 Thread /1\
5 > &)
S N SN
X PR U pEmmsroees=ea
<& 1 Dependency-based
Eventioop | [i_ _Load Balancing _ 3
@
Event Queue zb‘)\ "
User gﬁvl‘\,\'o%* D'Sﬁlay
Worker Worker Worker
Thread Thread y Thread
‘ Handle Task ‘ ‘ Handle Task ‘ | Handle Task ‘ E
>
Thread é %
........ ' comadesaay cecalacaa)
Pool V DrawGUI & |{" DrawGUl 1= Drawcul 4 £8
@ : elementsin ¥ elements in : : elements in : 2 =
sprivate memory: sprivate memory: sprivate memory ¢ =
teccomenas Bososmenss Aaasanaaaa '
] [
é\@ Flush Threa IO 20 B 20
& 'GUI Update Handlery
& | Aeficsasssnnsacas

Fig. 4. Our parallel rendering method eliminates the serialization bottleneck in the GUI
thread by @ performing a dependency analysis at the GUI object-level and distributing
the workload to multiple worker threads,® allowing the worker threads to modify GUI
objects directly, and ® optimizing the flush of the internal memory to the display

interrupts, etc.), the first difference is that this thread is now also responsible
for performing a dependency-based load balancing @ to distribute the workload
to multiple worker threads. Second, the worker threads now use a privatized
memory area @ to truly parallelize the execution of objects’ Actions and
eliminate the serialization bottleneck created in the conventional systems. Third,

Parallel Rendering of Human-Computer Interaction Industrial Applications 357

a dedicated flush thread ® optimizes the data transfer between the worker
threads private memory and the display in order to reduce the data size and
the function call frequency.

The dependency-based load balancing is the first critical step for exploiting
parallelism in Industrial HCT applications running on multi-/many-core. The key
observation about the dependency-based load balancing algorithm is that it uses
runtime information, in addition to the static coarse-grain information provided
by the engineering system, to determine the data dependencies between GUI
objects. As shown in Figure [l this is accomplished through a dynamic data
dependency analysis that groups the dependent GUI objects into clusters that
are dispatched to different cores.

Maintaining data dependent objects in the same core minimizes synchroniza-
tion and communication among cores because worker threads only access their
private memory area and this ultimately helps to reduce the response time.
The private memory area mechanism guarantees that only one CPU accesses
that area, and in combination with the data dependency analysis, it enables the
possibility of parallel execution of GUI applications as shown by @ in Figure [6l

Since the worker threads now run under different time constraints, caused
by uneven workloads of each GUI object, it is necessary to synchronize
them after their execution cycle completes. As shown in Figure [6 the “flush
thread” ® optimizes the sequential access to the display by minimizing the
number of pixels and the number of draw function calls in order to reach the
maximum performance gain when transferring the GUI data to the display.
The fundamental optimization mechanism is to minimize both the size of the
bounding box of multiple GUI objects and the number of calls necessary to flush
them while avoiding the creation of overlapping bounding boxes. For example,
Figure [l shows that the algorithm determines that 4 non-overlapping clusters
consisting of elements< 1,3,8,6 >, < 7,4 >, < 2,9 >, and < 5 > is the optimal
strategy for flushing the screen in a particular system. It is important to note
that the optimal balance between number of calls and size is highly influenced
by the underlying hardware configuration. Nevertheless, compared to existing
approaches, our method effectively eliminates the overlap regions and therefore
unnecessary workload, and also reduces the size resulting in shorter flush times.

l_'x GUI Pre-defined Groups of i f el Thread 1 Thread 2
Y fscreen dependencies deqendent elements u(sterso glements
))

) (

[A715] T %Isﬂl 13
H = |7 |2 - |[7] = | [7]

@8 ¥l ®m ¥ g e ¥ |@ e O
]ndep:endent GUI elements Thread 3

Dependency Analysis Object Scheduling

L J

0]

Fig. 5. Dependency-based object scheduling ®

w
—]
w

358 S. Hermann, A. Canedo, and L. (Max) Wang

@ Parallel execution
A

[)

Display

Thread 1 Thread 2 Thread 3
{Execuie (Execute :Execule Clip region GUI'screen

Object 1.workload(); Object 2.workload(); Object 1.workload();

Object 3.workload(); Object 6.workload(); Object 3.workload(); - f— -

Object 7.workload(); Object 8.workload(); Object 7.workload(); m_ @ = LB] t J_-Gl
} } i

Done 7|
= executing/ Draw call >
3 workload)
Flush Thread
UpdateDisplay ,.-" m @ @ @
" -t
Find N clip areas such that number of pixels is minimized; .~ L..-=="" ! :
foreach clip area in N do . A
3) ¢ P Sequential 1l ¢
Draw clip area(); execution e)
" e M3 (8 6
4
2 5

Fig. 6. Parallel workload execution @ and flushing optimization ®

4 Experimental Results

To validate our concepts, we implemented a parallel rendering system for
Industrial HCIs in a commercial-off-the-shelf quad-core processor. Using a
realistic benchmark used to test the response time of existing runtime systems,
we focus on characterizing our parallel rendering system in terms of two
key design aspects: the scalability of multi-/many-core based Industrial HCI
systems against single-core implementations, and the effects of multi-/many-core
scheduling in the performance of GUI applications.

Figure [shows the rendering time of six configurations of the benchmark
when executed in a single and four cores. Our parallel rendering framework is
capable of reducing the rendering time on five of the six configurations from 36%
to 217%. The “1 Rectangle” configuration shows a performance degradation of
-3%. These results support our main objective of providing faster response time
on Industrial HCI applications by parallel execution of u-second-level workloads
on multi-/many-core processors.

Figure B compares the speedup factors relative to single-core execution
obtained by a conventional runtime and our parallel rendering runtime. The
difference is that our method exploits fine-grain parallelism in multiple-cores.
Notice that using a conventional straightforward scheduling, only one out of
six configurations benefit from parallel execution while the other five represent
performance degradation of up to -58%. This performance degradation is due to
the fact that the current runtime systems are incapable of effectively exploiting
parallelism and a simple scheduling policy is not sufficient for taking advantage of

Parallel Rendering of Human-Computer Interaction Industrial Applications 359

®1Core m4Core Speedup

200%
5000 n

@ { ;_
é:ggg Speedup Speedup Speedup |
E i 200% 82%
E 3500
. [+ Pay
%3000
= | Speedup | Speedup I
@ 2500 -
= 4% -3%
£ 2000
o |y N
1000
500
o | Hlmm _
+ G+ s N NS NS
g&&o @,\'ﬂ-q’ t&@p e&d’ eé'a“% e&"‘q’
s 9 10 ¥ % 5%
Benchmarks

Fig. 7. Sub-millisecond level workloads can be reduced by up to 217% when executed
by our method in a quad-core processor

= Conventional m Parallel rendering

Speedup Percentage
]
(=]
=

R
20% - — i

. ‘b°+ i %o* . o ‘\Q}e {\$\z qﬂ}e
\ \ \
& & &
5 9 RS .;25& ,99@& © o
Benchmarks

Fig. 8. Speedup percentages of existing runtimes and our parallel rendering method

relative to execution on single core

multi-/many-core Industrial HCIs. The parallel rendering method, on the other
hand, shows improvements of up to 217%.

5 Conclusion

To facilitate the transition from single-core to multi-/many-core Industrial
HCIs, we developed a parallel rendering method to eliminate the serialization
bottleneck that exists in state-of-the-art engineering and runtime systems. Our

360 S. Hermann, A. Canedo, and L. (Max) Wang

algorithm uses a static parallelization method at the engineering stage to identify
coarse-grain opportunities. This information is propagated to the runtime stage
where additional dynamic information is used to exploit fine-grain parallelism.
This is assisted by a dependency analysis, object scheduling, parallel processing
of GUI elements, and non-overlap flushing algorithms that are necessary to
guarantee that real-time Industrial HCI applications are executed faster in
multi- /many-core. Our experiments show that our implementation is capable
of reducing the response time of a real Industrial HCI benchmark by up to
217%. In our future work, we plan to extend our method to process user and
system-level events in parallel. This approach would be particularly useful for
the acceleration of industrial HCIs with modern multi-touch interfaces [10].

References

1. Intel: Technical Resources for Embedded Designs with Intel Architecture,
http://www.intel.com/

2. Freescale: QorlQ Processing Platforms - Industrial, http://www.freescale.com

3. Texas Instruments: Stellaris MCU for industrial automation, lwww.ti.com

4. Giacaman, N.,; Sinnen, O.: Object-Oriented Parallelization of Java Desktop
Programs. IEEE Software (1), 32-38 (2011)

5. Luk, C.K., Newton, R., Hasenplaugh, W., Hampton, M., Lowney, G.: A Synergetic
Approach to Throughput Computing on x86-Based Multicore Desktops. IEEE
Software (1), 39-50 (2011)

6. Pankratius, V., Schulte, W., Keutzer, K.: Parallelism on the Desktop. IEEE
Software: Guest Editors’ Introduction (1), 14-16 (2011)

7. Draper, B., Beveridge, J., Bohm, A., Ross, C., Chawathe, M.: Accelerated image
processing on FPGAs. IEEE Transactions on Image Processing 12(12), 1543-1551
(2003)

8. Blake, G., Dreslinski, R.G., Mudge, T., Flautner, K.: Evolution of Thread-Level
Parallelism in Desktop Applications. In: International Symposium on Computer
Architecture, ISCA (2010)

9. Nof, S.Y.: Handbook of Automation. Springer (2009)

10. Beaudouin-Lafon, M.: Instrumental interaction: an interaction model for designing
post-wimp user interfaces. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI 2000, pp. 446-453 (2000)

http://www.intel.com/
http://www.freescale.com
www.ti.com

	Parallel Rendering of Human-Computer Interaction Industrial Applications on
Multi-/Many-Core Platforms
	1 Introduction
	2 Industrial HCIs – A Review of the State-of-the-Art
	2.1 Engineering System
	2.2 Runtime
	2.3 Related Work

	3 Parallel Rendering for Industrial HCIs
	3.1 Identifying Coarse-Grain Parallelism in the Engineering System
	3.2 Exploiting Fine-Grain Parallelism in the Runtime System

	4 Experimental Results
	5 Conclusion
	References

