
S. Yamamoto (Ed.): HIMI/HCII 2013, Part III, LNCS 8018, pp. 63–69, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Development of a Computer Programming Learning
Support System Based on Reading Computer Program

Haruki Kanamori1,*, Takahito Tomoto2, and Takako Akakura2

1 Graduate School of Engineering, Tokyo University of Science, 1-3 Kagurazaka,
Shinjuku-ku, Tokyo 162-8601, Japan

kanamori-haruki@ms.kagu.tus.ac.jp
2 Faculty of Engineering, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku,

Tokyo 162-8601, Japan
{tomoto,akakura}@ms.kagu.tus.ac.jp

Abstract. In this paper, we describe the development of a support system that
facilitates the process of learning computer programming through the reading of
computer program. Reading code consists of two steps: reading comprehension
and meaning deduction. In this study, we developed a tool that supports the de-
duction of a program’s meaning. The tool is equipped with an error visualiza-
tion function that illustrates a learner’s mistakes and makes them aware of their
errors. We conducted experiments using the learning support tool and con-
firmed that the system is effective.

Keywords: programming learning, flowchart, error-based simulation.

1 Introduction

This paper describes the development of a support system that facilitates the process
of learning computer programming through the reading of computer program. In this
study, we define reading source code as working backward from the code to deter-
mine the original requirement that led to the program. The process of reading code
consists of two steps: reading comprehension and meaning deduction (see Fig. 1).

Information technology has spread throughout society, but there is a shortage of
information engineers, and it is to train them in great numbers. There is extensive
research on learning computer programming through the construction of computer
programs [1]. However, gaining a deep understanding of programming requires learn-
ers to read source code as well [2].

Programming experts are highly skilled at reading code since this skill is essential
in debugging programs and inferring their purpose [3]. Reading code is also important
to gain a deeper understanding of programming. Furthermore, posing problems is
often useful in understanding the scope of a computer program [4]. Accordingly, we

* Corresponding author.

64 H. Kanamori, T. Tom

developed a support syste
through reading code.

2 The Process of P

In previous research, the p
two steps: algorithm design
tures, such as flow diagram
program’s requirements. T
language. In contrast, codin
source code, which necess
programming, learners are
propriate source code by fir

We consider reading cod
gramming. In this study, w
steps: reading comprehensi
hension is the inverse step
algorithm design. In readin
code into an equivalent abs
required to deduce a require

F

moto, and T. Akakura

em that facilitates the process of learning programm

Programming

process of programming has been considered to consist
n and coding. Algorithm design is the step in which str
ms, are used to construct the abstract process based on
This processing flow is independent of the programm
ng is the step in which the abstract flow is converted i
sarily depends on the programming language. In learn

often given problems as requirements, and write the
rst considering the abstract processing flow.
de to be an important skill that adds to the process of p

we propose that the process of reading code consists of t
ion and meaning deduction (see Fig. 1). Reading comp

p of coding, and meaning deduction is the inverse step
ng comprehension, learners are required to convert sou
stract processing flow. In meaning deduction, learners
ement from the abstract processing flow.

Fig. 1. The process of programming

Fig. 2. How to write a flowchart

ming

t of
ruc-
the

ming
into
ning
ap-

pro-
two
pre-
p of
urce
are

 Development

3 Learning Using

At the reading comprehensi
source code. A flowchart h
likely to be discovered by r
structing a flowchart. A le
each block with one of seve
with lines. By reducing the
the intent of the program.

4 Deducing Proce

At the meaning deduction s
by choosing statements and
grees of freedom of the ans

5 Error Visualizat

Error visualization is the
teaching the correct answer
they are simply shown the
they are not able to unders
error can make the learner
ing support system that incl

6 Preliminary Exp

We conducted two experim
ment 1 was to examine the
ment 2 was to examine the i

6.1 Experiment 1

In Experiment 1, we spent
62 second-year university
were asked to solve four re

t of a Computer Programming Learning Support System

a Flowchart

ion step, learners construct flowcharts from given piece
has the advantage of making a problem (requirement) m
representing it visually. Figure 2 shows the process of c
earner chooses a series of flowchart blocks and popula
eral given options. Next, they connect the flowchart blo
e degrees of freedom of the answer, it is easier to con

ss Requirements

step, learners deduce process requirements from flowch
d concepts from a number of options. By reducing the
wer, it is easier to convey the intent of the program.

Fig. 3. How to write requirements

tion

process of illustrating error [5]. Feedback is capable
r and pointing out errors, but the learner stops thinkin
correct answer. If a learner is only shown their mistak

stand how and why they erred. In contrast, illustrating
aware of their errors. On this basis, we developed a lea
ludes an error visualization function.

periment

ments with two different objectives: the objective of Exp
reading skill level of learners; and the objective of Exp

influence of reducing the degrees of freedom of an answe

10 min explaining the principles of writing a flowchar
students attending a programming course. The stude

eading comprehension problems in 20 min, four algorit

65

s of
more
con-
ates

ocks
nvey

harts
de-

e of
ng if
kes,
the

arn-

peri-
peri-
er.

rt to
ents
thm

66 H. Kanamori, T. Tomoto, and T. Akakura

design problems in another 20 min, and four coding problems in a final 20 min. Prob-
lems were given in a free-response format, and the maximum score for each problem
was 2 points.

Table 1 shows the results of Experiment 1. The average score was 1.20 for the
reading comprehension exercise, 1.21 for the algorithm design exercise, and 1.69 for
the coding exercise. From these results, we can conclude that reading comprehension
and algorithm design were difficult. Although algorithm design is often considered to
be more difficult than coding, reading comprehension was found to be as difficult as
algorithm design.

Table 1. Experiment 1 Results

 Average score Standard deviation
Algorithm design 1.21 0.52

Coding 1.69 0.39
Reading comprehension 1.20 0.38

6.2 Experiment 2

In Experiment 2, we took 10 min to explain the principles of writing a flowchart to 12
fourth-year university students. After the explanation, the students were asked to
solve six reading comprehension problems in 30 minutes followed by six meaning
deduction problems in 15 minutes. How to answer is proposed in sections 3 and 4.
The maximum score for each problem was 2 points.

Table 2 shows the results of Experiment 2. The average score was 1.21 for the
reading comprehension exercise and 0.64 for the meaning deduction exercise. From
these results, we can conclude that the effect of reducing the degrees of freedom of
the answer was small, and that meaning deduction was a difficult task. From Experi-
ment 1 and Experiment 2 we confirmed the need to develop a support system that
facilitates the process of learning programming through reading code.

Table 2. Experiment 2 Results

Average score Standard deviation
Reading comprehension 1.21 0.55

Meaning deduction 0.64 0.21

7 Learning Support System

7.1 Learning Screen

Figure 4 shows the learning screen of the learning support system. The learner uses
concept and statement buttons to construct a problem statement. First, a student
presses a statement button, which brings the statement with blank to the answer

 Development

column. Next, a student pre
concept into the blank. Wh
the answer button. If the a
played; if the answer is inco

t of a Computer Programming Learning Support System

esses a concept buttons and select blank, which inserts
hen the learner has completed an answer, he or she pres
answer is correct, a message of "Correct answer" is d
orrect, the system shows the feedback screen.

Fig. 4. Learning screen

Fig. 5. Feedback screen

67

the
sses
dis-

68 H. Kanamori, T. Tomoto, and T. Akakura

7.2 Feedback Screen

Figure 5 shows the feedback screen. If a learner incorrectly deduces a requirement,
the system generates an incorrect flowchart based on the incorrect data, and the
learner looks for their mistakes by comparing the incorrect flowchart to the correct
flowchart.

8 Assessment Experiment

To ascertain the usefulness of the learning support system, we conducted an assess-
ment experiment. In the assessment experiment, we first administered a pre-test for all
participants (12 fourth-year university students). In the pre-test, after explaining the
principles of writing a flowchart for 10 min, the participants were asked to solve six
meaning deduction problems in 15 min. The maximum score for each problem was 2
points. Next, the participants were divided into three groups: an experimental group
(4 students), control group 1 (4 students), and control group 2 (4 students). We spent
5 min explaining to the experimental group how to use the system, followed by a
period of 30 min in which the group learned meaning deduction using our system.
Next, the participants were asked to solve 10 meaning deduction problems in 30 min.
In control group 1, the participants were asked to solve five algorithm design prob-
lems in 15 minutes, followed by studying algorithm design problems by viewing the
correct answer. Finally, the participants were asked to solve 10 meaning deduction
problems in 30 minutes. In control group 2, the participants were first asked to solve
five meaning deduction problems in 15 min, followed by studying meaning deduction
problems by viewing the correct answer. Finally, the participants were asked to solve
10 meaning deduction problems in 30 min. The maximum score for each problem was
2 points.

Table 3 shows the results of assessment experiment. For control group 1, the aver-
age post-test score was 1.33 and the average pre-test score was 0.50. This result
shows that supporting meaning deduction learning is beneficial. The average post-test
score was 1.53 for control group 2 and 1.50 for the experimental group. However, the
difference between the average pre-test score and the average post-test score was 1.00
for the experimental group and 0.90 for control group 2. From this result, we con-
firmed that our system is effective.

Table 3. Assesment Experiment Results

 Pre-test Post-test
Difference (post-test

minus pre-test)
Experimental group 0.50 1.50 1.00

Control group 1 0.79 1.33 0.53

Control group 2 0.63 1.53 0.90

 Development of a Computer Programming Learning Support System 69

9 Conclusions and Future Work

In this study, we developed a learning support system to provide guidance in meaning
deduction, and evaluated the effectiveness of our system. From the results of the
assesment experiment, we confirmed that it is necessary to support meaning deduction
learning, and that our system is effective. However, the assessment experiment did not
include enough participants, and it is necessary to increase the number of participants
in future experiments. Additionally, we did not develop a learning support system for
guidance in reading comprehension, but believe it is necessary to develop one in the
future.

References

1. Matsuda, N., Kashihara, A., Fukukawa, K., Toyoda, J.: An instructional system for con-
structing algorithms in recursive programming. In: Proc. of the Sixth International Confe-
rence on Human-Computer Interaction, Tokyo, Japan, pp. 889–894 (1995)

2. Corbi, T.A.: Program understanding challenge for the 1990s. IBM Syst. J. 28(2), 294–306
(1989)

3. Uchida, S., Kudo, H., Monden, A.: An experiment and an Analysis of debugging process
with periodic interviews. In: Proceedings of Software Symposium 1998, Japanese, pp. 53–
58 (1998)

4. Lyn, D.: Children’s Problem Posing within Formal and Informal Contexts. Journal of
Research in Mathematics Education 29(1), 83–106 (1998)

5. Hirashima, T.: Error-based simulation for error-visualization and its management. Int. J. of
Artificial Intelligence in Education 9(1-2), 17–31 (1998)

	Development of a Computer Programming Learning Support System Based on Reading Computer Program
	1 Introduction
	2 The Process of P Programming
	3 Learning Using a Flowchart
	4 Deducing Proce ss Requirements
	5 Error Visualizat tion
	6 Preliminary Exp periment
	6.1 Experiment 1
	6.2 Experiment 2

	7 Learning Support System
	7.1 Learning Screen
	7.2 Feedback Screen

	8 Assessment Experiment
	9 Conclusions and Future Work
	References

