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Abstract. We propose a method for the automatic refinement of web
service compositions: given a composite web service specification over
abstract modules, our method generates lower-level versions of this com-
position. The refinement process is based on query rewriting techniques
extended to take into account not only functional and non-functional
requirements but also semantic information. Experimental results
illustrate the performance and scalability of the method.
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1 Introduction

The composition of web services is a central task in Service-Oriented Software
Development [I]. This task consists in combining pre-existing services in order to
achieve new functionalities. The selection of services is based on the requirements
of the compound service as well as on the descriptions of individual services.
Services from different providers may not agree on the representation of data
or functionality. The successful combination of services depends on the correct
matching between their interfaces. In this scenario, the composition designer is
in charge of providing mechanisms to find suitable services and to adapt their in-
terfaces as required by the composition. A number of initiatives were proposed to
tackle the problem of automatically composing web services. Approaches include
the adaptation of techniques from areas such as Databases [2] or AI Planning [3].

In this paper we propose a mechanism for the automatic refinement of web
service specifications, using semantic information. The Semantic Web can help
to broaden the choice of services. Ontologies [4] may be used to align the repre-
sentation of concepts, as well as to describe the relationships between services.
The developer can describe a compound application in terms of semantic de-
scriptions (abstract services). Each abstract service may correspond to one or

* This work was partly supported by the National Institute of Science and Tech-
nology for Software Engineering (INES), funded by CNPq (Brazil) 573964 /2008-4;
CAPES/UdelaR (Brazil) 021/2010; CAPES/STIC-AmSud (Brazil) 020/2010; ANR
project ExaviZ.

** Bolsista da CAPES - Brasilia/Brasil.

F. Daniel, P. Dolog, and Q. Li (Eds.): ICWE 2013, LNCS 7977, pp. 400-F07] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



Automatic Refinement of Service Compositions 401

more concrete services, as published by individual providers. We assume that the
construction of a composition of concrete services is based on a software develop-
ment process formed by Specification, Refinement, Evaluation and Coding steps.
This paper focuses on the Refinement step and presents an algorithm to auto-
matically refine high-level specifications of service compositions into lower-level
ones. Our method is based on the MiniCon algorithm [5] for query rewriting,
known in the database domain. We begin with a higher-level composition spec-
ification expressed over abstract services and quality constraints. Our approach
generates several translations of this specification into compositions over con-
crete services. The solutions produced will be ranked (Evaluation) and coded
into concrete orchestrations. These two steps are beyond the scope of our work.

This paper is organised as follows: Section 2] describes our method; Section [3]
presents some experiments; Section [ concludes the paper.

2 Rewriting Compositions

Our algorithm for refining specifications of abstract compositions is structured
in two main phases. In the first one, each concrete service definition is scanned in
order to identify what parts of the specification it covers. The second phase of our
algorithm combines concrete services, in order to cover the whole specification.

Both the abstract composition and concrete services are defined in the same
way, by using the syntax: C(t) =ger A1(t1), ..., An(tn), Q1(t)), ..., Qm(t,). The
elements of the tuple ¢ on the left-hand side of a definition are the formal param-
eters. These parameters represent input (marked with “?”) or output (marked
with “I”) data. The right-hand side of the definition consists of abstract service
calls and quality constraints. The same decorations are used for the parameters
of these items. Additionally, optional parameters of abstract services inside the
definition of concrete services are marked with “+”. Quality constraints Q;(?)
are of the form (X op Y), (X op a) or (X € C) where X and Y are variables, a
is constant, op € {<,>,<,>,=} and C is a set of constants.

The first phase of our method consists in matching the specification of each
concrete service with parts of the abstract composition. Each concrete service
may be used to implement parts of the composition. Given the abstract compo-
sition C(...) Zaef A1(...), .-, An(...),Q1(...),...,Qm(...) and each concrete
service Si(...) =aqer Ai(-. ), A(0), Q. ), .., Qu(...), our algorithm
tries to match some abstract services on the right-hand side of the definition
of S; with the same services on the right-hand side of the definition of C'. This
matching consists in a (semantic) mapping to make their parameters compati-
ble. For each possible matching, a tuple containing the mapping information is
produced. Each of these tuples is called a PCD (Partial Coverage Descriptor).

A Partial Coverage Descriptor D for a concrete service S and a composition
C' is a tuple (S, h, ¢, G, Def, has opt), where:

— S is the name of the concrete service involved in the matching.

— (s a partial mapping from Terms(C') to h(Terms(S)). This mapping defines
the correspondence between the terms appearing on the abstract composition
and terms that appear on the concrete service definition.
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— h is a mapping from Terms(S) to Terms(S). For every term z that is not
a parameter of S, h(x) = x. For terms x and y that are parameters of S, h
may be such that h(z) = h(y), where for every parameter x we have that
h(z) = h(h(z)). This mapping is the head homomorphism in [5].

— G is the set of abstract service names and quality constraints covered by S.

— Def is a set of quality constraints of the abstract composition. Intuitively,
this set will contain those conditions that cannot be guaranteed by S alone.

— has opt is a boolean flag used to indicate that some abstract service in the
definition of S has been used in G and has an optional parameter. ]

Roughly speaking, a PCD D indicates (i) which part of the abstract composition
is covered by a concrete service S and (i) how to relate the data processed by
the composition with the parameters of the concrete service.

Ezxample 1.Let C(z?,y!) =aer A1(2?,27), A2(2?, y!) be an abstract composition.
Let S(a?,b?) =g4e5 A1(a?,b7?), As(a?) be the specification of a concrete service.
Let us consider the abstract service call A;(x?,27?) in C. We can use the definition
of S to cover part of the composition. Indeed, it is possible to obtain the PCD
D = (S,¢,h,{A1},0, false) where h(a) = a, h(b) = a and ¢(z) = h(a). O

The algorithm below builds a set of PCDs, given an abstract composition C' and
a set of concrete service specifications S.

Algorithm 1. (Build PCDs)

procedure build PCDs(C, S) 1
PCDs := 0); 2
for each abstract service A in the definition of C do 3

for each concrete service S€ S do 4
if there are mappings h and ¢ for A in the definitions of C and S then 5

G :={A} 6

Def := 0); 7

PCD := (S, h, ¢, G, Def, has opt ); 8

AS := {A’ | A’is an abstract service or quality constraints in C sharing 9

parameters with A or with other elements of AS}
PCD OK := true;
while AS# () and PCD OK do
A’ := choose an abstract service from AS;
if h, ¢ can be extended to cover A’ then
Update PCD w.r.t. h, ¢, G, Def, has opt
AS := AS — A
else PCD OK := false;
if PCD OK then PCDs := PCDs U PCD;

o T e o T ~ T S S S
[ T - S S =]

In the mappings for the abstract service A (line [l), parameters appearing on
the left-hand side of C' should only be mapped to parameters appearing on the
left-hand side of concrete service definitions or optional ones. Then, Algorithm [I]
looks for other abstract services or quality constraints connected to A. The set
AS contains all abstract services or quality constraints of C' that (i) have a data
dependency to A and (ii) are not mapped by ¢ to parameters of S (line [@)).
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Ezample 2. Let C(y!) =qer A1(x?,y!), Aa(x!),xz > 10,y € {5,4, 3} be an abstract
composition. Let us suppose S(b!) =4er A1(a?,b!), As(al),a = 10. We will obtain
a PCD covering not only the abstract service call A;(x?,y!), but, due to the
mapping of z (on the composition) to a on S (i.e., ¢(x) = a), the PCD must also
cover the abstract service call Az(z!) and the condition x > 10. This matching
is possible because service S may cover A and specifies that a = 10. ]

One important difference between our algorithm and MiniCon [5], is that our
method supports the notion of optional parameters in the specification of a
concrete services, i.e., parameters that can be ignored. The information about
optional parameters is supposed to be provided by the vendor of the service as
part of its specification. This situation is described in the next example.

Ezxample 3. Let C(u?,z!) =g4ep A1(u?, 0!, w!), A2 (v?,w?, z!) be an abstract com-
position and S(a?, c!) =q4er A1(a?, *bl, c!) a concrete service specification where b
is an optional parameter. Algorithm[lbuilds the PCD D = (S, h, ¢, { A1}, 0, true)
where h is the identity function; p(u) = a, p(v) = b, p(w) = c¢. There are two
data dependencies between A; and As, given by the parameters v and w on both
service calls. None of these data dependencies is taken into account when the set
AS is built at line @ of Algorithm[I} (%) the variable v is mapped to the optional
parameter b on the specification of S and (%) the variable w is mapped by ¢ to
¢, which is a parameter of S. Notice that this PCD is marked as having optional
parameters (last component of the tuple is true). This information will be used
in the algorithm of the second phase to restrict combinations of PCDs. (]

Our second phase algorithm combines PCDs to produce compositions over con-
crete services. To this end, it takes the set of PCDs produced by Algorithm [
and looks for combinations of these PCDs to cover the right-hand side of the
abstract service composition C. This procedure is described by Algorithm

Algorithm 2. (Combine PCDs)

procedure Combine PCDs(C, PCDs)
Given C = C(f) =def Al(),,An(),Ql(),,Qm() and
PCDs = {..., (S, hi, ¢i, Gi, Def;, has opt;),... };
for each combination {PCDy,...,PCD;}C PCDs such that
(a) {Al(),,An()} g Glu‘“UGk;
(b) Vi, j.GNG; C Def; N Defy;
(c) All deferred constraints in Def; ... Defj hold;
(d) Input and output optional parameters should match.
do Pre := (; Pos := 0;
for each variable z € Q; such that @Q; ¢ G1U--- UGy do
if x is an input parameter of C then Pre := Pre U Q; end if;
if x is an output parameter of C then Pos := Pos U Q; end if;
publish { Pre ) C'(EC(¥)) =aer S1(t1),...,Sk(tx) ( Pos );
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Algorithm [ tries to cover the definition of the abstract composition C by
searching all subsets of PCDs such that: (a) they cover all the abstract services
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Ay, ..., Ay of C (line B); (b) there is no overlapping of the abstract services
covered by these PCDs, except for deferred quality constraints (line [@); (¢) the
deferred quality constraints of the PCDs must hold when their variables are
instantiated using the mappings of the PCDs (line[); (d) each term in C' mapped
to an optional output parameter (in the definition of S;) can only be mapped to
optional input parameters (in the definition of any concrete service) (line [§]).
For each combination of PCDs satisfying the conditions above, one con-
crete composition is produced. The refined composition is published in line [I3]
with its pre- and post-conditions. These conditions are properties of the ab-
stract composition that cannot be statically verified. Each concrete composition
C'"(EC(t)) =ger Si(t1),...,Sk(tr) has a parameter tuple obtained by applying
the function EC(f) to the parameters of the abstract composition. This function
expresses an equivalence class of parameters. The function FC(¥) permits to
equate parameters that are different on the abstract composition but that are
mapped to the same term on a concrete service as shown in Example (]

Ezample 4. Let C(x?,y?, 2!) =qe5 A1(2?,y?, w!), A2 (w?, 2!) be an abstract com-
position, Si(a?,7!) =g A1(a?,a?,r!) and Sa(c?,d!) =qef A2(c?,d!) be the spec-
ifications of concrete services. Algorithm [ builds the following PCDs: Dy =
(S1,h1,1,{A1},0, false), where h; is the identity, ¢1(z) = a, v1(y) = a and
p1(w) =r; Dy = (S, ha, pa, { A2}, 0, false) where hy is the identity, po(w) = ¢
and p2(z) = d. In Dy, both 2 and y are mapped by 1 to a and thus define the
equivalence class {z,y}. So, x and y correspond to the same parameter. Each oc-
currence of a must be replaced with the representative term of the equivalence
class {z,y}. Thus, we can generate the concrete composition C’ by using the
terms in EC((z,y, z)), as follows: C'(z?, 27, 2!) =gy S1(x?,w!), So(w?,2!). O

The parameters of S (1), ..., Sk(fx) in the concrete composition (Algorithm [2
line [[3) are represented by the tuples ;. The terms in these tuples are obtained
ast; = 71 o EC o 1; o hy(t}), such that: (i) t; are the parameters of S;; (ii)
the mappings v; rename the variables of the service S; into the corresponding
variables of the abstract composition; and (i) the conversion functions f; are
provided by a set of ontologies. For each ¢ € hi(t), Vi(t) = tj, if pi(t;) =
fio hi(t}), and t; otherwise. As usual, conversion functions are bijective. In the
case of the same representation of data, conversion functions are the identity.
It can be proved that the concrete service compositions produced by the
combination of Algorithms [Tl and [2] meet the requirements of the abstract com-
position, in functional terms. This is described by the following property:

Property 1 (Correctness). Given an abstract composition C, for each con-
crete composition o obtained by our algorithm, the following property holds:
Vit . C'E ) = O ). O

Property [l ensures that the solutions obtained by our method are functionally
correct. Notice that the functionality implemented by the refined compositions
may not cover all the cases considered by the abstract composition. The compo-
sitions obtained by our method depend on the available concrete services. The
available services may not match all the cases of the specification.
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3 Experiments

We have implemented a prototype of our method in Java on the basis of the
MiniCon program. In the second phase of our method, all combinations of PCDs
are considered, which implies an exponential time complexity (in the number of
PCDs generated by the first phase of the method. This is due to the combi-
natorial nature of the problem, which is also faced by the MiniCon Algorithm.
Figures [ and [ show the average time from 10 executions on a Dual Core
2.83GHz processor, 4GB RAM machine running Debian 6.

In Figure [[l we show the runtime for a composition with 10 abstract services
and a varying number of concrete services (with two left-hand side parameters)
defined by 10 abstract services. In these experiments each concrete service re-
sponds to the composition requirements with: (A) no quality constraint; (B)
five quality constraints added to each definition; (C) MiniCon without quality
constraints but with an optimization procedure. We have used an optimization
to avoid the combinatorial explosion of the MiniCon approach, since each ser-
vice can respond alone to composition requirements. The linear growth shown
in Figure [ is due to this optimization. The overhead introduced by the quality
constraints in case (B) varies from 11% to 23% when compared to case (A).
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(C) 10SGoals, 0QLY | 53 118 185 260 317 383 430 493

Fig.1. # Services x Time (ms)

In Figure Pl we show the runtime for an abstract composition formed by six
abstract services and one quality constraint. The number of concrete services
taken into account varies from 96 to 228. This is shown on the X-axis. For each
number of concrete services, we varied the proportion of them that satisfies the
quality constraints of the abstract composition. Percentages range from 0% to
100%. This is shown on the Z-axis of the picture. The Y-axis of the picture
corresponds to the average execution time of the program.

We observe that for a reduced percentage of services that complies with the
quality constraint, the first phase of the algorithm will produce a reduced number

! The first phase of our method is O(m.n?), where m is the number of concrete services
and n is the number of abstract services invoked by the abstract composition and
concrete service definitions.
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of PCDs, allowing the second phase to work with a fewer combinations. As
the number of services that meet the quality restriction increases, the second
phase of the algorithm shows its combinatorial nature, making it difficult to
deal with more than about 150 concrete services. We should notice that on
usual situations, the number of available concrete services is not expected to be
that many. According to these preliminary experiments, our approach is feasible
for problems with up to almost two hundred concrete services (depending on the
proportion of quality constraints met by the concrete services).

4 Final Remarks

Selecting and composing services is not a new problem [6I7I89]: Some authors
[TO/TT] consider an automatic selection of services, from the semantic point of
view. To others, web service compositions are obtained as refinements of more
abstract specifications [812]. Query Rewriting techniques [I3J2/5] have been con-
sidered for generating compositions from abstract specifications. Recently, re-
searchers have started to apply this technique in the context of web semantics
and web service composition [7I8[9]. Our work is inserted in this context, where
we use non-functional properties for fine-tuning the selection of services.

Our work adapts and extends the query rewriting method MiniCon to service
composition. In this new context, it is important to remark that the definition
of a composition or a service is not seen as a database query and, thus, is not
imposed to the same restrictions. Besides this adaptation (that, for instance,
makes useless the notion of safe rules required in [5]), the original method has
been expanded to deal with optional parameters and quality constraints.

The advantages of our approach are significant: it eases the user’s work, de-
ferring technical details to further steps; takes into account both functional and
non-functional requirements; offers different solutions that can be used latter
when dealing with service evolution in runtime; allows the use of domain ontol-
ogy information to perform data transformations (i.e., in practice, our algorithm
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is capable of automatically performing data conversions in order to use services
whose parameters do not match exactly).

Experiments using our prototype implementation show that our approach is
feasible on real-life applications, where distinct concrete services rarely respond
to the same non-functional requirements (restricting the possible choices during
the rewriting). As a future direction, we are aware of the need of establishing
theoretical properties of our approach. We are currently working on the classifi-
cation of solutions according to an user profile.

Acknowledgements. Special thanks to Prof. R. Pottinger, who kindly made
available the code of MiniCon, and to S. Munier for implementing a prototype
of our method.
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