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Abstract. Ageing and age-related impairments have a detrimental effect on 
human performance and are likely to affect gesture based Human-Computer  
Interaction (HCI). Relying on “healthy” individuals to define gestures used for 
interfacing is likely to bias HCI design within the older population. To what ex-
tent gestures are affected by a common ageing disease remains to be deter-
mined. The aim of this study is to explore spatial and temporal changes in 
shoulder motion between rotator cuff patients and “healthy” controls. Seven 
controls and eight pre-operative patients participated in this study and per-
formed several predefined gestures. The results show that the ROM and speed 
of movement can be affected by a common age-related disease. Wavelet analy-
sis indicated that patients have a higher level of coupling between conditions 
making it harder to differentiate between different gestures. These results high-
light the need to include age-related disabilities in HCI study populations. 

Keywords: Human Gesture, Pattern Recognition, Ageing, Rotator Cuff Injury, 
Wavelet Analysis. 

1 Introduction 

Gesture recognition has changed Human-Computer Interaction (HCI). In the last dec-
ade, interaction with electronic equipment has moved towards more natural and unob-
trusive ways of interfacing. There has been a shift from artificial small gestures to 
larger everyday movements. Commercial tracking systems have now reached a stage 
where they are capable of providing accurate information for sensitive motion track-
ing [1]. However, the growing popularity of using 3D human movement for device 
control also requires the users to have a certain level of ability. Individuals who have 
limited ability might not be able to benefit fully from an ever increasing diversity of 
control gestures. Currently, the algorithms for gesture recognition are often optimized 
for “healthy” individuals. Specific designs are needed to cater to those who are less 
able to perform certain movement trajectories [2]. A good understanding of impaired 
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human performance is therefore needed. Performance parameters, such as movement 
velocity, can be used to better discriminate between young and older subjects [3]. Gait 
speed itself has been found to be a good predictor of mortality [4]. This shows that 
ageing has a detrimental effect on maximum overall performance. Research has now 
started to take ageing into account when looking at HCI [5]. However, the changing 
interactions during ageing are further complicated by disease. This can put the older 
person who suffers from an age-related disease in a position where they can no longer 
interact with gesture controlled devices. This is particularly relevant if new gesture 
parameters, such as movement velocity, are introduced. Gesture speeds can be accu-
rately identified across ordinal scales, such as “slow” and “fast”[6]. Yet, these classi-
fications are tested with “healthy” subjects. This paper aims to investigate the summa-
tion of ageing and disease upon performance of the upper limb in order to inform 
interfacing paradigms for gesture led control.    

The focus of this study will be on rotator cuff injury, as rotator cuff tears are 
among the most common conditions affecting the ageing shoulder [7]. The rotator 
cuff consists of four muscle-tendon units that move the shoulder joint. They are par-
ticular important for reaching maximum shoulder rotations and damage can subse-
quently minimize the volume of space through which the arm can travel. The large 
range of motion that is available for the shoulder complex requires a multitude of 
different joints to be coordinated in a stable manner. The trade-off between operation-
al volume and stability puts a great strain on the rotator cuff. Functional shoulder 
measurements that are currently used clinically often test an average level of system 
performance at a single comfortable speed. Increasing speed during shoulder activities 
might disperse patient groups that initially seemed similar. How the potential for mak-
ing specific gestures changes across speeds remains unclear.  

The aim of this study is to explore spatial and temporal changes in shoulder mo-
tion, in both healthy asymptomatic healthy adults and rotator cuff patients, during 
different speeds of movement. 

2 Methods 

2.1 Participants 

Seven healthy control participants and eight pre-operative patients voluntarily partici-
pated in this study. Relevant demographic data of each group is given in Table 1. The 
protocol was approved by the College Research Ethics Committee. All subjects gave 
written informed consent before the experiment. 

Table 1. Mean (± standard deviation) values for the demographics of all subjects. No 
significant differences were present between groups as tested with an independent t-test. 

 Age (yrs) Height (m) Mass (kg) 
Controls 41±18 1.75±0.04 82±11 
Patients 53±10 1.74±0.03 81±10 
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the lower frequencies can be observed between participants of both groups. However, 
the wavelet coherence patterns from the control group provide a more ordered ar-
rangement than that of the patient group.  

4 Discussion 

The aim of this study was to explore changes in shoulder motion during different 
speeds of movement for both healthy asymptomatic older adults and rotator cuff pa-
tients. The results show that the available ROM is not affected by the velocity at 
which a particular task is performed. However, ROM is affected by musculoskeletal 
damage. A decrease of up to 40 degrees was found in the elevation tasks when control 
subjects were compared to patients. The difference found in this study between pa-
tients and controls matched those reported in the literature [16]. The peak rotations 
related to the available volume in which gestures can be performed. The diminished 
ability to lift or rotate the arm will drastically reduce the gesture workspace.  

In addition to a change in movement range, changes in angular velocity were also 
found. As expected the angular velocities were greater in the “fast” condition com-
pared to the “normal” condition. Control subjects showed a higher rotation velocity 
during the “normal” conditions, but also managed to produce a greater increase when 
switching to the “fast” condition compared to patients. Although, no significant dif-
ference was found for the internal/external rotation activity a trend towards a greater 
group differentiation at the faster condition was still present. This difference in ability 
of an older age group that is affected by a disease shows the need to include them in 
reference databases that are aimed to inform gesture led control.  

The wavelet coherence analysis showed that patients have a greater variance in lo-
calised features than controls. The power of such an analysis lies in the ability to 
detect short episodes of coherence within single measurements, which would not be 
possible using classic Fourier-based coherence [17]. It can be observed that some 
patients compensate well for the musculoskeletal damage, while the abilities of others 
are diminished. This suggests that there are subgroups within the patient population.  

The normalization procedure generates relative patterns that can be compared be-
tween subjects. Subsequently, dissimilarities between these patterns relate to relative 
differences in amplitudes and times. On average the patient group showed a greater 
coupling of the “fast” and “slow” condition, in addition to a higher overall variance, 
this indicates more inconsistency for the estimators of gestures. Differentiation be-
tween gestures is therefore harder to accomplish for the patient group independent of 
the range of motion reached or the angular velocity at which the movement is per-
formed. This demonstrates a more fundamental gesture generation difference between 
healthy and impaired individuals that goes beyond the level of range or speed. Ges-
ture recognition depends on a consistent difference between two or more gestures, but 
increasing the range of motion and angular velocity of patients does not automatically 
bring the patient group in line with the controls. The greater difference in localised 
features highlights the need to include common disabilities in the HCI design for the 
older population, as the movement patterns are different across dimensions. 
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The research presented here is conducted within a laboratory setting. It is known 
that differences in ecological validity exist between lab-based results and those ob-
tained during real-world interaction. Laboratory testing can be somewhat artificial and 
divorced from real-world interaction [5]. The study presented here focuses on what 
happens with motor performance when disease impacts on ageing. However, the pur-
pose is not to generate a generic guideline for the selection of participants in HCI 
design studies. It aims to inform the field of potential biases that arise by ignoring 
age-associated diseases when designing for an older population. 
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