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Abstract. Recently, collective intelligence has been introduced to brain-
computer interface (BCI) research, leading to the emergence of collaborative 
BCI. This study presents an online collaborative BCI for improving individuals’ 
decision making in a visual Go/NoGo task. Six groups of six people 
participated in the experiment comprising both offline and online sessions. The 
offline results suggested that the collaborative BCI has the potential to improve 
individuals’ decisions in various decision-making situations. The online tests 
showed that using Electroencephalogram (EEG) within the first 360 ms after 
the stimulus onset, which was 50 ms earlier than the mean behavioral response 
time (RT) (409±85 ms), the collaborative BCI reached a mean classification 
accuracy of 78.0±2.6% across all groups. It was 12.9% higher than the average 
individual accuracy (65.1±8.1%, p<10-4). This study suggested that a 
collaborative BCI could accelerate human decision making with reliable 
prediction accuracy in real time.  

Keywords: brain-computer interface (BCI), group decision making, 
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1 Introduction  

In human-performance studies, a team of individuals usually outperforms individuals 
especially when performance requires diverse skills, judgments, and experiences 
under time constraints [1]. Two heads are better than one, known as collective 
intelligence, the mechanism and neural basis of which has recently attracted growing 
attention of researchers in psychology and neuroscience [2, 3].  

Recently, the collective intelligence has been introduced to the brain-computer 
interface (BCI) research field. For Instance, the concept of collaborative BCI has been 
proposed in [4] and [5]. Through offline demonstrations of collaborative BCIs, these 
studies suggest that a collaborative BCI, which integrated neural information from 
multiple individuals, can outperform a single-brain BCI. More recently, we 
implemented the first online collaborative BCI in a visual target detection task [6].  
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The huge potential of using a collaborative BCI to improve human performance has 
attracted many researchers and engineers’ interests. For instance, Riccardo et al. [7] 
reported the application of a BCI system in a simulated spacecraft control task and the 
potential benefits of its extension to a collaborative multi-user BCI system. Riccardo 
et al. [8] subsequently explored the advantages of using an off-line collaborative BCI 
in a simple visual matching and a decision-making task. The g.tec company also 
demonstrated a collaborative P300 speller [9]. These studies suggested that combining 
brain activity of multiple users preforming the same task might improve the overall 
BCI performance, compared to individual BCIs, and lead to extended applications of 
BCIs. 

Here, this study presents the design and implementation of a truly online 
collaborative BCI for improving individuals’ decision-making performance in a visual 
Go/NoGo task. To the best of our knowledge, this is the first demonstration of a 
single-trial EEG-based group decision making using an online collaborative BCI. To 
further explore the advantages of using the collective BCI system, this study also 
evaluates its performance under the tasks with different difficulty levels with an 
offline analysis. 

2 Material and Methods 

2.1 Subjects 

Thirty-six (aged 19 to 28 years, mean age 23, 8 females) healthy university students 
from Tsinghua University participated in this study. They were divided into six 
groups (six participants in each group). 

2.2 Experimental Setup and Paradigm  

As illustrated in Fig. 1, the collaborative BCI system comprises six 16-channel EEG 
amplifiers synchronized by trigger signals from a server computer, which was also 
used for stimulus presentation and data analysis. A Media-Key multimedia teaching  
 

 

Fig. 1. Experimental setup of the collaborative BCI system 
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system delivered the stimulus to six LCD monitors (one in front of each subject) 
simultaneously. EEG data from each subject were sent to a computer via TCP/IP for 
real-time analysis. 

The subjects were seated comfortably in armchairs at a distance of 80 cm from the 
monitor. During the experiment, a series of images including face images (Go tasks) 
and car images (NoGo tasks) were presented to the subjects. The subjects were 
instructed to press a button as quickly as possible when they recognized a face image, 
otherwise withhold the response. Once the button was pressed, an electrical event 
signal would be sent to the trigger channel of the amplifier and would be recorded in 
the software running on the computer. Sixteen-channel EEG data were collected by a 
standard EEG system. Electroldes were placed according to a standard international 
10-20 montage at Fz, F3, F4, Cz, C3, C4, Pz, T5, T6, Oz, Fpz, F7, F8, P3, P4, POz, 
with a left-mastoid reference. The sampling rate was 1000 Hz. 

The experiment comprised an offline training stage and an online test stage. The 
offline sessions were used to collect pilot data to train the classifiers, while the online 
sessions were used to evaluate the performance of the proposed collaborative BCI 
system. In the offline sessions, different difficulty levels were implemented to 
evaluate the performance of the collaborative BCI in decision-making under different 
situations. The difficulty level of the task was controlled by varying the phase 
coherence of the Go and NoGo images (45%, 35%, and 30%, difficulty level from 
low to high). The images of six conditions were equally and randomly distributed 
during the experiment. In the online experiments, for simplicity, only the images with 
the phase coherence value of 45% were used. 

 

Fig. 2. Experiment diagram of (a) offline experiment and (b) online experiment 

As illustrated in Fig. 2 (a), in the offline experiments, at the beginning of each trial, 
a fixation cross was presented at the center of the screen for a random duration from 1 
to 2 seconds, followed by an image (about 16.5×16.5 cm) presented for 16.7 
milliseconds (the period of one rendered frame). Following the image presentation, 
there was a one-second period for the subjects to make decisions and motor responses 
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before the next trial started. Fig. 2 (b) illustrated the diagram of the online 
experiments. Compared to the offline experiments, the multi-channel (Fz, F3, F4, Cz, 
C3, C4, Pz, T5, T6) EEG data within the first 360 ms following stimulus presentation 
were used to predict the upcoming decision. After classification, visual feedbacks 
(presented and predicted image types) were presented on the screens. This decision 
and feedback stage lasted 1500 ms followed by a rest period of 500 ms. 

The training stage consisted of five blocks of 120 trials each, resulting in a total of 
600 trials. Of them, 200 trials at the phase coherence value of 45 were used to train 
the classifiers. The trained classifiers were applied to the online testing session 
consisting of a block of 120 trials (60 images of cars and 60 images of faces). 

2.3 Data Analysis 

Behavior Data 
In order to evaluate the general behavior performance of the subjects, this study 
calculated the averaged motor response time and accuracies across all the subjects 
during the tasks with different difficulty levels. 
 
EEG Data 
In the offline analysis, EEG data were first downsampled to 200 Hz and then band-
pass (1-40 Hz) filtered using the eegfilt function in EEGLAB [10]. To validate the 
collected EEG data, the data were first re-referenced to the common average reference 
(CAR), time-locked to stimulus onsets and averaged across trials and subjects to 
obtain grand averaged event-related potentials (ERPs). This study then used a 
machine-learning classifier to predict the Go/NoGo decision based on single-trial 
ERPs following stimulus presentation. To estimate the performance of the system, 5-
fold cross validations were used to evaluate the prediction accuracies during the task 
with phase coherence value of 45%. Specifically, this study calculated the accuracies 
of the individual and collaborative single-trial EEG classification (Go vs. NoGo) of 
the six groups of people with different time window lengths (from 150 ms to 250 ms 
with an interval of 20 ms, and from 250 ms to 400 ms with an interval of 50 ms). As 
illustrated in Fig. 3, after band-pass filtering, the signal-to-noise ratio maximizer 
(SIM) algorithm [11] was used to extract each subject’s ERP components from multi-
channel EEGs through spatial filtering. The first three ERP components of each 
condition were selected as features for classification. A two-layer support vector 
machine (SVM) classifier was then applied to predict the Go/NoGo decision. The 
feature vector constituted by the outputs (the probability of the trial to be a Go task) 
of the first-layer classifiers for all subjects was forwarded into the second-layer 
classifier to make the group decision. The program was implemented using the 
LIBSVM toolbox [12]. 
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Fig. 3. Diagram of feature extraction and classification in the collaborative BCI system 

It is also of great interest to see the potential of the collaborative BCI for making a 
group decision under the situations with high difficulties. To this end, in the offline 
analysis, 5-fold cross validations were used to estimate the accuracies under the tasks 
with phase coherence value of 35% and 30%. However, as the available samples of 
Go and NoGo conditions for each subject were limited and unbalanced according to 
behavioral performance (cf. Fig. 4(b)), we found that the individuals’ single-trial EEG 
classification accuracy was close to the chance level in these situations. To improve 
the SNR of single-trial ERPs, we alternatively first averaged the signals across all the 
subjects participated in the experiment (hence, the group size was 36). The resultant 
cross-subject averaged ERPs were forwarded to the SIM algorithm to derive spatial 
filters and then classified by the SVM. 

In the online experiments, the signals of each trial were resampled at 200 Hz,  
and digitally filtered at 1-30 Hz with a twentieth-order causal filter. The feature 
extraction and classification methods illustrated in Fig. 3 were subsequently applied  
for prediction. The length of time window used for real-time data analysis was set to 
360 ms. 

3 Results 

3.1 Behavior Results  

Fig. 4 (a) shows that subjects’ response time increased as the task difficulty level 
increased. The response times were 409±85 ms, 461±113 ms, and 470±113 ms at 
the phase coherence of 45%, 35%, and 30%, respectively.  

Fig. 4 (b) shows that subjects’ detection accuracies decreased when the phase 
coherence value decreased (92±1.5%, 74±3.8%, 64±3.5% corresponding to phase 
coherence values of 45%, 35%, and 30%). This phenomenon was more pronounced in 
the Go trials (decreasing from 96±2.0% to 63±6.7%, and 41±6.0%). It may 
suggest that the subjects tend to response very cautiously during the experiments, 
preferring holding the button rather than making a response. 
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Fig. 4. (a) The distributions of response time of correctly responded Go trials with different 
difficulty levels. (b) Behavior accuracies of different tasks. Go, NoGo and All denote the Go 
(face) trials, NoGo (car) trials and overall (Go and NoGo) trials respectively. 

3.2 Offline Results 

Grand Averaged ERP 
Fig. 5 (b) shows the robust ERP components evoked by Go (face N170 at T6) and 
NoGo (larger N2 and P3 at Fz) trials. The difference waves were very pronounced at 
several scalp channels (see Fig. 5 (a)). Thus, it could be inferred that the components 
contributing most to the classification were the face-specific N170 component in the 
Go condition, and the larger N2 and P3 components in the NoGo condition. 

 

Fig. 5. Grand averaged ERPs for the task with the phase coherence value of 45%. (a) multi-
channel difference waves (Go - NoGo). (b) ERP and the difference wave in Go and NoGo trials 
at channel Fz (top) and T6 (bottom). 
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Fig. 6. Difference waves (Go- NoGo) under different difficulty levels at (a) Fz and (b) T6. The 
red, green and blue colors represent coherence values of 45%, 35% and 30% respectively. 

Fig. 6 shows the difference waves between Go and NoGo conditions under 
different difficulty levels at channels Fz and T6. Intuitively, it seemed that as task 
difficulty increased, the amplitude of the difference wave decreased, while the latency 
of the difference wave increased. These response variabilities would make the EEG-
based classification more difficult. 
 
Single-Trial EEG Classification 
Fig. 7 shows that the system’s classification accuracy increased monotonously with 
the length of time window. It is also evident that the collaborative paradigm 
outperformed the mean of the individuals and the best individual in the group. The 
classification accuracy of the system could reach about 80% with a time window 
length of ~350 ms.  

 

Fig. 7. Single-trial EEG classification accuracies as a function of time window length at the 
phase coherence value of 45% across all the six groups 
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Fig. 8 shows the single-trial EEG classification accuracies as a function of the 
length of time window at the phase coherence value of 35% and 30%, when all the 36 
subjects were included in a group for calculation. Using the EEG from first 350 ms, 
the accuracy was 71.0% and 65.5% at the phase coherence values of 35% and 30%, 
respectively. These results were comparable to the individuals’ behavioral results 
(74.0±3.8% and 64.0±3.5% at the phase coherence values of 35% and 30%, cf. Fig. 
4(b)). To be noticed, in the Go condition, the average response time was 461 ms and 
470 ms when the phase coherence values were 35% and 30%, respectively. 

These results suggested that even under very difficult decision-making situations, 
when the subjects failed to make an accurate and quick decision, the collaborative 
BCI have the potential to improve individuals’ decision speed with comparable 
accuracy.  

 

Fig. 8. Single-trial EEG classification accuracies as the function of time window length at the 
phase coherence value of 35% and 30% respectively 

3.3 Online BCI Performance  

Table 1 lists the performance of the online collaborative BCI. Consistent with the 
offline analysis, the online test showed that the prediction accuracy of the 
collaborative classification was significantly enhanced over that of the individual 
classification. Using EEG within the first 360 ms after the stimulus onset, which was 
50 ms earlier than the mean behavioral response time (409±85 ms), the collaborative 
BCI reached a mean classification accuracy of 78.0±2.6% (range: 75%-82%) across 
all groups. It was 12.9% higher than the average individual accuracy (65.0±8.1%, 
p<10-4), and 3.3% higher than the best individual accuracy (74.7±4.2%, p<0.1). These 
results suggest that a collaborative BCI could accelerate human decision making with 
reliable prediction accuracy in real time.  
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Table 1. Accuracy of the online collaborative BCI (%) 

Group# Sub #1 Sub #2 Sub #3 Sub #4 Sub #5 Sub #6 Team 
1 63 68 51 61 63 58 76 

2 62 73 68 66 52 68 82 
3 79 73 74 65 72 65 80 

4 79 77 56 53 64 59 75 

5 73 58 58 73 58 63 77 
6 63 48 68 73 76 65 78 

4 Conclusion and Discussions 

This study presented the design and implementation of an online collaborative BCI 
for improving individuals’ decision making in a visual Go/NoGo task. The 
performances of the collaborative BCI during the tasks with different difficulty levels 
were also evaluated. The offline results suggested that even in the difficult decision-
making situations, where the subjects were difficult to make quick and accurate 
decisions, the collaborative BCI can still have the potential to improve individuals’ 
decision speed with comparable accuracy. In summary, the collaborative BCI 
technology provides an efficient way for achieving collective intelligence from brain 
activities of multiple subjects. 

The proposed BCI system does have some limitations. First, the data transmission 
and analysis of the system was implemented in a centralized fashion. Too much data 
transmission and computation would affect the speed and performance of the system. 
In the online experiments, we found that the data transfer speed varied across trials, 
bringing some delays in the feedback presentation. To alleviate this problem，a 
distributed framework, which involves less data transmission and performs data 
computation in a distributed fashion, may be a good choice. Furthermore, more 
efficient multi-brain computing methods are also of great importance to improve the 
system performance. The collaborative filtering and transfer learning may be 
promising along this direction [13]. 

The proposed paradigm may also have potential in reducing errors in impulsive 
decision making of a group within chaotic and data-poor environments. In addition to 
BCI applications, the proposed framework might have potential for EEG-based group 
brain imaging of social processes and behavior.  
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