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Abstract. Non-negative matrix factorization and sparse representation models
have been successfully applied in high-throughput biological data analysis. In
this paper, we propose our versatile sparse matrix factorization (VSMF) model
for biological data mining. We show that many well-known sparse models are
specific cases of VSMF. Through tuning parameters, sparsity, smoothness, and
non-negativity can be easily controlled in VSMF. Our computational experiments
corroborate the advantages of VSMF.
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1 Introduction

Non-negative matrix factorization (NMF) [10] and the wider concept — sparse repre-
sentation (SR) [[6] are sparse matrix factorization models that decompose a matrix into
a basis matrix and coefficient matrix. They have been applied in many fields of bioinfor-
matics including clustering [3] and biclustering [4], sample prediction [15], biological
process identification [9], and transcriptional regulatory network inference [16]. Many
variants of NMF and SR have been invented for various situations. Semi-NMF is pro-
posed in [5] for data of mixed signs. Sparse NMF is introduced to guarantee sparse
results [8]. We propose kernel NMF in [13]] to deal with nonlinearity in microarray
data. Kernel NMF also works for relational data. Negative values are allowed in the co-
efficient matrix of /;-regularized sparse representation (/1-SR) models [[15]. However,
the following challenges have not been well addressed. First, an unified model is very
necessary for these variants from both theoretical and practical perspectives. Second,
sparsity is usually constrained on the coefficient matrix and the sparsity of basis matrix
is not guaranteed in most sparse models. Third, /;-norm is the most popular way to
induce sparsity. However, it does not guarantee that a group of correlated variables can
be selected or discarded simultaneously.

In this paper, in order to address these challenges, we propose our versatile sparse
matrix factorization (VSMF) model. The contributions of this study includes
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1. With its six parameters, VSMF can easily control sparsity, smoothness, and non-
negativity on both basis matrix and coefficient matrix. VSMF is thus a generic
model. The standard NMF, semi-NMF, sparse NMF, kernel NMF and /1-SR models
are specific cases of VSMFE.

2. We devise multiplicative update rules and active-set algorithms for the optimiza-
tion of VSMF. Analytical solutions, which are useful for kernelization, are also
discussed.

3. We demonstrate the usefulness of VSMF in bioinformatics.

The rest of this paper is organized as follows: We first summarize the variants of NMF
or SR models in Section 2] Next, we present our VSMF model and its optimization
in Section Bl After that, several biological applications of VSMF are demonstrated in
Sectiond Finally, we draw our conclusions and mention future works.

2 Related Work

Hereafter, we use the following notations. The training set is denoted by [d1, - - - ,d,,] =
D € R™*™ where m and n are the numbers of features and samples respectively. The
basis matrix is represented as [a1, - - - ,ar] = A € R™** where k < min{m,n} is the
number of basis vectors (or factors). The coefficient matrix is denoted by [y, - ,y,,] =
Y € R**" Given D, the task of sparse matrix factorization is to find A and Y such
that D ~ AY, where at least one factors among A and Y should be sparse.

For the convenience of discussion, we summarize the existing sparse matrix fac-
torization models in Table [1l It is impossible to enumerate all existing works in this
direction, therefore all models mentioned in this table are the most representative ones.
The training data D must be non-negative for the standard NMF and sparse NMF. For
sparse NMF, « and A are two non-negative parameters. For kernel NMF and [;-SR,
¢(+) is a function that maps the training samples into a high-dimensional feature space.
¢(D) is the training samples in this feature space. A is the basis matrix in this feature
space.

Table 1. The Existing NMF and SR Models

NMF/SR Equations
Standard NMF [I0] mina,y }||D — AY|%st. A, Y >0
Semi-NMF [3] minay 4||D — AY||%st.Y >0

Sparse NMF [8]] minay ,||D — AY||Z + 5 Zf;lHazﬂg + ;‘ S lysllist AY >0
Kernel NMF [[31[15] mina, v 3|¢(D) — AsY |3+ § S5 [é(a)|3 + 5 iy lyslli st Y >0
11-SR [13] mina,.y ,[|6(D) — AsY |5+ § i o(a)|3 + 3 Tyl

3 Method

In this section, we first present our versatile sparse matrix factorization model. Then,
we give optimization algorithms for this model.
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3.1 The Versatile Sparse Matrix Factorization Model

Our versatile sparse matrix factorization (VSMF) model can be expressed in the fol-
lowing equation:

k
. 1 1e%)
minf(A,Y) = LD~ AY 5+ S2( 2 il + o las])
’ i=1

n
A
+ Do lwall + Allwalh) (1)
i=1
¢ ift;=1 A>0
s.t. ,
ifto =1 Y >0

where parameter ov; > 0 controls the sparsity of the basis vectors, parameter cvy > 0
controls the smoothness and scale of the basis vectors, parameter A\; > 0 controls the
sparsity of the coefficient vectors, parameter A2 > 0 controls the smoothness of the
coefficient vectors, parameters t; and to are boolean variables (0: false, 1: true) that
indicate if non-negativity should be enforced on A and Y, respectively.

One advantage of VSMF is that both /; and /3-norms can be used on both basis ma-
trix and coefficient matrix. In VSME, /;-norms are used to induce sparse basis vectors
and coefficient vectors. However, the drawback of /;-norm is that correlated variables
may not be simultaneously non-zero in the induced sparse result. This is because /;-
norm is able to produce sparse but non-smooth result. It is known that [5-norm is able
to obtain smooth but not sparse result. Combining both norms has been proven that
correlated variables can be selected or removed simultaneously [18]. In addition to the
smoothness of [o-norm, another benefit of [5-norm is that the scale of each vector can
be restricted. This can avoid the scale interchange between the basis matrix and coeffi-
cient matrix. Another advantage of VSMF is that the non-negativity constraint can be
switched off/on for either basis matrix or coefficient matrix. If the training data are non-
negative, it is usually necessary that the basis matrix should be non-negative as well.
In some situations, non-negativity is also needed on the coefficient matrix for better
performance and better interpretation.

It can be easily seen that the standard NMF, semi-NMF, and sparse-NMFs are special
cases of VSME. If oy = ao = A1 = Ay = 0and t; = t5 = 1, VSMF is reduced to the
standard NMF proposed in [10]. f oy = ag = A\ = A =0andt; =0and t; =1,
then VSMF becomes semi-NMF proposed in [S)]. If a3 = Ay = 0, az, A\ # 0, and
t1 = to = 1, then VSMF is equivalent to the sparse-NMF proposed in [8]]. When o is
set to zero, VSMF can be kernelized [[15]).

Sparse matrix factorization is a low-rank approximation problem. The number of
ranks, that is k, is crucial for good performance of an analysis. Selecting k is still an
open problem in both statistical inference and machine learning. We propose an adap-
tive rank selection method for VSMF. We base our idea on the sparsity of columns of A
and Y. We first set k to a relatively large integer. During the optimization of VSMEF, if
a column of A or arow of Y is null due to the sparsity controlled by the corresponding
parameters, then both of the column of A and the row of Y corresponding to this null
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factor are removed. Therefore £ is reduced. When the optimization terminates, we can
obtain the correct k corresponding to the current sparsity controlling parameters.

3.2 Optimization

Like most of NMF and SR models, the optimization of VSMF is non-convex. The most
popular scheme to optimize these models are the block-coordinate descent method [2].
The basic idea of this scheme is in the following. A and Y are updated iteratively and
alternatingly. In each iteration, A is updated while keeping Y fixed; then A is fixed
and Y is updated. Based on this scheme, we devise the multiplicative update rules and
active-set algorithms for VSMF. These two algorithms are given below.

Multiplicative Update Rules. If both A and Y are non-negative, we can equivalently
rewrite f(A,Y) in Equation (I) to

(6%)
2

where E; € {1}™** and E5 € {1}**". Fixing A, updating Y can hence be ex-
pressed as

1
, 1D~ AY |2+ “tr(ATA) + an(ETA) + A; (YY) + Mtr(EYY), ()

1 A
minf(Y) = _||D ~ AY[}. + 22 a(YTY) + \t(ELY) 3)
s.t. Y > 0.
Similarly, Fixing Y, updating A can be expressed as
1
minf(A4) = _ |D - AY[} + ";2 tr(ATA) + o tr(ETA) )
st. A>0.

We design the following multiplicative update rules for VSMF model in the case of
t1 =ty = 1:

AYYTJrTaz A+aq

_ AD
Y =Y * qiavnyin

A=Ax DY"
) (5)

where A x B and g are element-wise multiplication and division between matrix A
and B, respectively. This algorithm is a gradient-descent based method. Both rules are
derived in the following.

For Equation (@), the first-order update rule of Y should be generally

of(Y)
Yy -

where matrix 7, is step. We take the derivative of f(Y), in Equation (), with respect
toY:

Y=Y —n,x (©)

f(Y)

by = ATAY — A"D + MY + M Es. (7
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And we let the step 1, to be

Y

2T ATAY LAY MBS

Substituting Equations (Z) and (8)) into Equation (@), we have
A'D
Y=Y=x . .
A AY + Y + L E,
Similarly, for Equation (), the first-order update rule of A should be generally
af(A)
0A

We take the derivative of f(A), in Equation (), with respect to A:

of(A)

0A

And we let the step to be

A=A—n =

=AYY" - DY + avA + o, E;.

A
CAYY '+ A+ Ep

Substituting Equations (IT) and (I2) into Equation (I0), we have

™

DYT

A=Ax - .
AYY 4+ oA+ oy

95

®)

€))

(10)

(1)

12)

(13)

If we let oy = as = A\ = Xy = 0, then the update rules in Equations (@) becomes
the update rules of the standard NMF [11]]. We can find that enforcing sparsity and
smoothness on both basis matrix and coefficient matrix does not increase the time-

complexity.

Active-Set Quadratic Programming. The multiplicative update rules above only
works under the condition that both A and Y are non-negative. We devise active-set
algorithms which allow us to relax the non-negativity constraints. We now show that
when t1( or t2) = 1, A (or Y') can be updated by our active-set non-negative quadratic
programming (NNQP) algorithm; when ¢4 ( or t2) = 0, A (or Y) can be updated by our

active-set [y -regularized QP (11QP) algorithm.
If t, = 1, the objective in Equation (3)) can be rewritten as:

F(Y) = tr( ; YTATAY + ;DTD - DTAY + A; Y'Y + ME}Y)
= tr(;YT(ATA + XY + (MES - DTA)Y + ;DTD)

n
L op T Lot
= ; 9 Yi Hyy; + 90y + Qdidiy

(14)
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where Hy = ATA + A1, and 92y = A\ — ATd; and Go)y =M — ATD. Therefore,
we can see that updating non-negative Y is multiple NNPQ problem. We proposed a
parallel active-set algorithm for NNQP in [15]. This algorithm can be used to solve the
problem in Equation (I4)).

If to = 0, the objective of updating Y can be reformulated as:

1 1 A
f(¥)=u(,YTATAY + D'D - DAY + 22 YY)+ MY,

1 1
= tr(QYT(ATA +XI)Y + (-DTA)Y + 2DTD) + MY |1
"1 1
=D U Hoy + g0y + Mllyilnt didi, (15)
i=1

where Hy = ATA + X1, and 92y = —A"d; and G = —ATD. This is a [;QP
problem which can be solved by our active-set [; QP algorithm proposed in [[15]].
Similarly, if t; = 1, f(A) in Equation (3) can be expressed as

1 1
=t + - + 244" L ETA
f(A 2AYYTAT 2DTD DYTAT N T
1 1
= tr(2A(YYT +as)AT + (0, ET - DYT) AT + 2DDT)
% 1 T T 1 T
= Z 2wi Hl'wi + g(l)lwz + 2Di,;(D );7,', (16)
=1
where W = AT H;y =YY"+ .1, 9ay =1 — Y(DT):’Z- and G(1) = a1 — Y D'

Again, it can be seen that this problem is also a NNQP problem.
If t; = 0, the objective of updating A can be written as

1 1
J(A) =u( ,AYY"A" + D'D-DY"A"+ O; AAT) + oy | Al
1 1
= tr(2A(YYT +as)A" + (-DYN A" + 2DDT) +ay|| ATy

m
1 1
- Z 2wz'Tlei + 9(T1)i'wz' + Oé1||’lUiH1+2DZ";(DT):’Z-, (17)
i=1

where W = A", Hy =YY" + a1, g1y, = —Y(D").; and G(;) = Y D". This
is also a [; QP problem that can be solved by our active-set {; QP algorithm [[15].

Analytical Solutions and Kernelization. If ¢ = 0 and A; = 0, from ag(;') =0,Y
can be updated analytically:

Y = (ATA+ \I)'A'D = A'D. (18)

From the previous section, we can see that only YY" and Y D" are required to update
A. According to Equation (I8), YY" and Y D" can be expressed as
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YY" = A'DD"(AY)T. (19)

YD" = A'DD". (20)

We can see that in this situation, updating A only requires the previous value of A and
the inner products of rows of D.
Similarly, if ¢ = 0 and oy = 0, A can be updated analytically:

A= DY}, (1)

where Y = Y (YY" +ayI)~'. From the previous section, we know that updating Y
only requires the inner products AT A and AT D. They can be updated by the following
equations:

A"A = (YH'D'DY?. (22)

A"D = (YH'™D'D. (23)

Due to the analytical solution of A, updating Y only requires the previous value of Y’
and the inner products of columns of D.

These analytical solutions have two advantages. First, the corresponding matrix can
be easily updated without resorting to any numerical solver. Second, we can see that
only inner products are needed to update Y (or A), when A (or Y') can be analytically
obtained. Using this property, we can obtain the kernel version of VSMF, which are
described in the following. In sparse representation, at least one matrix among A and
Y must be sparse. That is the analytical solutions in Equations (I8) and @I)) can not
be used simultaneously. In practice, if each column of the training data D is the object
to be mapped in high-dimensional feature space, we can analytically update A™ A (or
the corresponding kernel version k(A, A) = (¢(A))"¢(A) where k(-,-) is a kernel
function corresponding to ¢(-)) and A™D (or k(A, D) = (¢(A))T$(D)), and then
update Y via a numerical solver described in the previous section. This leads to the
kernel sparse representation proposed in [15]. Alternatively, if each row of D is the
object to be mapped in high-dimensional feature space, YY" and Y D" should be
updated analytically, then A is updated by a solver given in the previous section. This
leads to an alternative kernel sparse representation model.

4 Computational Experiment

Sparse matrix factorization has a wide ranges of applications in biological data analysis.
Technically speaking, these applications are based on clustering, biclustering, feature
extraction, classification, and feature selection. In this paper, we give three examples
to show that promising performance can be obtained by VSMF for feature extraction,
feature selection, and biology process identification. For other applications of NMF,
please refer to [[14].
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4.1 Feature Extraction and Classification

NMF is a successful feature extraction method in bioinformatics [[12]. Dimension re-
duction including feature extraction and feature selection is an important step for classi-
fication. We compared the performance of our VSMF (for feature extraction) with NMF
on a popular microarray gene expression data — Colon [[1]. This data set has 2000 genes
(features) and 62 samples. There are two classes in this data set. Each sample is normal-
ized to have unit /s-norm. We employed 4-fold cross-validation to split the whole data
into training and test sets. For each split, features were extracted by NMF or VSMF
from the training set. The nearest neighbor (NN) classifier was used to predict the class
labels of the test set. 4-fold cross-validation was repeated for 20 times. We initialized
k = 8, thus the actual value of k, after calling VSMF, should be less than or equal to 8.
Radial basis function (RBF) is used in the kernel VSMF. We set the kernel parameter
o = 29. The mean accuracy, standard deviation (STD), computing time, and parameter
setting are given in Table 2l The standard NMF obtained a mean accuracy of 0.7645,
while the linear VSMF yielded 0.7919. The highest accuracy, 0.7944, is obtained by
the kernel VSME. The kernel VSMF only took 1.3346 seconds, which is faster than the
linear VSMF and NMF, because the analytical solution of A can be computed for ker-
nel VSME. We treat this comparison as a demonstration that tuning the parameters of
VSMF may obtain better accuracy than NMF. VSMF can be used for many other types
of high-throughput data such as copy number profiles and mass spectrometry data.

Table 2. The Classification Performance of VSMF Compared to The Standard NMF. The time is
measure by stopwatch timer (the tic and toc functions in MATLAB) in seconds.

Method Accuracy (STD) Time Parameters
NN 0.7742(0.0260) 0.0137
NMF+NN 0.7645(0.0344) 4.3310

Linear VSMF+NN 0.7919(0.0353) 3.1868 a2 =273, A =270 t1 =t, =1
Kernel VSMFE+NN 0.7944(0.0438) 1.3346 a2 =273, A1 =2"% t1 =ta =1,0 = 2°

4.2 Feature Selection

VSMF can be applied to feature selection. The basic idea is to make the basis vectors
sparse, and then select features that vary dramatically among the basis vectors. In our
current study of gene selection, we use the following strategy on the sparse basis matrix
A. For the i-th row (that is the i-th gene), We denote g; = A, .. If the maximum
value in g; is greater than § = 10* times of the rest values in g;, then we select this
gene, otherwise discard it. We tested this VSMF-based feature selection method on a
microarray breast tumor data set which have 13582 genes and 158 samples from five
classes [7]. The data were normalized so that each gene has mean zero and STD 1. We
used the following parameters of VSMF: o = 2% s =200 =0,y =29 t; =0,
and to = 1. The value of k£ was initialized by 5. The genes selected were validated
by classification performance. We employed 20 runs of 4-fold cross-validation. For
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each split of training and test sets, genes were selected using the training set. On the
dimension-reduced training set, a linear support vector machine (SVM) was learned
in order to predict the class labels of the corresponding test set. When using all genes
to training SVM, we obtained a mean accuracy of 0.8250 with STD 0.0201. When
applying the VSMF-based gene selection, we achieved a mean accuracy of 0.8271 with
STD 0.0174. We can see that SVM using our gene selection strategy can obtain similar
performance with that of using all genes.

4.3 Biological Process Identification

NMF has been applied on either static gene-sample or time-series microarray data to
identify potential biological processes [8,19,116,/17]. In our experiment, we run our
VSMF on the Gastrointestinal stromal tumor (GIST) time-series data to show that
VSMF can smooth biological processes compared with the result obtained by the stan-
dard NMEFE. This data set was obtained after the treatment of imatinib mesylate. It has
1336 genes and 9 time points. Each gene time-series is normalized to have unit [»-
norm. The smoothness is controlled by parameter ais. We set the parameters of VSMF
toas =272, 0 =278 a1 = Ay = 0,and t; = t5 = 1. The number of factors k was
set to 3. The basis vectors of NMF and VSMF are shown at the left and right sides of
Fig. [Tl respectively. We can see that both of them can reconstruct the falling, rising, and
transient patterns identified in [[L6]. The patterns obtained by VSMF are smoother than
those of the standard NMF.

Intensity

) 5 10 15 20 25 30 35 40 45 (] 5 10 15 20 25 30 35 40 5
Time Point Time Point

Fig. 1. The Biological processes identified b the standard NMF (left) and VSMF (right). The
result of VSMF is smoother than that of the standard NMF.

5 Conclusions

In this paper, we propose a versatile sparse matrix factorization (VSMF) model for
biological data analysis. VSMF is a unified model of many variants of NMF and SR.
We give efficient optimization algorithms for VSMF. As shown in our computational
demonstrations, many analysis can be conveniently conducted by VSMF for biological
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data. The implementation of VSMF can be found in our open-source MATLAB NMF
toolbox [14]. The multiplicative-update-rules based VSMF is implemented in function
sparsenmf2rule and the function vsmf includes the implementation of NNQP,
11QP, and analytical solutions.

We present our on-going work on VSMF in this paper. There remains many interest-
ing challenges in its theoretical and practical aspects. First, there are four key param-
eters, in the objective of VSMF, which provide flexibility, while rise concerns on the
model selection. The two parameters in the constraints can be determined by the signs
of a data set. We are working on a guide of parameter selection for VSMF which can be
easily tailored for various applications. The value of k is also related with the sparsity,
thus we need further investigation on it. Second, increasing the value of «; leads to
a more sparse basis matrix. This is very helpful for feature selection. We will investi-
gate more effective feature selection method using VSMF. The performance of VSMF
for feature selection will be compared statistically with existing approaches. The genes
selected will be validated by permutation test and gene set enrichment analysis.
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