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Abstract. Feature weighting in supervised learning concerns the development
of methods for quantifying the capability of features to discriminate instances
from different classes. A popular method for this task, called RELIEF, generates
a feature weight vector from a given training set, one weight for each feature.
This is achieved by maximizing in a greedy way the sample margin defined on
the nearest neighbor classifier. The contribution from each class to the sample
margin maximization defines a set of class dependent feature weight vectors, one
for each class. This provides a tool to unravel interesting properties of features
relevant to a single class of interest.

In this paper we analyze such class dependent feature weight vectors. For
instance, we show that in a machine learning dataset describing instances of re-
currence and non-recurrence events in breast cancer, the features have different
relevance in the two types of events, with size of the tumor estimated to be highly
relevant in the recurrence class but not in the non-recurrence one. Furthermore,
results of experiments show that a high correlation between feature weights of
one class and those generated by RELIEF corresponds to an easier classification
task.

In general, results of this investigation indicate that class dependent feature
weights are useful to unravel interesting properties of features with respect to a
class of interest, and they provide information on the relative difficulty of classi-
fication tasks.

1 Introduction

Feature selection is a central problem in machine learning, because of its use in a wide
range of real-life applications, such as in pattern recognition, text categorization and
biological and biomedical data analysis [6]. Feature selection in supervised learning
is motivated by the fact that using all available features may negatively affect gener-
alization performance, especially in the presence of irrelevant or redundant features.
Therefore, feature selection aims at making good predictions with few features.

Many feature selection algorithms have been proposed (see for instance the overviews
in [6,10]). In particular, feature weighting assigns real values (instead of zero or one) to
features, describing their relevance to a learning problem. Among the existing feature
weighting algorithms, RELIEF [7,9,8] is considered one of the most successful meth-
ods, due to its simplicity and effectiveness [1]. Interesting formalizations of RELIEF
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have been proposed and used for developing new feature weighting algorithms [5,11].
In particular it was shown that RELIEF can be interpreted as an online solution to a con-
vex optimization problem, which maximizes a margin-based objective function, where
the margin is defined on the 1-nearest neighbor (1-NN) classifier. This explains its good
performance both when compared with filter methods, due to the performance feedback
of a nonlinear classifier when searching for useful features, and when compared with
wrapper methods, since it optimizes a convex problem, hence avoids any exhaustive or
heuristic combinatorial search and can be implemented very efficiently [11].

Fig. 1. Toy example

This paper investigates a decomposition of RELIEF into class dependent feature
weight terms, one for each class of the learning problem. Each class dependent term
induces a weighted distance enlarging the sample margin of the corresponding class.
This approach can be viewed as the supervised counterpart of clustering in subspaces
spanned by different combinations of dimensions via local weightings of features (see,
e.g., [4,2]).

We show that complementary characteristics of a feature in different classes may
yield different weight contributions which, when added, neutralize each other. This may
prevent to detect the relevance of some features for a single class.

This situation is illustrated by the following toy example. RELIEF applied to the
training data shown in Figure 1 assigns zero weight to all the features. However, if the
class dependent feature weight terms are considered, the two features become relevant
for class 1 and 2, respectively. This is shown in detail in Section 2.1.

The goal of this paper is to analyze class dependent feature weight vectors. First, we
investigate whether class dependent feature weights provide useful information about
the relative difficulty of classification tasks. Second, we investigate whether class de-
pendent feature weights provide better information about the relevance of features than
RELIEF for the underlying phenomenon under study.
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Results of experiments show that a high correlation between feature weights of one
class and those generated by RELIEF are associated to an easier classification task.

Furthermore, we show that in a machine learning dataset describing instances of
recurrence and non-recurrence events in breast cancer, the features have different rele-
vance in the two types of events. In particular, the size of the tumor is estimated to be
highly relevant in the recurrence class but not in the non-recurrence one.

In general, results of this investigation indicate that class dependent feature weights
are useful to unravel interesting properties of features with respect to a class of interest,
and can be used to analyze comparatively the difficulty of classification tasks.

2 Methods

We use the variant of RELIEF acting on all the training set instances [8] (see Algorithm
1 for binary classification problems).

Algorithm 1. RELIEF
Require: X, l: training data, each instance vector x has m features and class l(x)
Ensure: w: feature weight vector

w = vector with m zeros
for x in X do
w = w +

∑
z∈KNN(x,c),c �=l(x) |x− z| −∑

z∈KNN(x,l(x)) |x− z|;
end for

X denotes a dataset of n instances, and x, z generic instances. Each instance x =
(x1, . . . , xm) is a real-valued vector of dimension m, whose entries are here called
features.

C denotes the set of class labels; l : X → C is the function mapping each instance
x to its class label l(x). Let c be a generic element of C, and Xc be the subset of X
consisting of those instances having class label equal to c. Then KNN(x, c) is the set of
K nearest neighbors (with respect to the Euclidean distance) of x computed using only
the instances in Xc, excluded x.

For two instance vectors x and y, |x−y| denotes the vector consisting of the absolute
value of the difference of each pair of corresponding entries in x and y. For instance, if
x = (1, 2) and y = (3, 4) the |x− y| = (2, 2).

Given a training set of labeled instances, RELIEF generates the feature weight vector
w of size equal to the number (m) of features. Each feature’s weight in w is initialized
to zero and updated iteratively by processing each instance vector x of X as follows.
The K nearest neighbors of x from the opposite class are computed, and for each one
of them, say z, the vector |x− z| is added to w. The K nearest neighbors from the same
class are computed, and for each one of them, say z, the vector |x − z| is subtracted
from w.
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2.1 Class Dependent Feature Weighting

The feature weight vector computed by RELIEF can be re-written as w =
∑

c∈C wc

where

wc =
∑

x∈Xc

⎧
⎪⎪⎨

⎪⎪⎩

∑

z∈KNN(x,c)

−|x− z|+
∑

z∈KNN(x,c′)
c′ �=c

|x− z|

⎫
⎪⎪⎬

⎪⎪⎭

.

The term wc can be viewed as a feature weight vector conditioned to class c: we call it
class dependent feature weight vector.

For the toy example described in the Introduction (see Figure 1) the class dependent
feature weight vectors for class 1 and 2 are (−6, 6) and (6,−6), respectively. Their sum
is the vector (0, 0). Therefore RELIEF assigns weight zero to all features. However, the
two class dependent weight vectors estimate the second and first feature as ’relevant’
for class 1 and 2, respectively.

This observation shows that, by averaging the weigths of features across different
classes, information about the relevance of features with respect to a single class can be
lost, while this information is visible if the weigths of features for each class are kept
separated.

A class dependent feature weight wc has a direct interpretation in terms of sample
margin [5,11]. In fact wc can be viewed as the result of a greedy procedure for maxi-
mizing the sample margin conditioned to class c as described by the following objective
function:

θc =
∑

x s.t.

l(x)=c
(
∑

c′ �=c

∑
z∈KNNw(x,c′) ‖x− z‖w−

∑
z∈KNNw(x,c) ‖x− z‖w).

Here ‖x− z‖w denotes the weighted Euclidean distance between x and z with respect

to feature weights w = w1, . . . , wm, wi ≥ 0, defined as
(∑m

i=1 wi(xi − zi)
2
)−1/2

.
KNNw(x) represents the list of K nearest neighbors of x in the training set computed
using the weighted Euclidean distance ‖ · ‖w.

Instead, the greedy procedure of RELIEF maximizes the sample margin over the
entire training set, and in this way it considers the sum of the possibly competing ob-
jectives θc’s.

3 Applications

The goals of our investigation are twofold. First, we investigate whether class depen-
dent feature weights provide useful information about the difficulty of the underlying
classification task. Second, we investigate whether class dependent feature weights pro-
vide better information than RELIEF does about the relevance of features in relation to
the underlying phenomenon under study.

To this aim we consider a number of life sciences datasets available at the UCI Ma-
chine Learning repository (see http://archive.ics.uci.edu/ml/datasets.html). Their char-
acteristics are given in Table 1.
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Table 1. Datasets used in the experiments. CL = number of classes, TR = training set, TE = test
set, FS = number of features, Cl.Inst. = number of instances in each class.

DATASET FS TR CL.INST. TE CL.INST.
B.CANCER 9 200 140-60 77 56-21
DIABETES 8 468 300-168 300 200-100
HEART 13 170 93-77 100 57-43
SPLICE 60 1000 525-475 2175 1123-1052
THYROID 5 140 97-43 75 53-22
BREAST-W 9 546 353-193 137 91-46
BUPA 6 276 119-157 69 26-43
PIMA 8 615 398-217 153 102-51

Examples of class dependent and RELIEF weights of the considered problems are
shown in Figure 4. The plots in this figure show that in some cases the two classes are
in strong disagreement with respect to the way they estimate the relevance of different
features.

For instance, on the B.Cancer data the feature rankings induced by the two class de-
pendent weight vectors are rather different. A similar situation can be observed for the
Bupa data, where the resulting rankings are the reverse of each other. These observa-
tions show that also on real-life problems the contributions of the classes to the feature
weight vector computed by RELIEF may be rather different.

3.1 Class Dependent Weights and Relative Difficulty of the Classification Task

We want to assess whether the diversity between the class dependent feature weights
and the weights computed by RELIEF and the hardness of classification tasks are linked
with each other.

To this end we perform 10 runs on each dataset. In each run a partition of the dataset
into training and test set is used, where the size of training and test set reported in the
UCI ML repository are employed (see Table 1). On each partition we compute the class
dependent weight vectors and the RELIEF weights using the training data, and apply
the K-NN classifier (with K=5) to the test data.

We measure hardness using the mean test accuracy, and diversity using the mean
of the maximum linear correlations between class dependent feature weights and the
RELIEF ones (see Table 2, columns ‘Corr1’, ‘Corr2’ , and ‘Max Corr’).

Then we use the Spearman’s correlation to assess how well the relationship between
these two variables can be described using a monotonic function. A positive Spearman
correlation coefficient corresponds to an increasing monotonic trend between the two
variables.

We compute the Spearman’s correlation coeffient ρ with right tail (that is, with alter-
native hypothesis ‘correlation is greater than zero’ against which to compute p-values
for testing the hypothesis of no correlation) between the variables ‘hardness’ and ‘diver-
sity’ as described by the vectors generated by computing their values on each dataset.
The resulting hardness and diversity vectors are the columns ‘Acc’ and ‘Max Corr’ of
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Table 2. Results for datasets used in the experiments. Acc = average test accuracy of K-NN clas-
sifier (with K=5) over 10 runs, Ave Corr1 = average of the correlations between RELIEF weights
and class 1 dependent weights, Ave Corr2 = average of the correlations between RELIEF weights
and class 2 dependent weights. Max Corr = average over 10 runs of the maximum between Corr
1 and Corr 2. Standard deviation (std) over 10 runs is reported between brackets.

DATASET ACC (STD) CORR1 (STD) CORR2 (STD) MAX CORR (STD)
B.CANCER 70.12 (5.44) -0.35 (15.75) 64.43 (10.79) 64.43 (10.79)
DIABETES 70.65 (4.57) -5.73 (24.38) 86.24 (4.85) 86.24 (4.85)
HEART 80.00 (3.39) 36.33 (16.64) 63.88 (16.37) 67.41 (10.38)
SPLICE 72.89 (1.72) 43.50 (13.65) 91.64 (3.37) 91.64 (3.37)
THYROID 91.86 (3.84) 42.90 (24.65) 89.03 (3.67) 89.03 (3.67)
BREAST-W 97.95 (1.32) 21.93 (19.29) 97.91 (1.01) 97.91 (1.01)
BUPA 65.07 (6.12) 61.29 (34.41) -13.47 (38.37) 67.53 (23.31)
PIMA 72.73 (1.08) 24.45 (35.18) 89.53 (6.61) 89.53 (6.61)

Table 2. Computation of the coefficient yields a positive correlation ρ = 0.5952 with
p-value 0.06.

If we consider the list of test accuracies and the list of maximum correlations (be-
tween class dependent feature weights and the RELIEF ones) generated in the 10 runs
instead of their mean, then a smaller yet more significant correlation is obtained, ρ =
0.4155 with p-value 0.0001.

Furthermore, if we consider the test classification achieved using only the top 5 fea-
tures selected using the feature ranking induced by the weights generated by RELIEF,
then the correlation signal between hardness and diversity becomes highly significant.
Indeed, the Spearman’s correlation coefficients become ρ = 0.8333 (p-value 0.0154)
and ρ = 0.6476 (p-value 0) when the mean (over the 10 runs) results and the results in
all the runs are considered, respectively.

The above results indicate that class dependent feature weights provide information
about the relative difficulty of the learning tasks (as measured by the test error).

3.2 Class Dependent Weights and Feature Relevance

In this section we analyze the class dependent feature weights and the RELIEF ones
in the context of breast cancer data analysis, using two breast cancer datasets B.Cancer
and the Breast-W.

The B.Cancer Data. This dataset was obtained from the University Medical Centre,
Institute of Oncology, Ljubljana, Yugoslavia. It consists of instances from recurrence
(class 2) and non-recurrence (class 1) breast cancer patients. The instances consist of
the following features:
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1. age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99,
2. menopause: lt40, ge40, premeno,
3. tumor-size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-

54, 55-59,
4. inv-nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32,

33-35, 36-39,
5. node-caps: yes, no,
6. deg-malig: 1, 2, 3,
7. breast: left, right,
8. breast-quad: left-up, left-low, right-up, right-low, central,
9. irradiat: yes, no.

Fig. 2. Average accuracy of the K-NN classifier (K=5) for different number of selected features
(left) and example of feature weight vectors (right) on dataset B.Cancer

Figure 2 (right side) shows the weights of the features according to RELIEF, and the
class dependent ones. The two classes assign rather different values to some features.
In particular, class 2 ’recurrence events’ assigns high values to feature ’tumor-size’
(feature 3), ’deg-malig’ (6), and breast-quad (8), while class 1 ’non-recurrence-events’
considers them not relevant (assigns negative weights).

Thus when the class dependent relevance values are added by RELIEF, feature
’tumor-size’ (3) becomes not very relevant for this learning task, less relevant than
feature 1 (’age’) and 2 (’menopause’). However, ’tumor-size’ is recognized as relevant
for the ’recurrence events’ class. Indeed, research in breast cancer has shown tumor size
to be strongly associated to the its recurrence hence to survival (see e.g. [3]).

Figure 2 (left side) shows the average test accuracy (over 10 runs) obtained by the
K-NN classifier (with K=5) when varying the number of selected features. The features
are selected using the ranking induced either by the weights computed by RELIEF or
by the class dependent weights with highest variance (‘cdRelief’ classifier in Figure 2).
Results show that test accuracy decreases when using only one class to estimate the
relevance of features. This is expected since the feature ranking is biased towards one
class and the two classes have different feature rankings.



76 E. Marchiori

Wisconsin Breast Cancer Dataset. The Wisconsin Breast Cancer dataset (Original),
donated from Dr. WIlliam H. Wolberg (University of Wisconsin Hospitals Madison,
Wisconsin, USA), is publicly available at the UCI Machine Learning Repository. The
dataset contains malignant (cancerous, class 2) and benign (non-cancerous, class 1)
instances. The instances consist of the following features:

1. Clump Thickness: 1 - 10,
2. Uniformity of Cell Size: 1 - 10,
3. Uniformity of Cell Shape: 1 - 10,
4. Marginal Adhesion: 1 - 10,
5. Single Epithelial Cell Size: 1 - 10,
6. Bare Nuclei: 1 - 10,
7. Bland Chromatin: 1 - 10,
8. Normal Nucleoli: 1 - 10,
9. Mitoses: 1 - 10.

Fig. 3. Average accuracy of the K-NN classifier (K=5) for different number of selected features
(left) and example of feature weight vectors (right) on dataset Breast-W

On this dataset the class dependent feature weights for class 2 (malignant cancer) are
in strong accordance with those of RELIEF (see the right plot in Figure 3 for an example
of weights generated by a run). Therefore the relevance as estimated by RELIEF reflects
the importance of the features for malignant cancer.

Moreover the average test classification performance is not significantly affected
when using the feature ranking generated by class 2 (see the performance of ‘cdRelief’
in the left plot in Figure 3). Indeed, on this problem both the average accuracy (97.95)
and the maximum Pearson correlation, that is, that between RELIEF and class 2 weights
(97.91) are high.
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B.Cancer Diabetes

Heart Splice

Thyroid Breast-W

Bupa Pima

Fig. 4. Examples of class dependent and RELIEF weights of the considered datasets
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4 Conclusions

We investigated a decomposition of RELIEF into class dependent feature weight vec-
tors, where each vector describes the relevance of features conditioned to one class. The
results of experiments indicated the usefulness of this decomposition for unraveling rel-
evant features for a single class and for providing information about the difficulty of the
considered learning task.

In general, results indicated that using only one class to estimate the relevance of
features is not beneficial for the classification performance. This is expected, and shows
that feature relevance for classification is different than feature relevance for a single
class. The latter type of relevance is important when the goal is to unravel useful infor-
mation about the phenomenon under study, like in the example about the recurrence of
breast cancer events we discussed in this paper.

The contributions of this work provide initial insights and results about the advan-
tages of using feature relevance in a way that depends on the single classes. Future
work includes the development of a theoretical and methodological framework in order
to better understand, use and combine class dependent feature weights. For instance,
on the methodological side, an interesting problem for future research is to investigate
whether the use of multi-objective optimization for feature weighting could be em-
ployed to improve also the classification performance, where the objectives are the θc’s
(that is, the sample margin conditioned to the classes c in C).
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