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Abstract. The assessment of non-genotoxic hepatocarcinogenicity of
chemicals is currently based on 2-year rodent bioassays. It is desirable
to develop a fast and effective method to accelerate the identification
of potential hepatocarcinogenicity of non-genotoxic chemicals. In this
study, a novel method CPI is proposed to predict potential hepatocar-
cinogenicity of non-genotoxic chemicals. The CPI method is based on
chemical-protein interactions and interpretable decision tree classifiers.
The interpretable rules generated by the CPI method are analyzed to
provide insights into the mechanism and biomarkers of non-genotoxic
hepatocarcinogenicity. The CPI method with an independent test accu-
racy of 86% using only 1 protein biomarker outperforms the state-of-
the-art methods of gene expression profile-based toxicogenomics using
90 gene biomarkers. A protein ABCC3 was identified as a potential pro-
tein biomarker for further exploration. This study presents the potential
application of CPI method for assessing non-genotoxic hepatocarcino-
genicity of chemicals.

Keywords: Non-Genotoxic Hepatocarcinogenicity, Decision Tree,
Chemical-Protein Interaction, Interpretable Rule, Toxicology.

1 Introduction

Chemical carcinogenesis can be classified into two main categories of genotoxic
(mutagenic) and non-genotoxic (non-mutagenic) agents according to the mech-
anism of action [1, 2]. Several short-term in vitro and in vivo assays have been
developed to assess genotoxic agents by measuring DNA damage, mutagenic ef-
fects, and chromosomal aberrations [3]. However, due to the complex nature of
non-genotoxic agents, the assessment of non-genotoxic hepatocarcinogenicity of
chemical compounds is based on 2-year rodent bioassays that is labor-intensive,
time-consuming and expensive. There are only 1500 chemicals studied by Na-
tional Toxicology Program during the past 30 years [4]. It is desirable to develop
alternative methods to efficiently prioritize potential non-genotoxic hepatocar-
cinogenicity of chemicals for further studies.
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Numerous computational models have been developed to predict various tox-
icity endpoints with reasonably good prediction performance. For example, the
quantitative structure-activity relationship (QSAR) models have been exten-
sively used to analyze and predict carcinogenicity [5–8]. QSAR model aiming
to correlate chemical structure information and toxicity endpoints could pro-
vide useful information of important structure for toxicity alerts. However, the
application of QSAR models for predicting non-genotoxic hepatocarcinogenic-
ity yields a low accuracy of 55% [9] showing the complexity of non-genotoxic
hepatocarcinogenicity.

Recently, toxicogenomics (TGx) correlating gene expression profiles and toxi-
city endpoints has emerged as important alternative methods. With the power of
machine learning methods, TGx performs well in non-genotoxic hepatocarcino-
genicity with a test accuracy of 80% [9, 10]. In contrast to traditional 2-year
rodent bioassays, TGx methods require much less experimental effort. Gener-
ally, published TGx methods select 29 to 120 genes as important biomarkers
and require short-term experiments with 5 to 28 days [9, 11, 10]. However, com-
pared to the pure computational method QSAR, TGx methods are still more
time-consuming and expensive. Also, chemical-protein interaction (CPI) as an
important mechanism for toxicity can not be modeled by TGx methods. The
development of fast and accurate methods can largely help the assessment of
non-genotoxic hepatocarcinogenicity of chemicals.

The data of CPI information grows very fast in recent years. Benefit from
the development of CPI databases, enormous interaction data obtained from
databases, experiments and text-mining can be easily accessed from the struc-
tured databases including STITCH [12–14], ChemProt [15, 16] and CTD [17].
The databases makes it possible to develop a CPI-based method for analyzing
and predicting non-genotoxic hepatocarcinogenicity.

In this study, a CPI based classification method is proposed to analyze and
predict non-genotoxic hepatocarcinogenicity of chemicals. Decision tree algo-
rithms capable of generating rule-based knowledge are applied to construct pre-
diction classifiers. The 5-fold cross-validation and independent test accuracies
on training and independent test dataset using only one protein are 82% and
86%, respectively. The independent test accuracy of the proposed CPI method
is better than that of TGx methods requiring 1 to 5-day experiments and 90
biomarkers. This is the first study that utilizes chemical-protein interaction data
to predict non-genotoxic hepatocarcinogenicity of chemicals.

2 Materials and Methods

2.1 Dataset

In this study, the development of datasets is based on a liver cancer database
NCTRlcdb [18]. In order to demonstrate and compare prediction performances of
different methods including CPI, QSAR and toxicogenomics models, only chem-
icals with existing gene expression data in rat were selected from NCTRlcdb.
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A final dataset consisting of 62 chemicals is utilized to develop and test classifiers
for non-genotoxic hepatocarcinogenicity that is developed by Liu et al. [9]. Class
labels of either liver carcinogens, carcinogens in other organisms, or noncarcino-
gens for chemicals were obtained from NCTRlcdb. In order to compare with the
QSAR and toxicogenomics models of the previous study [9], the 62 chemicals
are divided into a training dataset and an independent test dataset according to
the previous study [9]. The training and independent test datasets consisting of
8 positive and 32 negative chemicals and 5 positive and 17 negative chemicals
are utilized for training and testing models, respectively.

2.2 Chemical-Protein Interactions

Chemical-protein interaction data are obtained from STITCH 3.1 database
[13, 14, 12]. STITCH database is an aggregated database of interactions connect-
ing over 300,000 chemicals and 2.6 million proteins from 1133 organisms. The
interaction data are obtained from three major sources of experiments, databases
and text-mining. The experiment part consists of direct chemical-protein bind-
ing data with experimental evidence. The database part contains interaction
data from pathway databases. The text-mining data is obtained by extracting
information of interactions from literatures using text-mining techniques. Likeli-
hood or relevance scores of interactions are available for each evidence type. An
overall score for a given chemical-protein interaction is generated by combining
three scores of corresponding evidence types that is available at STITCH [19].
The score is a integer value ranging from 0 (no interaction) to 1000 (strong in-
teraction). Chemical-protein interactions are transferred between species based
on the sequence similarity of the proteins [19].

2.3 Decision Tree Algorithm

Decision tree algorithms capable of generating interpretable rules based on train-
ing data are widely used in various classification and regression problems such
as immunogenic peptides [20], ubiquitination sites [21], gamma-turn types [22]
and protein subnuclear localization [23]. In this study, the decision tree method
C5.0 is applied to construct decision tree classifiers and derive interpretable rules
based on chemical-protein interaction profile for classifying non-genotoxic hep-
atocarcinogenicity. C5.0 is an improved version of C4.5 with smaller trees and
less computation time [24]. The implementation of C5.0 used in this study is the
R package C50 [25].

The construction of a decision tree is described as follows. First, information
gain is utilized to rank features. Second, the top-ranking features are iteratively
appended as nodes to split data into subsets. The tree growing process stops
when the data subset in each leaf node belongs to the same class. The fully-
grown tree is prone to over-fit the training data. Therefore, a pruning process
is applied to reduce the tree size by replacing a subtree with a leaf node to
avoid over-fitting problems. The pruning process is based on a default threshold
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value of 25% confidence. The samples in the leaf node are the covered samples of
this rule. The class label of a leaf node is determined by using majority rule. The
samples with a relative small size in the leaf node are regarded as misclassified
samples. The final decision tree can directly generate if-then rules where one leaf
node corresponds to one rule.

2.4 Performance Measurement

To evaluate classifiers for their prediction performance, the widely used 5-fold
cross-validation method is applied. Four measurements were applied to evaluate
classifiers including sensitivity, specificity, accuracy and Matthews correlation
coefficient (MCC) defined as follows:

Sensitivity =
TP

TP + FN
, (1)

Specificity =
TN

TN + FP
, (2)

Accuracy =
TP + TN

TP + FP + FN + TN
, (3)

MCC =
TP × TN − FP × FN

√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

, (4)

where TP, FP, FN and TN are the numbers of true positives, false positives,
false negatives and true negatives, respectively. In this work, accuracy is used as
major indicator for estimating the performance of classifiers.

3 Results and Discussion

3.1 Classification Performance on Training Dataset

The proposed CPI method is based on information of chemical-protein inter-
actions. The chemical of N,N ’-diphenyl-p-phenylenediamine without a corre-
sponding record in STITCH database is excluded from the following analyses.
The chemicals in the training dataset is firstly transformed to 4 matrixes of
chemical-protein interaction scores obtained from combined scores, databases,
experiments and text-mining. Only the CPI information of Rattus norvegicus is
used because the hepatocarcinogenic annotation of the 62 chemicals is based on
rat and mouse. In order to provide better insights into protein biomarkers of
non-genotoxic hepatocarcinogenicity, the decision tree algorithm C5.0 is applied
to generate human interpretable rules based on training datasets for further
confirmation.
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Table 1. Cross-validation performance

Model type Classifier Feature selection Number of 5-CV
selected features accuracy

CPI C5.0 Information gain 1 0.82
QSAR* NCC Wrapper-based mRMR 15 0.76

TGx (1-day)* NCC Wrapper-based mRMR 90 0.87
TGx (3-day)* NCC Wrapper-based mRMR 90 0.87

TGx (5-day)* NCC Wrapper-based mRMR 90 0.90
* Model performance from Liu et al [9]

Fig. 1. Five-fold cross-validation performance of CPI method using various scores as
features

To evaluate the classification performance of the CPI method, a 5-fold cross-
validation (5-CV) is applied to the training dataset consisting of 7 positive and
31 negative chemicals. In the 5-CV, the training dataset is firstly divided into
5 folds with nearly equal number of chemicals. For each validation fold f of the
5-CV, C5.0 is applied to select important features for constructing a decision
tree classifier based on the remaining 4 folds and evaluate its performance on
the validation fold. The 5-CV performances of the CPI method for 4 matrixes
are shown in Fig. 1. The CPI scores obtained from databases and text-mining
perform best with the same accuracy of 82.05%. The accuracy of experiment-
derived CPI scores is slightly worse with an accuracy of 79.49%. The CPI scores
obtained by combining three data sources of databases, experiments and text-
mining perform worst with an accuracy of 76.92%.

The information obtained from databases including metabolic pathway in-
formation is used for the following analysis that could be more useful than in-
formation from text-mining because chemical metabolites might be more toxic
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than parent chemicals. Table 1 shows the detailed 5-CV performance of the CPI
method and published QSAR and TGx methods [9]. All the QSAR and TGx
methods are based on a nearest-centroid classifier (NCC) and a wrapper-based
feature selection based on the ranking calculated by a minimum redundancymax-
imum relevancy (mRMR) [26]. The CPI method utilizing a simple and human
interpretable classifier C5.0 shows good accuracy of 0.82 that is better than the
QSAR model. Although TGx models show better accuracies than CPI, its fea-
ture selection method is a wrapper-based method that is more likely to overfit
the training dataset and overestimate its prediction performance. Additionally,
the proposed CPI method utilizes only 1 feature for each fold with interpretable
rules that is much smaller than the QSAR and TGx models requiring 15 and 90
features without interpretable rules, respectively. The selected features will be
discussed in the next section.

3.2 Feature Selection of Important Proteins

For each fold of the 5-fold cross-validation, C5.0 select important features for
constructing a decision tree classifier. The interpretation of the decision tree clas-
sifier can provide better understanding of non-genotoxic hepatocarcinogenicity.
The important features of the five decision trees are shown in Table 2 with a
usage value showing the percentage of covered chemicals.

Due to the simple decision tree created for each fold with only one protein, all
the usage values are 100%. The ABCC3 protein is identified as an important pro-
tein in two folds (40%) showing its critical role in non-genotoxic hepatocarcino-
genicity. ABCC3 (ATP-binding cassette, subfamily C (CFTR/MRP), member
3) is a member of the superfamily of ATP-binding cassette (ABC) transporters
that transports various molecules across membranes. ABCC3, also known as the
canalicular multispecific organic anion transporter 2, exhibits drug transmem-
brane transporter activity that is critical for drug transport, multidrug resis-
tance and bile acid transport pathways. The rule associated with ABCC3 is ’IF
a chemical interacts with ABCC3 THEN it is a hepatocarcinogenic chemical’.

The protein MPO is a myeloperoxidase with peroxidase activity and is found
in extracellular space, mitochondrion and secretory granule. Previous studies
have reported possible roles of oxidative stress on carcinogenicity [27, 28]. MPO
as an antioxidant enzyme is able to detoxify the reactive oxygen species (ROS)
of oxidative stress. Chemicals interacting with MPO could interrupt the detoxi-
cification process and lead to carcinogenicity.

Serotransferrin (TF) exhibiting the activity of binding and transmembrane
transporter of ferric iron is identified in the third fold. Iron in its free form is
carcinogenic unless it is bound to ferritin or transferrin [29–31]. The carcino-
genicity of TF-interacting chemicals might be caused by their interference with
the loading of iron.

The protein RB1 of retinoblastoma 1 associated with retinoblastoma is found
to be involved in the non-genotoxic hepatocarcinogenicity [32]. RB1 is a tumor
suppressor protein for preventing excessive cell growth by inhibiting cell cycle
progression [33]. The dysfunction of RB1 could cause carcinogenicity.
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Table 2. Important proteins identified from 5-fold cross-validation

Fold Name Description Usage

1 ABCC3 ATP-binding cassette, subfamily C (CFTR/MRP), member 3 100%
2 MPO Myeloperoxidase 100%
3 TF Serotransferrin 100%
4 RB1 Retinoblastoma 1 100%
5 ABCC3 ATP-binding cassette, subfamily C (CFTR/MRP), member 3 100%

Altogether, the identified proteins and functions are consistent with possible
mechanisms of non-genotoxic carcinogenicity reported by previous studies, in-
cluding modulation of metabolic enzymes, induction of peroxisome proliferation
and alteration of intercellular communication [34–37].

3.3 Independent Test

To further evaluate the prediction ability of the CPI method, the proposed CPI
method is applied to train a decision tree classifier based on the training dataset
and predict the independent test dataset consisting of 20 chemicals. A search
of the chemical of lead(iv) acetate in STITCH database leads to the record of
lead(ii) acetate of the same CPI profiles. To avoid overestimate the prediction
performance of the CPI method, the chemical of lead(iv) acetate is excluded for
the following analysis. The same as the 5-CV with 1 protein selected for each fold,
only 1 protein is selected to construct a decision tree classifier. The decision tree
shown in Fig. 2 represents a very simple rule of ’IF a chemical interacts with
ABCC3 THEN it is a hepatocarcinogenic chemical’. The rule is surprisingly
simple and correctly predict 90% chemicals in the training dataset with only 4
misclassified chemicals. All 31 non-hepatocarcinogenic chemicals do not interact
with protein ABCC3. Fifty percent of hepatocarcinogenic chemicals interact with
ABCC3. Chemicals interact with ABCC3 might interfere the normal function of
chemical transportation.

Table 3. Independent test performance

Model type Number of Accuracy Sensitivity Specificity MCC
selected features

CPI 1 0.86 0.40 1.00 0.580

QSAR* 15 0.55 0.20 0.65 -0.138
TGx (1-day)* 90 0.77 0.40 0.88 0.307

TGx (3-day)* 90 0.77 0.20 0.94 0.206
TGx (5-day)* 90 0.82 0.60 0.88 0.482
* Model performance from Liu et al [9]

To demonstrate the prediction ability of the proposed CPI method, the deci-
sion tree classifier is applied to predict chemicals in the independent test dataset.
The prediction results are shown in Table 3. The simple decision tree classifier
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Fig. 2. The constructed decision tree based on the training dataset

of CPI performs very well with an accuracy of 86% that is better than QSAR,
1-day TGx, 3-day TGx and 5-day TGx models with accuracies of 55%, 77%,
77% and 82%. The MCC value as a more objective evaluation of performance
for unbalanced data is also used to evaluate prediction performance. The MCC
values for CPI, QSAR, 1-day TGx, 3-day TGx and 5-day TGx models are 0.580,
-0.138, 0.307, 0.206 and 0.482, respectively. The CPI method with highest MCC
value performs best.

The wrapper-based feature selection method used in the previous study [9]
might overestimate the 5-CV accuracies on the training dataset and result in a
large decrease in prediction accuracies on the independent test dataset. The pro-
posed CPI method utilizing only a single feature with human interpretable rules
outperforms QSAR and TGx methods showing that chemical-protein interac-
tions are useful for predicting non-genotoxic hepatocarcinogenicity of chemicals.

4 Conclusions

Alternative methods for assessing non-genotoxic hepatocarcinogenicity of chem-
icals could save a lot of time and money and reduce the consumption of animals
for testing. The traditional QSAR model is not effective in discrimination of hep-
atocarcinogenicity of non-genotoxic chemicals [9] showing the complex nature of
non-genotoxic hepatocarcinogenicity involving many genes and proteins. In con-
trast to chemical structure-based QSAR models, TGx methods based on gene
expression-profiles can model the complex mechanism in the transcriptomics
level and perform better than the QSAR model [9].

The mechanism of action of non-genotoxic hepatocarcinogenicitymight involve
complex regulations of proteins and chemicals. Hence, the application of CPI data
for developing classifiers is expected to outperformQSAR andTGxmethods. This
study presents a novel CPI-based method and demonstrates the effectiveness of
biomarker identification and superior prediction performance. The utilization of
simple decision tree algorithms generates human-interpretable rules for better un-
derstanding of key proteins for non-genotoxic hepatocarcinogenicity.
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The identified proteins could serve as important biomarkers for further appli-
cations to the assessment of non-genotoxic hepatocarcinogenicity of chemicals.
Compared to TGx methods requiring assessment of 100 gene expression val-
ues and 5 to 28-day experiments, the identified single biomarker could be more
cost-effective and time-saving. Future works include the application of advanced
machine learning algorithms such as support vector machines and collection of
a larger dataset for improving prediction accuracy.
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