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Abstract. The high-throughput technologies have led to vast amounts
of protein-protein interaction (PPI) data, and a number of approaches
based on PPI networks have been proposed for protein function predic-
tion. However, these approaches do not work well if annotated proteins
are scarce in the networks. To address this issue, we propose an active
learning based approach that uses graph-based centrality metrics to se-
lect proper candidates for labeling. We first cluster a PPI network by us-
ing the spectral clustering algorithm and select some proper candidates
for labeling within each cluster, and then apply a collective classification
algorithm to predict protein function based on these annotated proteins.
Experiments over two real datasets demonstrate that the active learn-
ing based approach achieves better prediction performance by choosing
more informative proteins for labeling. Experimental results also validate
that betweenness centrality is more effective than degree centrality and
closeness centrality in most cases.

Keywords: Protein function prediction, Active learning, Collective
classification, Protein-protein interaction network.

1 Introduction

In recent years, the rapid development of high-throughput experimental biology
has led to huge amounts of unannotated protein sequences. Meanwhile, experi-
mentally determining protein function is expensive and time-consuming. So there
is a wider and wider gap between the pace of discovery of protein sequences and
that of functional annotation of known proteins. Therefore, protein function
prediction has been a fundamental challenge of biology in the post-genomic era.
Although many efforts have been made to solve this problem, the proportion
of annotated proteins is still very low. Among the 13 million protein sequences,
there are only 1% sequences having experimentally-validated annotations [I].
Even for the most well-studied model organisms, taking yeast as an example,
approximately one-fourth of the proteins have no annotated functions [2].

Due to high cost and long duration of experimentally annotating protein func-
tion, there is increasing research on using computational approaches to predict

A. Ngom et al. (Eds.): PRIB 2013, LNBI 7986, pp. 172-{[83] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



Active Learning for Protein Function Prediction in PPI Networks 173

protein function. The recent advent of high-throughput experimental biology
has generated vast amounts of protein-protein interaction (PPI) data, which are
represented as networks, where a node corresponds to a protein and an edge
corresponds to an interaction between a pair of proteins. Thus, a number of
prediction approaches based on PPI networks have been proposed. These ap-
proaches make use of the observation that proteins with short distance to each
other in a PPI network are more likely to have similar functions.

However, current network-based approaches will fail to work when annotated
proteins are scarce. To address this issue, in this paper we propose an active
learning [3] based approach that uses graph-based centrality metrics to select
good candidates for labeling. Our approach consists of two steps: we first cluster
a PPI network by using spectral clustering algorithm and select proper candi-
dates for labeling within each cluster, and then apply a collective classification
algorithm to predict protein function based on these annotated proteins. To the
best of our knowledge, this is the first study where active learning is employed
to predict protein functions in PPI networks. The key idea behind active learn-
ing is that a machine learning algorithm can achieve higher accuracy with fewer
training labels if it is allowed to choose the proper data for labeling from which
it learns. Therefore, we let the learning algorithm pick a set of unannotated
proteins to be labeled by an oracle (i.e., a lab experiment), which will then be
used as the labeled data set. In other words, we let the learning algorithm tell
us which proteins to label, rather than select them randomly.

We conduct experiments on the S.cerevisiae and M.musculus functional an-
notation datasets, The experimental results show that the active learning based
approach achieves better prediction performance by choosing more informative
proteins for labeling. Experimental results also validate that betweenness cen-
trality is more effective than degree centrality and closeness centrality in most
cases. The rest of this paper is organized as follows: Section [2] presents our ap-
proach, Section B gives the experimental evaluation results, Section [ describes
related work, and finally Section [l concludes the paper.

2 Method

2.1 Notation and Problem Definition

In this paper, a PPI network is represented as an indirected graph G = (V, €),
where V = (V1,...,V,,) is a set of n vertices and & is a set of weighted edges.
Each vertex V; € V represents a protein and each edge E;; € & represents
an interaction between proteins V; and V;. Edge F; ; is labeled with a weight
w; ; that indicates the interaction confidence. F = (Fi, ..., Fi,) is the set of m
functions assigned to the proteins, and each vertex V; € V is assigned with at
least one function. The functions of vertex V; € V are denoted by

D(V;) = [fints fizsoos fisjsooos fim) " (1)
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where
{f,',j =1, if V; has the function Fj; @)

fi; =0, otherwise.

V can further be divided into two sets: X — the labeled vertices and ) — the
vertices whose functions need to be determined.

In this paper, our goal is to label as few vertices {Y;} C ) as possible with
at least one of the functions in F based on the available information of the
corresponding PPI network, so that the labeled vertices {Y;} and X together
constitute the training set, which can be used to train an as good as possi-
ble classifier. Here, active learning is used for data selection to be labeled, the
collective classification method is employed for classifier training.

2.2 Active Learning Strategies for Protein Function Prediction

As we point out above, experimentally annotating protein function is expensive
in terms of cost and effort, and current network-based approaches do not work
well if annotated proteins are scarce. Therefore, strategies that minimize the
amount of labeled data required in the supervised learning task would be useful.
Active learning attempts to overcome the labeling bottleneck by asking queries in
the form of unlabeled instances to be labeled by an oracle (i.e., a lab experiment).
In this way, the active learner aims to achieve high accuracy using as few labeled
instances as possible, thereby minimizing the cost of obtaining labeled data. The
key idea behind active learning is that a machine learning algorithm can achieve
higher accuracy with fewer training labels if it is allowed to choose the most
proper data for labeling from which it learns.

In this study, the PPI network is represented as a graph, so it seems reasonable
that we leverage graph structure to identify the nodes (proteins) in the graph
that are important (central) for labeling. That is, we expect that such central
nodes are proper candidates to label. Furthermore, we also note that nodes of
the same class tend to cluster together in the PPI network. This suggests that
clustering the graph and then finding central nodes in the clusters my be a good
way to find proper candidates. Therefore, we explore the spectral clustering
algorithm to cluster the PPI network and then leverage graph-based centrality
metrics to select central nodes in the clusters to label.

Under the active learning framework, there is a small set of labeled data and a
large pool of unlabeled data available. A fixed number M of labels (usually called
the labeling budget) is requested. Suppose that the selected nodes are distributed
across the clusters of the PPI network, in proportion to the size of the cluster.
Let n; be the number of nodes in cluster C; and N be total number of nodes in
the PPI network. Then, m;, the number of nodes to be selected from cluster C;
is given by

K
m; = M *xn;/N and M:Zmi. (3)

i=1
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In each cluster C;, m; central nodes are selected to label. In what follows, we
describe and discuss the spectral clustering algorithm and graph-based centrality
metrics in detail.

Spectral Clustering Algorithm. Spectral clustering [4] is one of the most
popular modern clustering algorithms. It is simple to implement, can be solved
efficiently by standard linear algebra software, and very often outperforms tra-
ditional clustering algorithms such as the k-means algorithm. Detail description
of the spectral clustering algorithm is presented as follows.

Given a PPI network, let W € R™*™ be its weighted adjacency matrix, Wy; =
0 and W;; = 0 if the vertices V; and V; are not connected by an edge. The degree
of a vertex V; € V is defined as

d =3 . (4)
j=1

Note that this sum only performs over all vertices adjacent to V;, as for all
other vertices Vj the weight W;; is 0. The degree matrix D is defined as the
diagonal matrix with the degrees dy, ..., d, on the diagonal. The unnormalized
graph Laplacian matrix is defined as

L=D-W. (5)

Next, we compute the first k eigenvectors ui,...,u; of L, and let U € R"**
be the matrix containing the vectors uq, ..., ux as columns. For ¢ = 1,...,n, let
y; € R¥ be the vector corresponding to the i-th row of U. Finally, we cluster the
points y; in R¥ with the K-means algorithm into clusters Ci, ..., Cy.

Graph-Based Centrality Metrics. In this study, we consider three kinds of
graph-based centrality metrics for active learning, including degree centrality,
closeness centrality and betweenness centrality.

Degree centrality. Graph degree centrality is perhaps the simplest measure of
centrality, it is defined as the number of links incident upon a vertex (i.e., the
degree of a vertex). So graph degree centrality of a vertex v is defined as follows:

Cp(v) = deg(v). (6)

Closeness centrality [5]. In connected graph there is a natural distance metric
between all pairs of vertices, defined by the length of their shortest paths. The
farness of a vertex is defined as the sum of its distances to all other vertices,
and its closeness is defined as the inverse of the farness. Thus, the more central
a vertex is the smaller its total distance to all other vertices. Graph closeness
centrality measures how close a vertex is to all other vertices in the graph, it is
defined as the inverse of the total distance to all other vertices:

1
Col) = s g )°

teV

(7)
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where d(v, t) is the distance from vertex v to vertex ¢ in the graph. In unweighted
graph, the distance is defined in terms of the number of edges that connect two
vertices. And in weighted graph, we define the distance as the sum of weights of
the edges that connect two vertices.

Betweenness centrality [0]. Graph betweenness centrality is perhaps one of
the most prominent measures of centrality, it quantifies the number of times a
vertex acts as a bridge along the shortest path between two other vertices. That
is, vertices that have a high probability to occur on a randomly chosen shortest
path between two randomly chosen vertices have a high betweenness. Graph
betweenness centrality of a vertex v is evaluated as follows:

B = Y (®)

g
sHEVFEL st

Above, o4 is the total number of shortest paths from vertex s to vertex ¢ and
ost(v) is the number of those paths that pass through v. As with closeness, we
compute all shortest paths to get the centrality measure for all vertices.

2.3 Collective Classification: The Gibbs Sampling Approach

In this study, Gibbs sampling (GS) [1] is applied to predicting protein function.
GS is one of the most commonly used collective classification algorithm that
aims at finding the best label estimate for each un-annotated vertex Y; € Y
by sampling each vertex label iteratively. Our approach consists of two steps:
bootstrapping and iterative classification, the pseudo-code is illustrated in Algo-
rithm [l The details of the algorithm are presented in the following subsections.

Bootstrapping. According the observation that proteins with shorter distance
to each other in the network are more likely to have similar functions, we use
weighted voting to predict an initial functional probability distribution for a
query protein (i.e. an un-annotated protein).

Given a query protein V., which has N, neighbors, these corresponding edge
weights can be represented as the vector as follows:

-/\/;U - [wxlvwx27“'7w$ia"'awam]- (9)
Then the probability of V, having the j-th function Fj is computed as follows:

Nz

) 1 =
Pg = Zw Zwm’ifi’j (10)

i=1

x

where ZY is the normalizer:

m Ng
Z;/,U = Zzwx’ifi’j' (11)
j=11i=1
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The larger the value of P/ is, the more likely protein V, has the j-th function Fj.
The initial functional probability distribution for query protein V. is represented
as an m-dimensional vector:

a, =[P}, P?, ..., P™. (12)

x

Note that when predicting the functions of the query protein V,,, we consider only
its labeled neighbor proteins. That is why we use XNN* in Algorithm[I] (Line 3),
because unlabeled neighbor proteins can not be exploited in the bootstrapping
step. This process is implemented in Alg. [l from Line 2 to 4.

Iterative Classification. Iterative classification is performed in two steps:

— First, there is a fixed number B of iterations known as “burn-in” period.
In this period, we only update a, using weighted voting in each iteration.
Corresponding codes of this period in Algorithm [l are from Line 6 to 10.

— Second, there is a sampling period. In this period, not only do we update
a, in each iteration but we also maintain the count statistics as to how
many times we have sampled the j-th function F} for protein V,. Codes
corresponding to this period in Algorithm [ are from Line 12 to 20.

Note that each protein can belong to one or more functions, therefore, we formu-
late protein functional annotation as a multiclass classification problem. More
formally, the most likely function of protein V is computed like this:

bglc = argmazc(i,m Pg (13)
where bl is the value of j that maximizes the value of PJ, called the 1st-rank
result. The second most likely function is denoted by b2, called the 2nd-rank
result. The third most likely function is denoted by b3, called the 3rd-rank result,
and so forth. In case that more than one element PJ has the same value, their
ranks will be assigned randomly. For each protein V, in the ¢-th iteration, an
m-~dimensional vector bg; is created to record the ranking result:

bei = [bL;, b2, ..., b™]. (14)

xiy Yxir o Y

When the pre-specified number (threshold) S of iterations have elapsed, we get
a matrix M, with S rows and m columns for query protein V:

M, = [bwl,bwz,...,bms]T. (15)

In the first column of the matrix M,, the most frequently sampled function
cl is regard as the first rank predicted function for the query protein V. In
the second column of the matrix M,, the most frequently sampled function c2
excluding c.. is regard as the second rank predicted function. In the third column
of the matrix M,, the most frequently sampled function ¢2 excluding ¢l and c2
is regard as the third rank predicted function, and so forth. Finally, we get an

m-dimensional vector ¢, for query protein V.:

Co = [c}c,ci,...,c?]. (16)
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Algorithm 1. Gibbs sampling based collective classification for protein function
prediction in PPI networks.

1: // bootstrapping
2: for each query protein V, do
3 compute the initial az using X NN’
4: end for

5: // burn-in period
6: for i=1 to B do

7 for each query protein V, do

8 update ag using current assignments to N’
9: end for

10: end for

11: // sampling period

12: for i=1 to S do

13: for each query protein V, do

14: update ag using current assignments to N’
15: create by to record the m-rank result

16: end for

17: end for

18: for each query protein V, do

19: calculate the final result ¢, based on matrix M,
20: end for

3 Experimental Evaluation

3.1 Interaction and Annotation Data

We evaluate the performance of our approach with two functional annotation
datasets. These two datasets are both based on Functional Catalogue (Fun-
Cat) annotation scheme [8] taken from Munich Information Center for Pro-
tein Sequences (MIPS. FunCat is organized as a hierarchically structured
annotation system and consists of 28 main functional categories. FunCat an-
notations for S.cerevisiae are downloaded from Comprehensive Yeast Genome
Database (CYGD) [9]. CYGD is a frequently used public resource for yeast re-
lated information. There are a total of 6168 proteins in the dataset, of which
4774 are annotated. These proteins belong to 17 functional categories. The
second functional annotation dataset is Mouse functional Genome Database
(MfunGD) [10]. MfunGD provides a resource for annotated mouse proteins and
comprises 17643 annotated proteins. These annotated proteins belong to 24 func-
tional categories.

In this study, protein interaction data is download from the STRING database
[11], which is an integrated protein interaction database containing known and
predicted protein interactions. These interactions were mainly derived from four
data sources: genomic context, high-throughput experiments, conserved co-
expression and previous knowledge. The most recent version of STRING covers
about 5.2 million proteins from 1133 organisms.

We construct two protein interaction networks (one for S.cerevisiae and an-
other for M.musculus) where a node corresponds to a protein and a weighted
edge corresponds to an interaction between two proteins. Each node is assigned
with at least one functional category and each edge is labeled with a weight

!http://www.helmholtz-muenchen.de/en/ibis


http://www.helmholtz-muenchen.de/en/ibis

Active Learning for Protein Function Prediction in PPI Networks 179

based on the interaction confidence. Proteins without interaction and annota-
tion data are deleted. As a result, in the S.cerevisiae interaction network, there
are 4687 proteins and 388846 interactions, and in the M.musculus interaction
network there are 14277 proteins and 832128 interactions.

3.2 Experimental Methodology

In the experiments, we compare the performance of three kinds of data selection
strategies. The first is random data selection strategy (baseline), which randomly
selects nodes in the PPI network to label. The second is graph structure based
data selection strategy, which leverages graph-based centrality metrics to select
central nodes in the PPI network to label. The last is our proposed strategy,
which first uses the spectral clustering algorithm to cluster the PPI network
and then leverages graph-based centrality metrics to select central nodes in each
cluster to label. Note that there are three kinds of graph-based centrality met-
rics (degree centrality, closeness centrality and betweenness centrality). Thus, in
fact, we compare the performance of seven kinds of data selection strategies.

We set the proportion of annotated proteins to 5%, and for each data selection
strategy, we run 20 experiments and report the average performance. In spectral
clustering, we set the number of clusters K to 30 and 50 for S.cerevisiae and
M.musculus respectively, this value is chosen by trial and error. As for collective
classification, we set the burn-in period to 10 iterations (i.e. B=10) and collect 50
samples (i.e. S=50) in the sampling period. Since protein functional annotation
is a multiclass classification problem, all competing methods calculate an m-
rank predicted function vector ¢, for each query protein V,. In this setup, we
define the i-th rank overall true positive (TP) as the number of proteins whose
i-th rank predicted function ¢’ is one of the true functions of the protein V.
and the i-th rank overall false positive (FP) as the number of proteins whose
i-th rank predicted function ¢, is not one of the true functions of the protein V..
Accordingly, as in [I2] we use the ratio of TP/FP as the measure of performance,
which depicts the relative magnitude between TP and FP.

3.3 Experimental Results

In the experiments, there are two PPI networks (corresponding to S.cerevisiae
and M.musculus). For S.cerevisiae, the average number of functions that each
protein has is 2.13, so we consider only the top 3 (3=[2.13] + 1) predictions.
Fig. shows the performance comparison of seven kinds of data selection
strategies for the top-3 predictions. And for M.musculus, because the average
number of functions that a protein possesses is 2.58, we consider also only the
first 3 (3=|2.58] + 1) predictions. The results are shown in Fig. In Fig. [0l
for simplification, Random indicates the random data selection strategy; De-
gree/ Closeness /| Betweeness means the graph structure based strategy with the
metric of degree centrality/closeness centrality / betweenness centrality; And cDe-
gree/ cCloseness [ cBetweeness is our strategy with clustering plus the metric of
degree centrality/ closeness centrality / betweenness centrality.
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Fig. 1. Performance comparison of seven kinds of data selection strategies

It can be seen from Fig. [[l that all the six graph structure based data selec-
tion strategies obtain more accurate predictions than the random data selection
strategy, due to using graph-based centrality metrics to select central nodes in
the PPI network to label. The results clearly show that the active learning based
approach achieve a better prediction performance than the baseline approach.
This means that given a similar number of labeled proteins, our active learning
approach can achieve outstanding performance by choosing the most informa-
tive proteins to be labeled. We also notice that our proposed data selection
strategies outperform other three graph structure based data selection strate-
gies. As we explore the spectral clustering algorithm to cluster the PPI network
before selecting protein candidates for labeling, this result shows that clustering
is an important pre-processing step in active learning algorithm. The reason is
that selecting candidates across clusters will make the distribution of selected
candidates over different classes more balanced.

The experimental results also validate that using betweenness centrality as
the graph-based centrality metric generally can achieve the best performance in
most cases, which means betweenness centrality is more effective than degree
centrality and closeness centrality. In addition, it is worth noting that higher
rank functions are predicted better than lower ones, implying that the protein
functions are well ranked by our approach.

4 Related Work

In a recent review [2], the existing network-based methods for protein function
prediction are categorized into two main groups: direct methods and module-
assisted methods. Direct methods propagate functional information through a
PPI network and use the propagated information for functional annotation, ex-
amples include neighborhood counting methods and graph theoretic methods.
The majority method [I3] and the indirect neighbors method [14] are two typ-
ical direct network-based approaches. Majority method [13] is the simplest direct
method, it utilizes the biological hypothesis that interacting proteins probably
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have similar functions, it ranks each candidate function based on the function’s
occurrences in the immediate neighbors. Indirect neighbors method [14] assumes
that proteins interacting with the same proteins may also have some similar func-
tions, It exploits both indirect and immediate neighbors to rank each candidate
function. Functional flow method [15] is a graph theoretic method, it simulates a
discrete-time flow of functions from all proteins. At every time step, the function
weight transferred along an edge is proportional to the edge’s weight and the
direction of transfer is determined by the functional gradient.

Module-assisted methods first identify functional modules in the network and
then assign functions to all the proteins in each module, representatives are hier-
archical clustering-based method and graph clustering method. A key problem
of this kind of methods is how to define the similarity between two proteins.
Arnau et al. [16] used the shortest path between proteins as a distance measure
and apply hierarchical clustering to detecting functional modules. Up to now,
numerous graph-clustering algorithms have been applied to detecting functional
modules, such as clique percolation [17] and edge-betweenness [I§] clustering.

Additionally, Chua et al [I9] presented a simple framework for integrating
large amount of diverse information for protein function prediction by using
simple weighting strategies and a local prediction method. Hu et al [20] hy-
bridized the PPI information and the biochemical/physicochemical features of
protein sequences to predict protein function. The prediction is carried out as
follows: if the query protein has PPI information, the network-based method is
applied; Otherwise, the hybrid-property based method is employed.

Active learning [3] is a form of supervised machine learning in which a learn-
ing algorithm is able to interactively query the user (or some other information
source) to obtain the desired outputs at some unlabeled data points. The key
issue is to design the query strategy such that as few data points as possible are
queried to achieve as large learning performance improvement as possible. The
simplest and most commonly used query strategy is uncertainty sampling [21]. In
this framework, an active learner queries the instance that the classifier is most
uncertain. This strategy is often straightforward for probabilistic learning mod-
els. The query-by-committee (QBC) [22] strategy maintains a committee, each
committee member is allowed to vote on the labelings of query candidates, the
most informative query is considered to be the instance about which they most
disagree. The fundamental premise behind the QBC strategy is minimizing the
version space. The expected model change [23] strategy uses a decision-theoretic
approach, it selects the instance that would impart the greatest change to the
current model. The expected error reduction [24] strategy aims to measure not
how much the model is likely to change, but how much its generalization error
is likely to be reduced. It selects the instance that offer maximal expected error
reduction to the classifier. The density-weighted [25] strategy suggests that the
informative instances should not only be those which are uncertain, but also
those which are representative of the underlying distribution.

Active learning has been applied to some bioinformatic problems, such as
cancer classification [26], DNA microarray data analysis [27] and protein-protein
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interaction prediction [28] etc. However, to the best of our knowledge, there is
no work on active learning for protein function prediction in the literature.

5 Conclusion

In this study, we proposed an active learning based approach to conducting
protein function prediction based on PPI networks. It first clusters a PPI network
by using the spectral clustering algorithm and select some appropriate candidates
for labeling within each cluster by using graph-based centrality metrics, and then
applies a collective classification algorithm to predict protein function based
on these annotated proteins. We conducted experiments on two real, publicly
available PPI datasets. The experimental results show that the proposed active
learning based approach, by choosing more informative proteins for labeling,
achieves obviously better prediction performance than the baseline approach.
Furthermore, betweenness centrality is more effective than degree centrality and
closeness centrality in most cases.
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