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Abstract. Protein structure prediction (PSP) suites can predict ‘near-
native’ protein models. However, not always these predicted models are
close to the native structure with enough precision to be useful for biolo-
gists. The literature to date demonstrates that one of the best techniques
to predict ‘near-native’ protein models is to use a fragment-based search
strategy. Another technique that can help refine protein models is local
optimisation. Local optimisation algorithms use the gradient of the func-
tion being optimised to suggest which move will bring the function value
closer to its local minimum. In this work we combine the concepts of
structural refinement through feature-based resampling, fragment-based
PSP, and local optimisation to create an algorithm that can create pro-
tein models that are closer to their native states. In experiments we
demonstrated that our new method generates models that are close to
their native conformations. For structures in the test set, it obtained an
average RMSD of 5.09 Å and an average best TM-Score of 0.47 when no
local optimisation was applied. However, by applying local optimisation
to our algorithm, additional improvements were achieved.

1 Background

A fundamental aspect to modern molecular research is being able to elicit the
three-dimensional structure of protein molecules. To date, there are roughly 20
million protein sequences stored in the UniProtKB/TrEMBL databases [1], but
approximately only 79,000 of these sequences have available solved structures.
Furthermore, it has been demonstrated that even a single amino acid substitution
in a protein sequence may result in significant changes in protein stability and
structure [2]. This makes it difficult for molecular and cell biologists who need
the three-dimensional structure of proteins for their research. Due to so many
proteins lacking solved structures, a lot of focus has been placed on improving
and developing new computational protein structure prediction (PSP) methods.

Computational PSP methods have been historically broken up into three cate-
gories. In comparative modelling [3], evolutionary related homologous templates
that have a high sequence similarity to the target sequence are identified. Then,
the target and templates are aligned to form a three-dimensional structure of the
target protein. Finally, this is completed by combining models for loop regions
and other segments that do not align properly between the template and target.
On the other hand, proteins that belong to different evolutionary classes can
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have similar structures too. Therefore, threading methods [4] have been devel-
oped to allow a query sequence to be mapped directly onto three-dimensional
structures of solved proteins. The main motivation here is to recognise folds that
are similar to the query even if no evolutionary relationship between the query
and the template protein is present. Finally, the last category, ab initio [5], is
used when the query sequence has no evolutionary related proteins in the tem-
plate library. This is the most challenging approach, and success is at present
limited to small proteins.

PSP has been tackled from numerous angles using one or more of the above
methods. Some of the most successful approaches for ab initio are techniques
that employ a fragment-based search strategy (e.g., Rosetta [6] or I-Tasser [7]).
Fragments are derived from protein structures stored in the Protein Data Bank
(PDB) based on the likelihood that a segment of the target protein chain will
fold into a similar motif that already exists within a structure deposited in the
PDB. This fragment-based approach has many benefits, for instance, by using
fragments, we can approximate the populated areas of the local potential energy
surface for the backbone of the protein structure. This stems from philosophy
that when a protein is folding, the local structure will switch between numerous
possible local conformations [8]. Therefore, each fragment can be considered a
possible candidate for a conformation of the local sequence, which allows an en-
ergy function to be used that does not explicitly calculate the local interaction
energy (the fragment selection method has already considered local interactions).
This simplification is helpful in the PSP process because calculating the inter-
action energy assumes that a correct potential energy surface is known, which
may not be the case. Finally, one of the main benefits of using a fragment-based
approach is that we can easily move a protein from one topological isomer to
another through a single fragment replacement. This ability can be looked at as
moving a protein from one local minimum on the local physical energy surface
to another, which is difficult to do in a more continuous based search method
like molecular dynamics due to the computational complexity of such a move.

Another technique that has been applied to the PSP problem to help improve
prediction accuracy is local optimisation. Local optimisation algorithms use the
gradient of the function being optimised to determine which move will bring the
function value closer to its local minimum. There are many different methods
that have been proposed for this purpose [9]. For example, linear minimisation
performs a single step based on the gradient, and after a number of recursive
invocations, it reaches the local minimum. Compared to other available methods,
it is considered rather slow. A variety of quasi-Newton methods were proposed
in order to tackle local optimisation more efficiently. Davidon-Fletcher-Powell
and Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods are such examples. In
both cases, the descent’s direction and step is computed according to the gradient
and second derivatives of the function. The second derivatives are held in the
form of Hessian matrix which can be efficiently updated. The extra information
accumulated by these methods improves their efficiency, so that they converge
faster. Furthermore, inexact search modifications of these methods have also
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been proposed. They converge even faster, however, they do not necessarily
reach the local minimum. Examples of these are Armijo rule and non-monotone
modifications. In the latter case, the function value can be temporarily increased
which may help escape shallow local minima. In another example, the limited
memory variation of the BFGS method (L-BFGS) [10], instead of storing the
whole Hessian matrix, only the vectors which represent the matrix implicitly are
held in the memory.

Due to the success that fragment-based techniques have had, and the impor-
tance of local optimisation to keep every predicted model at the bottom of its
energy basin, we combined both of these concepts to develop a PSP resampling
approach that should be able to produce more accurate models. To achieve this,
we carried out tests to identify which local optimiser performs the best and
incorporated this optimiser into a fragment feature-based resampling approach
which is discussed in more detail in the next section.

2 Methods

Local optimisation methods can be applied to the prediction process to guar-
antee that a PSP solution reaches the bottom of its energy basin. To deter-
mine the best local optimisation method for the PSP problem, we carried out
tests utilising five state-of-the-art algorithms: Linear Minimisation (Lin-Min),
Broyden-Fletcher-Goldfarb-Shanno (BFGS), BFGS Armijo (BFGS-A), BFGS
Armijo Non-monotone (BFGS-A-NM), and Limited Memory BFGS (L-BFGS).
To supplement these results and gauge the usefulness of local optimisation in
the protein structure resampling process, the most promising algorithm was ap-
plied to our newly created fragment feature-based resampling approach. This new
resampling algorithm builds on the concepts of our previous works [11–13].

In the next sections, our approach to analyse local optimisation techniques and
our newly developed fragment feature-based resampling algorithm, which was
designed to generate good starting points for local optimisation, are explained.

2.1 Local Optimisation

To identify which local optimisation methods perform well on the PSP problem,
128 native protein structures were selected and small random perturbations were
applied to them in order to observe how successfully the local optimisers could
guide these structures back to their native conformations. These native proteins
structures were obtained from the CASP 8 website [14]. The centroid energy
function [8] was chosen to be the objective function to be minimised using each
of the five local optimisation methods (Lin-Min, BFGS, BFGS-A, BFGS-A-NM,
L-BFGS). The same energy function was used for the implementation of our
fragment feature-based resampling approach.

The general procedure used to test how well a local optimiser performed was
by perturbing each structure by a certain amount of residues (between 1 and 3)
and degree of movement (between 1 to 15 degrees), applying local optimisation,
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(a) Original structure (b) Altered structure

Fig. 1. An example of a protein that had three of its residues perturbed by 15 degrees.
Notice that the structure in (b) has several features displaced compared to its original
structure in (a). All images were generated using Rasmol [16].

and then, evaluating how much the energy and structural similarity changed.
The evaluation was carried out by recording the initial energy of the native
structure, then recording the energy and root mean square deviation (RMSD)
[15] of the altered structure, and finally, recording the energy and RMSD of the
structure after local optimisation. The averages (across the set of all structures)
of these values were then used as our final results. An example of one of our
perturbations can be found in Figure 1.

2.2 Fragment Feature – Based Resampling

In our previous works on feature-based resampling using a genetic algorithm
(GA) [11, 12], we demonstrated that by combining ‘native-like’ features gener-
ated from decoys from other PSP approaches, we could produce structures that
were closer to the native conformations. To further this work, we created a frag-
ment feature-based resampling algorithm to create ‘near-native’ starting points
for local optimisation.

In ourGA feature-based resampling algorithm [11, 12], our features were stored
as the initial population in the form of decoys outputted from an initial prediction
run. Then, crossover and mutation techniques were applied to them throughout
the prediction process using energy function for fitness calculations. This was ac-
complished by using a crossover operator that splices together protein fragments
that have ‘native-like’ features according to the fitness function f . Our GA’s
crossover operator randomly selected a crossover point (n) where n ∈ Cα(S)
(Cα(S) refers to the set of Cα atoms contained within the structure S). Let p1
be parent 1, and p2 be parent 2. Everything from n onwards in p1 is replaced
with everything from n onwards in p2, and vice versa. This process produced
two offsprings.

In this work, we created a fragment feature-based resampling algorithm to
overcome some of the limitations that were apparent from our results, the most
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obvious being the inconsistencies of the energy function. The centroid energy
function is not optimised to minimise its energy score in correlation with the
RMSD of the structure being predicted, which has been discussed in our previous
works [11, 12] and also shown in [17, 18]. This lack of accuracy can heavily affect
the GA optimisation process as it relies on the energy function to guide it to more
accurate solutions. To combat this, we developed an algorithm that incorporates
random feature-sampling from a set of ‘near-native’ fragments.

Our algorithm works by taking a set of protein decoy structures and creating
a fragment library from them. Each structure in the library can be broken into
numerous fragments of different sizes. Sampling this space is then carried out
by randomly selecting a position in the fragment library, randomly picking a
fragment size (based on how much of the structure is left to put together), and
finally, extracting that fragment based on the position of the structure being
processed and the length of the fragment. There are two main constraints that
our algorithm imposes on this fragment assembly procedure: (1) no structure
can contain more than half of the residues of any given structure within the
fragment library (to avoid duplicating any structure that was produced by the
PSP suite), and (2) structures must have no collisions between residues.

The assembly process described above is run until 2,000 structures are gen-
erated. Based on our initial testing, we concluded that 2,000 structures is a
sufficient amount of runs to generate most of the feasible combinations from the
set of structures contained in our fragment library. As mentioned above, because
we use an exhaustive search process, the energy function is only used to evaluate
how well energy function can identify ‘near-native’ structures generated from
our fragment feature-based resampling approach. Evaluation of the final output
is carried out by two structural measures: RMSD [15] and template modelling
score (TM-Score) [19].

3 Results and Discussion

We carried out two main tests: (1) assessment of which local optimiser performed
the best in guiding structures back to their native conformations after random
perturbation, and (2) evaluation of our fragment feature-based resampling al-
gorithm with and without local optimisation. In the local optimiser test, 128
native proteins were randomly perturbed using the following criteria: 1 residue
by 1 degree, 1 residue between 1–3 degrees, 2 residues between 1–5 degrees, 3
residues between 1–5 degrees, and 3 residues between 10–15 degrees.

For fragment feature-based experiment, the test set contained 14 protein
structures. Our fragment library contained 1,000 structures for each prediction,
and all fragments were generated from decoys. The local optimiser used for these
tests was the one that performed the best in our first experiment. Each protein
prediction was run five times, and the best output from each test was averaged
for our final results to remove any bias caused by the random fragment assembly
process. The best structure was chosen based on its RMSD value to its native
conformation.
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3.1 Empirical Results

Figure 2 depicts the results that were gained from our perturbation experiments.
The x axis is the amount of perturbation, and the y axis is the energy and RMSD
values (Figure 2a and 2b, respectively). To complement these results, the local
optimiser’s ability to guide an altered structure back to its native conformation
is visually demonstrated in Figure 3. Table 1 shows the results gained from
our fragment feature-based approach. For each protein, the average best energy,
RMSD, and TM-Score over the five tests with and without local optimisation are
displayed. Finally, Figure 4 depicts the prediction ability of our fragment feature-
based resampling by providing some visual comparisons between our models and
their native conformations.

3.2 Analysis of Results

Local Optimiser Comparison. In our perturbation experiments, we used 128
protein structures, applied different amounts of perturbation to them, and then,
locally optimised these structures. The average results for these experiments can
be found in Figure 2. In Figure 2a, for the first four perturbation classes, it can
be seen that all the local optimisers minimised the energy values starting from
the altered structure. Also, in each of these cases every local optimiser achieved
roughly the same energy levels after minimisation. For example, in Figure 2a,
for the first perturbation class (1 residue with a perturbation of 1 degree), each
optimiser generated models with an average energy between −165 and −171.
However, in the last case (3 residues with a perturbation of 10–15 degrees),
only BFGS-A, BFGS-A-NM, and L-BFGS minimised the energy significantly
when compared to the average altered energy, with L-BFGS being the best.
This suggests that the more a structure is altered from its native conformation,
BFGS-A, BFGS-A-NM, and L-BFGS are more likely to guide it back to a stable
state.

Other than just looking at the minimisation of the energy function to tell us
which local optimiser performed the best, their ability to minimise the RMSD
value of a structure was also evaluated. This would allow us to know which
optimiser could lower the energy of a structure while also guiding it back to its
native conformation. The results can be found in Figure 2b. From these results, it
is clear that out of all the optimisers, only L-BFGS significantly guided altered
structures back towards their native conformations. All the others had some
success, but on average, they actually moved structures further away from their
native state than the perturbation itself (this can be seen in Figure 2b where all
the optimisers in every perturbation class, except L-BFGS, actually have worse
RMSD averages when compared to the average altered RMSD).

Analysing the various perturbation classes in Figure 2b, it can be seen that
even Lin-Min did well in minimising small perturbations (first two perturba-
tion classes), however, as the structural change increased, its ability to move a
structure back to its native state deteriorated, eventually becoming one of the
worst out of the five we tested. It was also one of the worst optimisers at low-
ering the energy after a perturbation was made. L-BFGS, on the other hand,
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(a) Energy (b) RMSD

Fig. 2. Results for our local optimiser comparison. In (a), the results of how well each
local optimiser minimised the energy function are shown, and in (b), the results how
well each optimiser performed in moving the altered structures back towards their na-
tive conformation are depicted. Note that these results are averaged from our complete
128 protein set, and the averages for the perturbed structures before local optimisation
was applied are also included.

(a) Native (b) Altered (c) Optimised with L-BFGS

Fig. 3. Visual comparison of the native, altered and optimised structures. (a) is the
native structure before perturbation, (b) is the altered structure, and (c) is the structure
after L-BFGS optimisation was applied. As it can be seen in (c), once local optimisation
was applied on the structure in (b), it moved back to its native structure. All images
were generated using Rasmol [16].

appears to always move the structure back towards its native state. From these
findings, we can conclude that out of the five tested local optimisers, L-BFGS
was most successful in regards to minimising the energy of structures after be-
ing perturbed while at the same time being able to guide the altered structures
back towards their native states. To demonstrate the success of the L-BFGS
optimiser, Figure 3 allows for a visual comparison of the native conformation,
the perturbed structure, and the optimised structure using L-BFGS. It can be
seen that the L-BFGS optimiser moved the altered structure back towards its
native conformation by shifting the α-helices back into their correct places.
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Fragment Feature-Based Resampling. After the perturbation experiment,
we performed tests on our new fragment feature-based resampling approach,
both with and without the L-BFGS optimiser. The results from these experi-
ments can be found in Table 1. These results indicate that our new algorithm
can resample features in such a way that on average ‘near-native’ models are
generated. This is supported by an average best RMSD of 5.09 Å and an average
best TM-Score of 0.48 when no local optimisation was applied. Another inter-
esting aspect of these experiments is that the energy for the best scoring models
(in terms of RMSD and TM-Score) have quite high energy scores. On average,
they are not even in the negatives, meaning that the centroid energy function
is rather limited in regards to finding structures that are low in RMSD. This is
not to say that the centroid energy function is wrong as it has been proven that
it works well in finding compact structures that are roughly close to their native
states, but it lacks the accuracy to find models at a finer atomic resolution. A
graphical representation of the predictive power of our fragment feature-based
algorithm can be seen in Figure 4.

The next set of tests combined our algorithm with the L-BFGS local optimiser,
which performed the best in our perturbation tests. In this experiment, we gained
an average best RMSD of 5.05 Å and an average best TM-Score of 0.50. This

Table 1. Fragment feature-based resampling without and with local optimisation

Protein
Without local optimisation With local optimisation

f RMSD TM-Score f RMSD TM-Score

79.1a91A 119.35 5.69 Å 0.37 142.73 5.70 Å 0.37

78.1aoyA 59.83 5.00 Å 0.55 43.26 4.99 Å 0.53

43.1bdsA 115.76 5.85 Å 0.23 89.52 5.61 Å 0.28

99.1bm8A 14.91 7.65 Å 0.29 62.96 7.62 Å 0.29

110.1brsABC 11.29 7.64 Å 0.50 42.45 7.74 Å 0.56

67.1cspA 12.20 2.95 Å 0.65 −18.66 2.75 Å 0.68

54.1enhA 65.25 5.13 Å 0.26 84.43 5.03 Å 0.28

76.1d3zA −16.75 2.36 Å 0.76 −27.78 2.30 Å 0.76

47.1gptA 20.62 4.94 Å 0.38 75.19 5.03 Å 0.38

74.1kjsA 50.32 3.87 Å 0.55 32.37 3.91 Å 0.53

83.1pgxA 31.98 3.77 Å 0.66 −11.35 3.78 Å 0.66

77.1vccA 26.45 3.11 Å 0.67 12.81 3.19 Å 0.66

107.2pppA 164.93 8.57 Å 0.40 123.08 8.12 Å 0.49

78.2ptlA 39.38 4.70 Å 0.51 −14.94 4.89 Å 0.47
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(a) 1vcc native (b) 1vcc predicted

(c) 1gpt native (d) 1gpt predicted

(e) 1bm8 native (f) 1bm8 predicted

Fig. 4. In (a), (c), and (e), the native conformations for proteins 1vccA, 1gptA, and
1bm8A, respectively, are depicted, and in (b), (d), and (f), the predicted models for
these proteins using our fragment feature-based resampling algorithm are shown (note
that local optimisation was not used on these structures). All images were generated
using Rasmol [16].

means that irrespectively of the measure employed for the comparison, there
were additional relative improvements (0.8% and 4.2% in the case of RMSD and
TM-Score, respectively). The main reason why local optimisation in this case did
not result in higher improvements was that the fragments were obtained from
decoys which had already been locally optimised. However, if the algorithm was
designed to fold protein structures from just the amino acid sequence, local
optimisation would definitely be more useful.

There are aspects to our fragment feature-based approach that could be ad-
dressed to obtain further improvements. The first one is the problem of missing
features in the fragment library. As features generated by other PSP suites are
used in our approach, if the initial decoys do not contain all features necessary
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to create the native conformation for a given protein, then, our algorithm will
produce poor results. In most cases, given our results, nearly all features were
present, however, an example of this problem occurring can be seen in Figures 4c
and 4d. In Figure 4d, one of the major β-sheets was predicted incorrectly and also
has the wrong orientation, which brings us to the other problem: the orientation
of features.

Our approach stitches fragments together until the end of the protein chain is
reached, however, it never takes into consideration the orientation these features
should have. Figure 4 illustrates that some of the major reasons why we did not
obtain better results was due to the orientation of the features. To combat this
problem, we could add a move set that rotates the fragments around until their
optimal placements are found. This brings up two challenges: firstly, a scoring
function that can inform us what the best orientation is for a fragment or a set
of fragments, and secondly, how much rotation should be applied. According to
the literature, once a compact structure has been obtained it is best to only
move fragments slightly (e.g., 1–5 degrees) [8]. If both of these problems were
addressed, our algorithm could generate even better models than it already had.

4 Conclusions

Fragment-based protein structure prediction methods have shown a lot of success
in predicting the three-dimensional conformations of proteins. In this paper, we
combined fragment-based approach and local optimisation techniques. By doing
this, we showed that our new fragment feature-based resampling algorithm can
generate protein models close to native structures. Furthermore, we described the
benefits and disadvantages of using local optimisation techniques in conjunction
with feature-based resamplig.

To identify which local optimisation methods performed well on the PSP
problem, we selected 128 native protein structures to which we applied small
random perturbations in order to observe how successfully local optimisation
could guide structures back to their native conformations. The five optimisers we
tested were: linear minimisation (Lin-Min), Broyden-Fletcher-Goldfarb-Shanno
(BFGS), BFGS Armijo (BFGS-A), BFGS Armijo non-monotone (BFGS-A-
NM), and limited memory BFGS (L-BFGS). To supplement these results and
gauge the usefulness of local optimisation in the protein structure resampling
process, we took the most promising method from our perturbation experiment
and combined it with a fragment feature-based resampling approach, which we
proposed in this work.

Our new fragment feature-based resampling algorithm works by creating a
fragment library from a set of protein decoys. Each structure in the library can
be broken up into numerous sized fragments to build up ‘near-native’ protein
models. Sampling this space is carried out by randomly combining fragments
together until 2,000 collision-free structures are produced.

From our experimentation, we observed that the L-BFGS optimiser performed
the best. It was able to both minimise the energy of a structure and bring a
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structure back towards its native state. In regards to our fragment feature-based
resampling algorithm, we demonstrated that it could generate ‘near-native’ mod-
els. Out of the 14 structures we tried to predict, it obtained an average best
RMSD of 5.09 Å and an average best TM-Score of 0.47 when no local optimisa-
tion was applied. When we applied local optimisation, additional improvements
in both RMSD and TM-Score were recorded.

As mentioned in our results discussion and analysis, there is two avenues
to further improve our algorithm. First, being able to ensure that all features
which are needed to generate the native conformation are present in the fragment
library. However, this may be in some cases rather difficult as we are unsure what
features the native model contains, but the probability could be increased if there
is a sufficiently large library. And second, finding the correct orientation of the
fragments is crucial to allow more accurate models to be produced.
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