Fast and Maliciously Secure
Two-Party Computation Using the GPU

Tore Kasper Frederiksen and Jesper Buus Nielsen*

Department of Computer Science, Aarhus University
{jot2re, jbn}@cs.au.dk

Abstract. We describe, and implement, a maliciously secure protocol
for two-party computation in a parallel computational model. Our pro-
tocol is based on Yao’s garbled circuit and an efficient OT extension.
The implementation is done using CUDA and yields fast results for
maliciously secure two-party computation in a financially feasible and
practical setting by using a consumer grade CPU and GPU. Our pro-
tocol further uses some novel constructions in order to combine garbled
circuits and an OT extension in a parallel and maliciously secure setting.

1 Introduction

Secure two-party computation (2PC) is the area of cryptography concerned with
two mutually distrusting parties who wish to securely compute an arbitrary
function on their joint and private input without leaking any information. The
area was introduced in 1982 by Yao [25], specifically for the semi honest case
where both parties are assumed to follow the prescribed protocol. Yao showed
how to construct such a protocol using a technique referred to as the garbled
circuit approach. Later, a solution in the malicious setting, where one of the
parties might deviate from the prescribed protocol in an arbitrary manner, was
given in [4]. Another approach for malicious security, called the cut-and-choose
approach, involves running several instances of garbled circuits in parallel, with
some random instances being completely revealed to verify that the other party
has behaved honestly. Efficient 2PC and secure multi-party computation (MPC)
have many practical applications. The first case of this is described in [2], where
MPC was used for deciding the price of a national sugar beet auction in Denmark.
Other applications for 2PC and MPC include voting, anonymous identification,
privacy preserving database queries etc.

Recently a lot of research has gone into making 2PC efficient enough to be
practical, cf. [TI3I5TI8T92T]. Most previous approaches have focused on doing
this in a sequential model [I3[I5l[I8]. However, the recent evolution of processors
seems to indicate a convergence of speed, whereas the amount of cores in proces-
sors seem to increase. Thus, constructing algorithms and cryptographic protocols

* Partially supported by the Danish Council for Independent Research via DFF Start-
ing Grant 10-081612. Partially supported by the European Research Commission
Starting Grant 279447.

M. Jacobson et al. (Eds.): ACNS 2013, LNCS 7954, pp. 339-356] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

340 T.K. Frederiksen and J.B. Nielsen

that work well in a parallel model will be paramount for hardware based effi-
ciency increases in the future, which is why we take the parallel approach to
increase the speed of 2PC.

Previous work in “parallel cryptography” started with [22], where a cluster of
either CPUs or GPUs was used to execute 3072 semi honest protocols for 1-out-
of-2 oblivious transfer (OT) followed by gate garbling/degarbling in parallel
In [I2] 512 cores of a cluster was used to do OT along with circuit garbling
in parallel to achieve malicious security using the cut-and-choose approach. In
this manner they managed to use the inherit parallelism of the cut-and-choose
approach to achieve very fast and maliciously secure 2PC. Any other work taking
a parallel approach to cryptography that we know of focuses either on attacks e.g.
[24] or simultaneous applications of more primitive cryptographic computations
e.g. [20].

Contributions. Our main contribution is a careful implementation, along with a
general protocol, for maliciously secure 2PC using a Same Instruction, Multiple
Data (SIMD), or Parallel Random Access Model (PRAM) computation device.
Our protocol is UC secure in the Random Oracle Model (ROM), O T-hybrid model
and based on Yao’s garbled circuit approach [25] along with the OT extension
(See Section) of [18] and a few novel ideas. Computationally our protocol
relies solely on symmetric primitives, except for a few seed OTs used in the OT
extension which only need to be done once for each pair of parties. Furthermore,
our protocol is of constant round complexity and, assuming access to enough
cores, computationally bounded only by the number of layers in the circuit to
be computed and the block size of a hash function. Using a NVIDIA GPU as
our SIMD device, we make several experiments and show that our approach is
orders of magnitude more efficient on current consumer hardware than any other
protocol based on garbled circuits. Finally, we show that this approach is the
fastest yet documented assuming a “practical”, yet malicious, setting

Notation. We let || denote string concatenation and let r[¢] be the i’th element of a
string r. We let £ be the statistical security parameter and « be the computational
security parameter. In particular we let H(-) denote a hash function with a digest
of x bits (in our implementation this will be 160 bits). We assume that Alice
is the circuit constructor and Bob is the circuit evaluator and we will use their
names and roles interchangeably.

Overview. Section B] introduces the idea of parallel implementations and the
overall structure of our computation device of choice; the GPU. In Section [3
we go through the overall structure of our protocol. Later, in Section [we go

! 1-out-of-2 OT is the protocol where the first party, Alice, gives as input two bit-
strings (xo, 1), and the second party, Bob, inputs a bit b. Bob learns x but gets no
information on x1_p and Alice gets no information on b.

2 We refer to “practical” as either financially feasible for a consumer and/or having a
liberal statistical security parameter.

Fast and Maliciously Secure Two-Party Computation Using the GPU 341

through the ideas used to make our protocol suitable in the SIMD model. Then,
in Section [l we discuss the implementation details and finally in Section [0 we
review our results.

2 Background

Parallel Approach. In our approach we assume access to a massive parallel
computation device which is capable of executing the same instruction on each
processor in parallel, but on different pieces of data. Our protocol does not
make any assumption on whether such a device has access to shared memory
between the processors, or only access to local memory. This applies completely
for write privileges, but also for read privileges with only a constant memory
usage penalty.

We decided to implement our protocol using the GPU, the motivation being
that GPUs are part of practically all mid- to high-end consumer computers.
Furthermore, using the GPU eliminates the security problems from outsourcing
the computation to a non-local cluster. Also, assuming access to a local cluster
seems to be an unrealistic assumption for general practical applications. Using
gaming consoles or multi-cores CPUs might also be an option. However, even
the latest and best of these have orders of magnitude processors less than the
latest GPUs.

Our implementation is done using the CUDA framework which is an extension
to C and C++ that allows using NVIDIA GPUs for general computational tasks.
This is done by making CUDA programs. Such a program does not purely run
on the GPU. It consists of both general C classes, which run on the CPU, and
CUDA classes which run on the GPU since the GPU can not communicate
directly with the Operating System (OS).

In order to motivate our specific implementation choices it is necessary to
describe a general CUDA enabled GPU: Each GPU consists of several (up to
192) streaming multiprocessors (SM), each of these again contains between 8 and
192 streaming processors (SP), depending on the architecture of the GPU. Each
of the SPs within a given SM always performs the same operations at a given
point in time, but on different pieces of data. Furthermore, each of these SMs
contains 64 KB of shared memory along with a few kilobytes of constant cache,
which all of the SPs within the given SM must share. For storage of variables
each SM contains 64K 32-bit registers which is shared amongst all the SPs. Thus
all the threads being executed by a given SM must share all these resources.

We now introduce some notation and concepts which are used in the general
purpose GPU community and which we will also use in this paper; a GPU is
called a device and the non-GPU parts of a computer is called the host. This
means that the CPU, RAM, hard drive etc., are part of the host. The code
written for the host will be used to interact with the OS, that is, it will do all the
1O operations needed by the CUDA program. The host code is also responsible
for copying the data to and from the device, along with launching code on the
device. Each procedure running on a device without interaction with the host
is called a kernel. Before launching a kernel the host code should complete all

342 T.K. Frederiksen and J.B. Nielsen

needed 10 and copy all the data needed by the kernel to the device’s RAM. The
RAM of the device is referred to as global memory. After a kernel has terminated
the host can copy the results from the global memory of the device to its own
memory, before it launches another kernel.

A kernel is more than just a procedure of code, it also contains specifications
of how many times in parallel the code should be executed and any type of
synchronization needed between the parallel executions. A kernel consists of
code which is executed in a grid. A grid is a 2-dimensional matrix of blocks.
Each block is a 3-dimensional matrix of threads. Each thread is executed once
and takes up one SP during its execution. When all the threads, of all the blocks
in the grid, have been executed the kernel terminates. The threads in each block
are executed in warps, which is a sequence of 32 threads. Thus, the threads
must be partitioned into blocks in multiples of the warp size, and contain no
branching. The threads can then be executed completely independently and in
arbitrary order.

Furthermore, to achieve the fastest execution time one should coalescence the
data in global memory. That is, to “sort” the data such that the word thread
1 needs is located next to the word thread 2 needs and so on. This makes it
possible to load these 32 words for the warp in one go, thus limiting the usage of
bandwidth, and in turn significantly increasing the speed of the program. This
advice on memory organisation is also relevant for the data in the shared memory.
Finally, it is a well known fact [3] that the bottleneck for most applications of the
massive parallelism offered by CUDA is the memory bandwidth, thus it should
always be a goal to limit the frequency of which a program access data in the
global memory.

Maliciously Secure Garbled Circuits. For completeness we now sketch how
a generic garbled circuit is constructed. We are given a Boolean circuit descrip-
tion, C, of the Boolean function we wish to compute, f, from which we construct
a garbled circuit, GC. For simplicity we assume that each gate consists of two
input wires and one output wire. However, we allow the output wire to split into
two or more if the output of a given gate is needed as input to more than one
other gate. Each wire in C' has a unique label, and we give the corresponding
wire in GC' the same label. Each wire w has two keys associated, k0 and kl,
which are independent uniformly random bitstrings. Here kO represents the bit
0 and k! represents the bit 1. If the bit on wire w in C is 0, then the value
on wire w in GC will be k!, otherwise it will be k.. Each gate in GC' consists
of a garbled computation table. This table is used to find the correct value of
the output wire given the correct keys for the input wires. For a gate of C call
the left input wire [, the right input wire r and the output wire 0. Assume the
functionality of the gate is given by G(o,v) = p where o,v,p € {0,1}, then
the garbled computation table is a random permutation of the four ciphertexts
Con = Egy (Ee (k8)) = Eyo (Ek;; <k§(a’v))) for all four possible input pairs,

(o,v), using some symmetric encryption function, Exey(-). Le., the entries in the
garbled computation table consists of “double encryptions” of the output wire’s

Fast and Maliciously Secure Two-Party Computation Using the GPU 343

values, where the keys for each double encryption corresponds to exactly one
combination of the input wires’ values. The encryption algorithm is constructed
such that given k7 and k; it is possible to recognize and correctly decrypt Cy .,
but it is not possible to learn any information about the remaining three encryp-
tions.

Optimized Garbled Circuits. To determine which entry in the garbled computa-
tion table is the correct one to decrypt we use permutation bits [21]. The idea is
to associate a permutation bit, m; € {0,1}, with each wire, ¢, in GC. The value
on i is then defined as k? || ¢; where ¢; = m; ®b with b being the bit wire i should
represent. We call ¢; the external value. The garbled computation table is then

1,1

. wGidllcller (1.G(br,by
a, ¢ Ekbl Lor kg, (be,br) Il co ,
vofr 1=0,r=0

where ¢; = m @ by, ¢, = 7 @by, and ¢, = 7, G(by, by), sorted on ¢||c,. This
means that given the keys of the input wires the evaluator can decide which
entry he needs to decrypt, without learning anything about the bits the wires
represent. The encryption function for the keys in the garbled computation table
is defined as follows:

Zz,k,-(ko) = kO S3) KDF'kOl(kla k’r‘a S)a

where KDF!*°! (ki, kr, s) is a key derivation function with an output of |k,| bits,
independent of the two input keys, k; and k, in isolation, and which depends
on the value of some salt, s. As we assume the ROM, we are able to specify the
KDF as follows:

KDF®el (k) kpys) = H(ky || ke || 5)

This means that the encryption function essentially can be reduced to a single
invocation of a robust hash function with output length x (assuming x > |k,|).

We further include the optimization from [I1] which will make it possible to
evaluate all the XOR gates in the circuit for “free”. Free here means that no
garbled computation table needs to be constructed or transmitted. The trick
is to have a global key A, which is a uniformly random bitstring of the same
length as the wire keys, and then let k} = k? @ A for all wires i. Regarding the
external values, this implies that m; @ 1 = 7m; 0@ 1. So, in order to compute
an XOR gate simply compute XOR, of the keys of the two input wires of the
gate, that is k, || ¢, = ki @k, || ¢ @ ¢, Finally, we also eliminate a row of the
garbled computation table using the approach of [I7]. The trick is to let one of
the output keys be the result of the KDF on one input key pair. This key pair
is the one where the external values are 0, i.e., ¢ =0 and ¢, = 0. Le.:

G/ mE0m @0 || ¢ = KDF*H! (k7®0, k10, Gid || 0 | 0).

Depending on the type of gate, this again uniquely specifies the permutation bit
of the output wire as ¢, = 7, ® G (m; ® 0, 7, @ 0). The other output key is given

344 T.K. Frederiksen and J.B. Nielsen

using A. The three remaining entries in the garbled computation table are then
the appropriate encryptions of these two output keys.

Optimized Approaches to Cut-and-Choose Malicious Security. In general OT is
an expensive primitive, and if the evaluator has a large input to the circuit
this can contribute significantly to the execution time of the whole protocol.
However, the amount of “actual” OTs we need to complete can be significantly
reduced by using an OT extension: Beaver showed in [I] that given a number
of OTs it is possible to “extend” these to give a polynomial number of random
OTs which can easily be changed to specific OTs. Thus, making it possible to
do a few OTs once, and extend these almost indefinitely. The idea of an OT
extension has been optimized even further in [8] and [18] to yield significant
practical advantages. Our protocol uses a slightly modified version of the OT
extension presented in [I§].

The cut-and-choose approach in itself is unfortunately not enough to make a
semi honestly secure protocol maliciously secure. In fact, several problems arise
from using cut-and-choose to get security against a malicious adversary, these
problems can be categorized as follows:

1. “Consistency of input bits”; both parties need to use the same input in all the
cut-and-choose instances to ensure that the majority of the garbled circuit
evaluations are consistent and that a corrupt evaluator does not learn the
output of the function on different inputs.

2. “Selective failure attack”; we must make sure that both the keys the con-
structor inputs in the OT phase are correct, to avoid giving away a partic-
ular bit values of the evaluator’s input, depending on failure or not of the
evaluation.

Letting |z| be the size of the constructor’s input and ¢ the statistical security
parameter then the first problem can be solved using O(|z| - £2) commitments
to verify consistency in all possible cut-and-choose cases [I3]. A more efficient
approach is to construct a Diffie-Hellman pseudo random synthesizer, which
limits the complexity to O(|z| - £) symmetric and asymmetric operations and
also solves the selective failure attack [I5]. Yet another solution is based on
claw-free functions [23].

The selective failure problem can also be solved using different techniques.
In [13] it is shown how to do this using a circuit extension which increases the
amount of input bits of the evaluator by a factor £. In [23] the problem is solved
using a special version OT, known as comitting OT.

Our solution is different; we solve the problem of the consistency in the con-
structor’s input bits by using a circuit extension and the consistency of the eval-
uator by extending each OT by a factor £ using the random oracle. The selective
failure attack is handled by a novel combination of the OT extension and the
use of the free-XOR approach in the garbled circuit. We use these constructions
to achieve parallel scalability.

Fast and Maliciously Secure Two-Party Computation Using the GPU 345

3 High Level Description

We now describe the overall structure of our protocol. For simplicity we assume
that only the evaluator is supposed to receive output from the computation. If
we wish to compute a circuit where the constructor should also receive output
then the circuit extension approach of [13], or the signed output approach of [23],
will work directly in our protocol and be scalable in parallel.

Abstractly our protocol can be described as follows:

1. Given a statistical security parameter, ¢, such that the probability of a total
breakdown is at most 27¢, along with a Boolean circuit C, the constructor
extends the circuit to get a new circuit, C’, that includes a consistency
check. Using the description C’, the constructor constructs ¢ = 3.22-¢ GCs
in parallel

2. The constructor then hashes each of the ¢ GCs along with the keys for the
evaluator’s output, and sends the digests to the evaluator. These digests
makes it possible to avoid sending half of the garbled computation tables as
mentioned in [5]. This ends the garbling phase.

3. The constructor then sends both of the keys of the evaluator’s output wires
to the evaluator.

4. The constructor and evaluator engage in OT in order for the evaluator to
learn the keys corresponding to his input for all £’ circuits. We call this the
OT phase.

(a) The constructor and evaluator complete a modified OT extension which
is a 1-out-of-2 OTs of random bitstrings.

(b) For each of these OTs the constructor extends the two random outputs
to a ¢/ - k “random” bitstring. The first representing the 0-keys of the ¢
garbled circuits and the other the 1-keys.

(¢) Similarly the evaluator extends his output of each OT to a £’k “random”
bitstring, representing either the 0 or 1 keys of the ¢ garbled circuits
depending on his choice in the OT.

(d) From the circuit generation the constructor will have a 0 and 1 key for
each wire in each GC. The constructor then XORs each of the “random”
bitstrings she learned from the modified OT extension with the appro-
priate keys from the circuit generation and sends all these differences to
the evaluator.

(e) The evaluator uses these bitstrings to find the correct input keys for the
GCs by a simple XOR operation.

5. The parties then select ¢'/2 circuits for verification (using a coin-tossing
protocol) and the constructor sends the random seeds used to generate these
circuits to the evaluator. We call this and the following three steps for the
cut-and-choose phase.

6. Using the seeds the evaluator regenerates the circuits’ garbled computation
tables along with the keys of the output wires and verifies that they are

3 The constant increase in the amount of GCs stems from the fact that cut-and-choose
of £ circuits only corresponds to statistical security of 270-311¢ [15].

346 T.K. Frederiksen and J.B. Nielsen

correct by hashing them and checking equality with the digests he has already
received in Step 2. He also uses the seeds to generate the input keys for
the GCs. He uses these keys, the differences he received in the OT phase,
along with his outputs from the OT phase, to reconstructs both the 0 and
1 keys and uses these values to verify that the constructor sent the correct
differences in the OT phase.

7. After these checks the constructor sends the input keys in correspondence
with her input, along with the garbled computation tables of the £'/2 circuits
for which the evaluator was not given the seeds.

8. The evaluator then hashes the garbled computation tables of these circuits
and verifies them against the hash digests he received in Step 2. He then
degarbles the circuits to achieve the output keys along with their respective
external values. In the end he then checks consistency of these outputs. We
call this the evaluation phase.

9. If all checks pass, then the evaluator maps the output keys to their corre-
sponding bits and take the majority of the decrypted outputs of the ¢'/2
circuits to be the overall output of the protocol.

4 Specific Details

The Garbled Circuit. First of all, we modify the circuit of the function we wish
to compute in order to embed a consistency check for the constructor’s in-
put. Assume the function we wish to compute is defined by f as f(z,y) =
(fu(@,y), fol@.y)) with 2] = 7a, [yl = 7 and fi(z,y) being the (possibly
empty) output the constructor is supposed to learn and fa(x,y) being the out-
put the evaluator is supposed to learn. We now define a new function f’ as
f/((xvs)v (y,r)) = (fl(xvy)’ (fQ(x’y)v t)) where s €r {O’ 1}E’ T E€R {O’ 1}Ta+£
and t € {0,1}%. To compute ¢ define a matrix M € {0,1}**7= where the i’th
row is the first 7, bits of r << i where << denotes the bitwise left shift, i.e.
M, ; = r[i+j]. Using this matrix the computation of ¢ is defined as ¢ = (M-x)®s,
assuming all binary vectors are in column form.

With this modification the new function computes the same as the original,
but requires ¢ extra random bits of input from the constructor and 7, + ¢ extra
random bits from the evaluator. However, the new function returns ¢ extra bits
to the evaluator. These ¢ extra bits will work as digest bits and can be used to
check that the constructor is consistent with her inputs to the GCs by verifying
that they are the same in all the garbled circuits which are evaluated.

This augmentation works since the new function computes, besides the origi-
nal functionality, a family of universal hash functions where the auxiliary input
from both parties defines a particular hash function from this family. The aux-
iliary output of the augmented function is then the digest of the constructor’s
input in this universal hash function. The proof that the augmentation is indeed
a family of universal hash functions was shown in [I6]. Thus this gives statistical
security 2~¢ when augmenting the function with an ¢ bit digest.

We turn this new function, f’, into a circuit description which we then parse.
The parsing consists of finding all the gates which can be computed using only

Fast and Maliciously Secure Two-Party Computation Using the GPU 347

the input wires, calling this set of gates for layer 0. We then find all the gates,
not in layer 0, that can be computed using only the input wires and the output
wires of the gates in layer 0, calling this layer for layer 1. We continue in this
manner until all gates have been assigned a unique layer. The interesting thing
to notice here is that we now have a partition of the gates in such a manner
that all gates in a single layer can be constructed or evaluated in parallel, in an
arbitrary order, only requiring that gates at lower levels have been constructed or
evaluated beforehand. Thus, given the keys of the input wires we can construct
the garbled computation tables of the gates in layer 0 in an arbitrary order.
Moreover, the heavy part of these computations, encryption, can be done in
a SIMD manner. The only part of the construction that varies, depending on
the type of gate, is which entries in the garbled computation table that should
represent a 0-key and which that should represent a 1-key. Notice, however,
since we implement the free XOR approach this problem is eliminated, as we
can simply multiply the global key with the output of the given gate and always
XOR this into the garbled computation table entry which is already representing
a 0-key. Still, using the free XOR approach gives another problem, that is the
need to further partition each layer into sets of XOR gates and non-XOR gates,
in order to achieve complete SIMD or to keep the amount of layers and instead
execute each layer like it only consists of XOR gates and execute it like only
consists of non-XOR gates and only use the relevant result of each of the gates.

Finally, it should be noted that the global key we choose needs to be the same
for all the gates in one GC, but different for each of the GCs we make to allow
opening in cut-and-choose. Keeping these changes, and this way to parallelize
in mind, the protocol for construction is the same as the optimized protocol for
generic GC generation previously described, repeated ¢’ times.

The evaluation proceeds in almost the same manner as in the generic garbled
circuit evaluation. However, we still use the same paradigm for parallelization
as in the construction phase; we degarble each gate in a given layer, in all the
0’ /2 circuits, in parallel. Finally, having degarbled all gates, and thus found the
keys on the output wires. The evaluator uses the output keys previously received
by the constructor to find the bits of his output. The evaluator then checks for
a selective failure attack by verifying that each of the £ digest bits, on all of
the ¢’/2 circuits, has the same values. If that is not the case then the evaluator
outputs failure. Finally, the evaluator takes the majority of the outputs to be
his outputs.

The Modified OT Extension. We use the approach from [I8] for the core of our
modified OT extension. However, we make a few changes to reduce as many
operations as possible to parallel computable hashes of short bitstrings.

Assuming the existence of random oracles and a secure implementation of a
k-bit 1-out-of-2 OT as an ideal resource, the protocol is UC secure against a
malicious adversary. For the rest of this section we let 7 be the amount of bits
in the evaluator’s input for the augmented circuit, i.e. 7 = 7, + 74 + £.

348 T.K. Frederiksen and J.B. Nielsen

of

Define the evaluator’s (Bob’s) input to the augmented circuit as a bitstring
y' =y || r of 7 bits, where y is his original input. Define H(-) to be a hash

function with s bits output. The modified OT extension goes as follows:

1.

Bob chooses [gﬁ] pairs of seeds, each consisting of x random bits. That is,
for each i = 1, ... [3k] let (12, I}) €r {0,1}* x {0,1}" be the i’th seed
pair.

2. Alice now samples (gfﬂ random bits, =1, ..., Tls 4] €r {0,1}.
3

10.

11.

12.

. Alice and Bob then run {gm] OTs where, for i =1, ..., {gm], Bob offers

(19, 1}) and Alice selects x;, and receives 7.

. Now, for each of the i =1, ..., [8/@] pairs of random bits Bob computes

3
the following two vectors of 7 bits, using id; ; as a unique ID:

LY =H (idi o |19) |1H (idi 1 [19) || . . |H (id; 7y | 19)
L =H (id; o||1}) |H (idi 1 |1}) || .- 1H (ids 7 || 1) -

. Now, in the same manner Alice extends each of her outputs of the OT from

their original length of k bits, into strings of 7 bits. Thus, Alice computes
LT = H (ids ol 12°) 1 (i |15°) | .- [(i 1 | 15°).

. Now, for eachi =1,..., {gm] Bob computes a bitstring, \; = LY & L} & v/,

and sends these to Alice.

. Foreachi=1,..., (gn] Alice computes a bitstring as follows
L7 = L7 @ (- N) = LY @ (25 -y).
. Alice then picks a uniformly random permutation : {1, ceey [gﬁ] } — {1,

.., [5%] } where, for all i, 7(m(i)) = i, and sends these to Bob. Furthermore,

define S(mw) = {i|i < w(4)}, that is, for each pair, the smallest index is in
S(m).

. Now, for all the | ;x| indexes i € S(r) do the following:

3
(a) Alice computes d; = x; ® o, (;y and sends these to Bob.

(b) Alice and Bob both compute Z; = <L’fi & L’i’(’;))) This is possible for
Bob since d; uniquely determines the way to compute Z;, i.e. if he should
XOR LY with y'.

For all i € S(r), Alice and Bob concatenate Z; and evaluate equality using

the protocol for equality of [I8], modified for parallel computation (see the

full version of this article), and abort if they are not equal.

For each i = 1,..., Lgnj and for each j = 1,...,7 Alice defines K; to be

the string consisting of the j’th bits from all the strings L';", ie. K; =

7

xr 4'{
LTINS 6 - - ||L’L£‘°’JJ [7]. This means that she gets 7 keys consisting
35
of LgnJ bits.

Now, for each i = 1,..., [ng and for each j = 1,...,7 Bob sets M; to
be the string consisting of the j’th bits from all the strings LY, i.e. M; =

LYGIILYGII - 129,)

Fast and Maliciously Secure Two-Party Computation Using the GPU 349

13. Alice lets I'4 be the string consisting of all the bits x; for i € S(rw), i.e

'y =axy||zz] ... Hngny
14. Bob now computes Y; = H(M;) and achieves (Yo, ...,Y;). He then extends
each of these to ¢/ random values. That is, for each 7 = 1, ..., ¢’ he computes

Y} = H(id;;|Y;).
15. Alice computes XJQ = H(K;) and X} = H(K; ® I'4) and achieves (X9, X1,
(X2, X1)). She then extends each of these pairs to pairs of ¢ random
values. Specifically for each i = 1,...,¢ she computes the following:

(X904, X17) = (H (ids 5| X7) , H (idi 51 X)) -

If the parties have been honest it should be the case, that for each ¢ = 1,....,¢
and j = 1,...,7 we have ij/[j]’z = ij/[j]’z.

Fitting It Together. After completing the modified OT extension Bob has 7 - ¢/
keys of length . However, these keys are not consistent with the random keys
used for the ¢ circuits. So, for each of the 7 - ¢/ pairs of keys Alice has, she
computes the difference between the keys she achieved as a result of the modified
OT extension and the actual keys to the given GCs. That, is for eachi = 1,..., ¢
and each j = 1,...,7 she computesd X(”@k:oZ and 5“ X1 Z65]<:lzwhere

k;“ is the O—key and kj " is the 1- key for the particular wire, j, in the particular
GG, i. Alice then sends all the pairs of ds to Bob. For each pair, Bob can only
know one X value, that is, either XJQ’Z or X jl’z, because of the hiding property
of the OT. This means that Bob can compute exactly his choice of key, but not
the other. This follows from the security of the free- XOR approach along with
the power of the random oracle for constructing X" ; * and X , i.e. they work
as one-time-pads for the keys. Thus, we get a linking between the modified OT
extension and the GCs.

Finally, Alice also computes a digest of each of her outputs from the OT phase
and sends these to Bob. That is, for each i = 1,...,¢ and each j = 1,...,7 she
computes and sends X?” = H(XJQ’Z) along with X;” = H(X;’Z) to Bob.

After the cut-and-choose phase Bob will know the following bitstrings for each
of his input wires in ¢'/2 of the GCs:

— Both the keys for the current input wire, i.e. k%, k' = k0 @ A.

Exactly one output of the OT phase, X?, for his input bit, b, on the current

wire.

Both the difference bitstrings for the current input wire, i.e. §° and 4°.

— A digest for both the possible outcomes of the OT phase, i.e. x* = H(X?),
X! =H(X1).

To verify that 6° and §' are correct he computes

t=ktext X V=6aestea Y '=HXT).

350 T.K. Frederiksen and J.B. Nielsen

He accepts if and only if 6’ = 6® and ' ~* = x*. The intuition of why the check

on X’ﬁb is sufficient for the key k™ is as follows: If §7? is incorrect then X' #*
Xt in which case, with overwhelming probability, H(X’ﬁb) # H(X ™). Now,
since Alice does not know which ¢//2 GCs Bob will pick as check circuits, she
cannot guess in which of the ¢ bitstrings she can cheat without being detected.
Furthermore, as Bob can check both 6° and ¢!, she does not learn anything
about his input choices either. In conclusion this little trick prevents a selective
failure attack from the constructor.

Parallel Complezity. First see that many of the computationally heavy calcula-
tions in the protocol are hashes. Next, notice that these hashes are of “small”
bitstrings, bounded by O(k). Now by our approach to parallelization of the gar-
bling and degarbling process we notice that the complexity becomes bounded
by the length of the input to the KDF and the depth of the circuit to securely
compute. Thus, assuming access to enough parallel processors the garbling and
degarbling time will be bounded by O(k - d) where d is the depth of the circuit
to garble.

Regarding the modified OT extension notice that all the hashes to be com-
puted in a given step of the modified OT extension can be done independently of
each other, and thus in parallel. Looking at these steps from each party’s point
of view, we see that Step 4 is the step requiring the most computations for Bob.
Assume w.l.o.g. that 7 > k then if Bob has access to p < [g/ﬂ - T Processors
the amount of bits he needs to hash sequentially in the SIMD parallel model is
O(7 - k% /p). If he has access to more processors then the amount of bits to hash
sequentially is only O(k). For Alice the greatest amount of hashes are computed
in Step 15. If she has access to p < 7 processors then the amount of bits she
needs to hash sequentially in said model is O(7 - k/p). If she has access to more
processors, then the amount of bits to hash is only O(k). In conclusion, the over-
all parallel computational complexity of the protocol is O(k - d), not including
the seed OTs.

Finally, note that the communication complexity needed for this protocol
is asymptotically the same as for the OT extension described in [I§], that is
O(k-(k+7)) =0(k-(k+£-7)) bits, both for Alice, Bob and in total.

5 Implementation

We now describe how we constructed our implementation in CUDA in order
to achieve high efficiency, based on the knowledge of the device hardware and
scheduling. It should be noted that we use SHA-1 with 160 bits digest and 512
bits blocks as our hash function.

Garbling. First, notice that we will have a case of SIMD for every circuit in £'.
Thus, it is obvious to have each thread in a warp processing a distinct circuit
and thus having the blocks be 1-dimensional, consisting of a constant amount
of warps. This structure will give us both high block occupancy, and no more
than ¢’ threads in each block. We chose to have blocks consist of 32 threads since
preliminary tests showed this to be a good choice.

Fast and Maliciously Secure Two-Party Computation Using the GPU 351

Next we notice that all gates within a single layer can be computed in arbitrary
order, thus it is obvious to have one grid dimension be the amount of gates in each
layer. Furthermore, as we cannot know which order the blocks will be computed
in, we will need to have an iteration of kernel launches, one launch for each layer
in the circuit, in order to have the output keys of the previous layer computed
and ready for computing the next layer.

Regarding memory management, we first copy the seeds onto the device, and
then compute the global keys for all the circuits and the 0 keys for all the
input wires in all the circuits, using a unique seed for each circuit. This is done
by hashing the seed along with a unique ID in order to get a “random” key
(remember we assume the ROM). Afterwards, using the generated keys, we
initiate a loop of kernel launches in order to compute each layer of keys and
garbled computation table entries in each circuit. Between all these launches, all
the currently computed keys, along with the global keys, remain in the global
memory of the device so they can be used by the next kernels. Furthermore,
we keep all the currently computed garbled computation tables on the device so
that all the results can be copied to the host as a batch after all the kernels have
finished. In order to save memory we only store the 0-key for each wire, since
the 1-key can be efficient computed by simply XORing it with the appropriate
global key for a given circuit.

Finally notice that the structure of the kernel for degarbling is the same as
for garbling. The only difference is that before the initial launch the garbled
computation table for the whole circuit is copied from the host into the global
memory along with the initial input keys, one key for each of the 27 input wires,
and a description of the circuit.

Memory Coalescing. We memory coalesced all the data we used, both in the
global memory and in the shared memory. As both keys and garbled computation
table entries consists of 160 bits (the digest size of SHA-1), i.e. five 32-bit words,
we stored all data in segments of 32 -5 = 160 words. The first entry is the first
word of thread 1, the second entry is the first word of thread 2, and so on up
to entry 33, which then contains the second word of thread 1, entry 34 contains
the second word of thread 2 and so on. Thus, all data access is coalesced in a
multiple of the warp size.

The Modified OT Extension. Unlike the generation and evaluation of the
GCs, the modified OT extension involves many phases, several of which are
depended on the previous phases and results from interacting with the other
party. This means that we cannot have a single kernel, or even a single kernel
function, in order to complete all the steps of the protocol for each party.

Like we did for the GCs we have coalesced all memory in blocks of 32 words.
We also make segments, which consists of 5 - 32 = 160 words, such that each
segment hold a coalesced hash values or a small x bit data array, for 32 threads.
For this reason we again construct kernels to use blocks of 32 threads.

Using this choice, no coalescence conversion needs to be done to use the data
from the modified OT extension with our implementation of GCs. Furthermore,

352 T.K. Frederiksen and J.B. Nielsen

this choice will still keep an efficient and scalable organisation of the memory.
Also, as all the data we use for computations here is completely independent, we
get the possibility of only launching a single kernel for each step of the protocol
in order to avoid kernel launch overhead, resulting from the iterative launching
of kernels.

The kernels needed in Step 4 and 5, and Step 14 and 15, are almost the same
so we only include a description of Step 4 and 5.

Step 4 and 5. Step 4, involves hashing 2 - (g H—‘ seeds 7/k times. In order to avoid
redundant data copying of LY and L} to the device when we need to construct
\i, we compute parts of all the three vectors, LY, L and \;, in each thread. That
is, we include Step 6 in the kernel. To save memory usage and bandwidth we
let all the 32 threads of a single block use the same pair of seeds, thus we make
each thread in a block compute 160 bits of each of the three vectors L?, L} and
A; for the same 7. Next, one dimension of the grid is responsible for computing
all 7 bits of the three vectors, L?, L} and \;, and thus contains [,7] threads.
The other dimension of the grid is responsible for doing this for each of the ’Vglﬁ]
vectors that need to be computed. Step 5 proceeds in the same manner, except
each block only uses a single seed and each thread only computes a single digest.

6 Experimental Results and Conclusions

For benchmarking our implementation we used the circuit for oblivious 128-
bit AES encryption. This circuit is used as benchmark in many previous works
including [6l[7,[T5L18]. What makes this circuit a good benchmark is its relatively
random structure, its relatively large size, along with its interesting usage for
oblivious encryption.

To get the most diverse results we ran our experiments with several different
statistical security parameters from 279 to 2719, We ran the experiments on two
consumer grade desktop computers connected directly by a cross-over cable. At
the time of writing each of these machines had a purchase price of less than $1600.

Constructor (Alice) Evaluator (Bob)
5,000 5,000
---@-- Comm. ---@-- Comm.
""" - Comp. -~ Comp.
4,000 o— Total 4,000 7| —e— Total
9 o 3
£ 3,000 - £ 3,000 S
o)
E g
£ 2,000 £ 2,000
R e - 1,000 !
..... .-
0 I e e e B N e o 0 T
o 20 40 60 80 100 120 0 20 40 60 80 100 120
Statistical security parameter Statistical security parameter

Fig. 1. Timings in milliseconds for both Alice and Bob under different statistical se-
curity parameters when computing oblivious 128 bit AES

Fast and Maliciously Secure Two-Party Computation Using the GPU 353

Table 1. Timing comparison of secure two party computation protocols evaluating
oblivious 128 bit AES. d is the depth of the circuit to be computed.

This work Malicious 2759 ROM
This work Malicious 277° ROM
[12] Malicious 2750 SM

1
1
1

1.8 Desktop w. GPU
2.7 Desktop w. GPU
115 Cluster, 1 node

Security ¢ Model Rounds Time (s) Equipment

[7 Semi honest - ROM O(1) 0.20 Desktop
This work Malicious 277 ROM (1) 0.30 Desktop w. GPU
This work ~ Malicious 272 ROM (1) 0.83 Desktop w. GPU
12 Malicious 2750 SM (1) 1.4 Cluster, 512 nodes
18] Malicious 27°® ROM (d) 1.6 Desktop

(1)

(1)

(1)

QO Q00000

Both machines had similar specifications: an Intel Ivy Bridge i7 3.5 GHz quad-
core processor, 8 GB DDR3 RAM, an Intel series-520 180 GB SSD drive, an MSI
777 motherboard with gigabit LAN and an MSI GPU with an NVIDIA GTX 670
chip and 2 GB GDDR5 RAM. The machines ran the latest version (at the time)
of Linux Mint with all updates installed. The experiments were repeated 30 times
each and no front end applications were running on either of the machines. These
results are summarized in Table. Pland visualized in Fig.[Il These timings include
every aspect of the protocol including loading circuit description and randomness
along with communication between the host and device and communication
between the parties. However, in the same manner as done in [I8] the timing
of seed OTs have not been included as this is a computation that practically
only is needed once between two parties and thus will get amortized out in a
practical context. From these timings we see that the bottleneck of the protocol
is the communication complexity. This becomes increasingly obvious the higher
the statistical security parameter is.

We believe that our protocol approach along with the implementation yield
the best practical results for maliciously secure two-party computation. This is
so since the faster timings of [12] is achieved using a large grid with an estimated
purchase price of at least $129,168 per partyﬁ which might not be feasible in the
majority of use cases. It should further be noted that their only timings are for
statistical security 278% and that we do not expect a lower security parameter
to yield a significant increase in speed due to their approach in parallelization
which uses one core per garbled circuit. I.e. they would not be able to utilize
more than 28 or 94 cores per player if using statistical security 279 respectively
2729, Thus using a less conservative statistical security parameter it seems highly
plausible that our protocol implementation will match the pricey grid computer
implementation of [12].

Next notice that the approach of [I8] achieves a slightly faster result for a
conservative statistical security parameter. However, their round complexity is
asymptotically greater than ours which could yield performance issues if the
protocol were to be executed on the Internet since several packet transmission

4 Price estimate of a Sun Blade X3-2B with 256 nodes.

354 T.K. Frederiksen and J.B. Nielsen

Table 2. Timing in milliseconds when computing oblivious 128 bit AES under different
statistical security parameters. Communication is on LAN using a cross-over cable.

V4 9 19 59
Alice Bob Alice Bob Alice Bob

10 429 £ 483 £ 456 £ 510 £ 575 £ 635 =+
0.0370 0.357 0.0290 0.477 0.00432 0.573

OT (total) 371 £ 244 £ 390 £ 246 £ 429 £+ 242 &+

8.48 5.86 9.33 6.01 9.27 5.61
OT (comm.) 315 £ 173 £+ 326 £ 174 +£ 328 £ 159 =
8.47 5.92 9.32 5.92 9.29 5.66

OT (comp.) 5556 £ 705 £ 640 £ 718 £ 101 £+ 835 &+
0.154 0.408 0.0468 0.383 0.371 0.317

GC (total.) 230 £ 235 £+ 441 £ 434 £ 1543 £+ 1466 =+

0.844 6.10 1.44 6.14 5.81 7.36
GC (comm.) 194 £+ 182 £ 366 £ 327 £ 1207 £ 1080 =+
0.704 6.06 2.52 6.06 3.25 6.76
GC (comp.) 35,7 £ 5832 £ 751 £ 107 +£ 336 £ 38 £
0.376 0.626 2.36 0.732 3.45 3.32
Total 271 £ 265 £+ 484 £ 464 £ 1591 £+ 1497 +
8.38 8.27 9.55 9.62 10.9 9.81
(execution) 300 539 1833

must be initialized several times during the execution. Furthermore, their timings
are based on amortization of 54 instances (or 27 if one is happy with statistical
security 27°%). Finally, by an artifact of their approach choosing a lower security
parameter will not give significant performance improvements. In particular, a
factor 2 in execution time seems to be the absolute maximal time improvement
possible by an arbitrary reduction of the statistical security.

In conclusion, we have showed that the construction of a parallel protocol for
2PC in the SIMD parallel model with implementation on the GPU can yield
very positive results.

Acknowledgment. The authors would like to thank Benny Pinkas, Thomas
Schneider, Nigel P. Smart and Stephen C. Williams for supplying the base circuit
which we augmented for our implementation and Roberto Trifiletti for supplying
the code we used for circuit parsing.

References

1. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: STOC 1996, pp. 479-488. ACM (1996)

2. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325-343. Springer, Heidelberg (2009)

3. Nvidia Corporation. NVIDIA CUDA C Programming Best Practices Guide. Tech-
nical report (2012)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Fast and Maliciously Secure Two-Party Computation Using the GPU 355

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC 1987, pp. 218-229.
ACM (1987)

Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computa-
tion against covert adversaries. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 289-306. Springer, Heidelberg (2008)

Henecka, W., Kogl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, 1.: Tasty: tool
for automating secure two-party computations. In: ACM Conference on Computer
and Communications Security, pp. 451-462. ACM (2010)

Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX Security Symposium (2011)

Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145-161. Springer,
Heidelberg (2003)

Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
— efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572-591.
Springer, Heidelberg (2008)

Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: From dust to dawn: Practically
efficient two-party secure function evaluation protocols and their modular design.
Cryptology ePrint Archive, Report 2010/079 (2010), http://eprint.iacr.org/
Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and
applications. In: Aceto, L., Damgard, 1., Goldberg, L.A., Halldérsson, M.M.,
Ingdlfsdéttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486-498. Springer, Heidelberg (2008)

Kreuter, B., Shelat, A., Shen, C.-H.: Billion-gate secure computation with malicious
adversaries. In: 21th USENIX Conference on Security Symposium, p. 14. USENIX
(2012)

Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52-78. Springer, Heidelberg (2007)

Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party compu-
tation. J. Cryptology 22(2), 161-188 (2009)

Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329-346. Springer,
Heidelberg (2011)

Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal
hashing. In: Structure in Complexity Theory Conference, p. 90. IEEE (1990)
Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: ACM Conference on Electronic Commerce, pp. 129-139. ACM (1999)
Nielsen, J.B., Nordholt, P.S.; Orlandi, C., Burra, S.S.: A new approach to practical
active-secure two-party computation. In: Safavi-Naini, R. (ed.) CRYPTO 2012.
LNCS, vol. 7417, pp. 681-700. Springer, Heidelberg (2012)

Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
0. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368-386. Springer, Heidelberg (2009)
Nishikawa, N., Iwai, K., Kurokawa, T.: High-performance symmetric block ciphers
on multicore CPU and GPUs. International Journal of Networking and Comput-
ing 2(2) (2012)

Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS, vol. 5912, pp.
250-267. Springer, Heidelberg (2009)

http://eprint.iacr.org/

356 T.K. Frederiksen and J.B. Nielsen

22. Pu, S., Duan, P., Liu, J.-C.: Fastplay-a parallelization model and implementation
of SMC on cuda based GPU cluster architecture. IACR Cryptology ePrint Archive,
2011:97 (2011)

23. Shelat, A., Shen, C.-H.: Two-Output Secure Computation with Malicious Adver-
saries. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386—405.
Springer, Heidelberg (2011)

24. Xu, L., Lin, D., Zou, J.: ECDLP on GPU. IACR Cryptology ePrint Archive,
2011:146 (2011)

25. Yao, A.C.: Protocols for secure computations. In: FOCS 1982, pp. 160-164. IEEE
(1982)

	Fast and Maliciously SecureTwo-Party Computation Using the GPU
	1 Introduction
	2 Background
	3 High Level Description
	4 Specific Details
	5 Implementation
	6 Experimental Results and Conclusions
	References

