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Abstract. We develop secure threshold protocols for two important operations in
lattice cryptography, namely, generating a hard lattice Λ together with a “strong”
trapdoor, and sampling from a discrete Gaussian distribution over a desired coset
of Λ using the trapdoor. These are the central operations of many cryptographic
schemes: for example, they are exactly the key-generation and signing operations
(respectively) for the GPV signature scheme, and they are the public parameter
generation and private key extraction operations (respectively) for the GPV IBE.
We also provide a protocol for trapdoor delegation, which is used in lattice-based
hierarchical IBE schemes. Our work therefore directly transfers all these systems
to the threshold setting.

Our protocols provide information-theoretic (i.e., statistical) security against
adaptive corruptions in the UC framework, and they are robust against up to �/2
semi-honest or �/3 malicious parties (out of � total). Our Gaussian sampling pro-
tocol is both noninteractive and efficient, assuming either a trusted setup phase
(e.g., performed as part of key generation) or a sufficient amount of interactive but
offline precomputation, which can be performed before the inputs to the sampling
phase are known.

1 Introduction

A threshold cryptographic scheme [18] is one that allows any quorum of h out of �
trustees to jointly perform some privileged operation(s), but remains correct and secure
even if up to some t < h of the parties behave adversarially. For example, in a threshold
signature scheme any h trustees can sign an agreed-upon message, and no t malicious
players (who may even pool their knowledge and coordinate their actions) can prevent
the signature from being produced, nor forge a valid signature on a new message. Simi-
larly, a threshold encryption scheme requires at least h trustees to decrypt a ciphertext.
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Threshold cryptography is very useful for both distributing trust and increasing robust-
ness in systems that perform high-value operations, such as certificate authorities (CAs)
or private-key generators in identity-based encryption (IBE) systems.

Desirable efficiency properties in a threshold system include: (1) efficient local com-
putation by the trustees; (2) a minimal amount of interaction—i.e., one broadcast mes-
sage from each party—when performing the privileged operations; and (3) key sizes and
public operations that are independent of the number of trustees. For example, while it
might require several parties to sign a message, it is best if the signature can be verified
without even being aware that it was produced in a distributed manner.

Over the years many elegant and rather efficient threshold systems have been
developed. To name just a few representative works, there are simple variants of the El-
Gamal cryptosystem, Canetti and Goldwasser’s [13] version of the CCA-secure Cramer-
Shoup cryptosystem [17], and Shoup’s [35] version of the RSA signature scheme. These
systems, along with almost all others in the literature, are based on number-theoretic
problems related to either integer factorization or the discrete logarithm problem in
cyclic groups. As is now well-known, Shor’s algorithm [34] would unfortunately ren-
der all these schemes insecure in a “post-quantum” world with large-scale quantum
computers.

Lattice-based cryptography. Recently, lattices have been recognized as a viable foun-
dation for quantum-resistant cryptography, and the past few years have seen the
rapid growth of many rich lattice-based systems. A fruitful line of research, start-
ing from the work of Gentry, Peikert and Vaikuntanathan (GPV) [22], has resulted
in secure lattice-based hash-and-sign signatures and (hierarchical) identity-based en-
cryption schemes [15,1], along with many more applications (e.g., [23,10,9,2]). All
these schemes rely at heart on two nontrivial algorithms: the key-generation algorithm
produces a lattice Λ together with a certain kind of “strong” trapdoor (e.g., a short
basis of Λ) [3,6], while the signing/key-extraction algorithms use the trapdoor to ran-
domly sample a short vector from a discrete Gaussian distribution over a certain coset
Λ + c, which is determined by the message or identity [22]. Initially, both tasks were
rather complicated algorithmically, and in particular the Gaussian sampling algorithm
involved several adaptive iterations, so it was unclear whether either task could be ef-
ficiently and securely distributed among several parties. Recently, however, both key
generation and Gaussian sampling have been simplified and made more efficient and
parallel [30,25]. This is the starting point for our work.

Our results. We give threshold protocols for the main nontrivial operations in lattice-
based signature and (H)IBE schemes, namely: (1) generating a lattice Λ together with
a strong trapdoor of the kind recently proposed in [25], (2) sampling from a discrete
Gaussian distribution over a desired coset of Λ, and (3) delegating a trapdoor for a
higher-dimensional extension of Λ. Since these are the only secret-key operations used
in the signature and (H)IBE schemes of [22,15,1,25] and several other related works,
our protocols can be plugged directly into all those schemes to distribute the signing
algorithms and the (H)IBE private-key generators. In the full version of this paper we
show how this is (straightforwardly) done for the simplest of these applications, namely,
the GPV signature and IBE schemes [22]; other applications work similarly.
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Our protocols have several desirable properties:

– They provide information-theoretic (i.e., statistical) security for adaptive cor-
ruptions. By information-theoretic security, we mean that the security of the
key-generation and sampling protocols themselves relies on no computational
assumption—instead, the application alone determines the assumption (usually, the
Short Integer Solution assumption [4,26] for digital signatures, and Learning With
Errors [32] for identity-based encryption). We work in a version of the universal
composability (UC) framework [12], specialized to the threshold setting, and as a
result also get strong security guarantees for protocols under arbitrary composition.

– They work for an optimal threshold of h = t+ 1 for semi-honest adversaries, and
h = 2t+1 for active (malicious) adversaries. (Recall that h is the number of honest
parties needed to successfully execute the protocol, and the robustness threshold t
is an upper bound on the number of dishonest parties.)

– The public key and trapdoor “quality” (i.e., the width of the discrete Gaussian that
can be sampled using the trapdoor; smaller width means higher quality) are essen-
tially the same as in the standalone setting. In particular, their sizes are independent
of the number of trustees; the individual shares of the trapdoor are the same size as
the trapdoor itself; and the protocols work for the same lattice parameters as in the
standalone setting, up to small constant factors.

– They have noninteractive and very efficient online phases (corresponding to the
signing or key-extraction operations), assuming either (1) a setup phase in which
certain shares are distributed by a trusted party (e.g., as part of key generation), or
(2) the parties themselves perform a sufficient amount of interactive precomputation
in an offline phase (without relying on any trusted party).

Regarding the final item, the trusted setup model is the one used by Canetti and Gold-
wasser [13] for constructing threshold chosen ciphertext-secure threshold cryptosys-
tems: as part of the key-generation process, a trusted party also distributes shares of
some appropriately distributed secrets to the parties, which they can later use to per-
form an a priori bounded number of noninteractive threshold operations. Or, in lieu of
a trusted party, the players can perform some interactive precomputation (offline, be-
fore the desired coset is known) to generate the needed randomness. The downside is
that this precomputation is somewhat expensive, since the only solution we have for
one important step (namely, sampling shares of a Gaussian-distributed value over Z)
is to use somewhat generic information-theoretic multiparty computation tools. On the
plus side, the circuit for this sampling task is rather shallow, with depth just slightly
super-constant ω(1), so the round complexity of the precomputation is not very high.
We emphasize that the expensive precomputation is executed offline, before the appli-
cations decides which lattice cosets will be sampled from, and that the online protocols
remain efficient and non-interactive.

Our protocols rely on the very simple form of the new type of strong trapdoor re-
cently proposed in [25], and the parallel and offline nature of recent standalone Gaus-
sian sampling algorithms [30,25].1 A key technical challenge is that the security of the

1 In particular, it appears very difficult to implement, in a noninteractive threshold fashion, iter-
ative sampling algorithms like those from [24,22] which use the classical trapdoor notion of a
short basis.
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sampling algorithms from [30,25] crucially relies on the secrecy of some intermediate
random variables known as “perturbations.” However, in order to obtain a noninter-
active protocol we need the parties to publicly reveal certain information about these
perturbations. Fortunately, we can show that the leaked information is indeed simulat-
able, and so security is unharmed. See Section 3 and in particular Lemma 1 for further
details.

Open problems. In addition to simple, non-interactive protocols for discrete Gaussian
sampling with trusted setup, the full version of this paper provides protocols that avoid
both trusted setup and online interaction. These protocols are designed as follows: first,
we give efficient protocols that use (offline) access to a functionality FSampZ, which
produces shares of Gaussian-distributed values over the integers Z (see Section 4 and
the full version for details). Then, we show how to instantiateFSampZ using a (somewhat
inefficient) interactive protocol using generic MPC techniques. It remains an interesting
open problem to design protocols without trusted setup whose offline precomputation is
efficient and/or non-interactive as well. An efficient realization of FSampZ would yield
such a solution, but there may be other routes as well.

Another intriguing problem is to give a simple and noninteractive threshold protocol
for inverting the LWE function gA(s, e) = stA + et mod q (for short error vector e)
using a shared trapdoor. We find it surprising that, while in the standalone setting this
inversion task is conceptually and algorithmically much simpler than Gaussian sam-
pling, we have not yet been able to find a simple threshold protocol for it.2 Such a
protocol could, for example, be useful for obtaining threshold analogues of the chosen
ciphertext-secure cryptosystems from [29,25], without going through a generic IBE-to-
CCA transformation [8].

Related work in threshold lattice cryptography. A few works have considered lattice
cryptography in the threshold setting. For encryption schemes, Bendlin and Damgård [7]
gave a threshold version of Regev’s CPA-secure encryption scheme based on the learn-
ing with errors (LWE) problem [32]. Related work by Myers et al. [27] described thresh-
old decryption for fully homomorphic cryptosystems. Xie et al. [36] gave a threshold
CCA-secure encryption scheme from any lossy trapdoor function (and hence from lat-
tices/LWE [31]), though its public key and encryption runtime grow at least linearly
with the number of trustees. For signatures, Feng et al. [21] gave a threshold signature
scheme where signing proceeds sequentially through each trustee, making the scheme
highly interactive; also, the scheme is based on NTRUSign, which has been broken [28].
Cayrel et al. [16] gave a lattice-based threshold ring signature scheme, in which at
least t trustees are needed to create an anonymous signature. In that system, each trustee
has its own public key, and verification time grows linearly with the number of trustees.
In summary, lattice-based threshold schemes to date have either been concerned with
distributing the decryption operation in public-key cryptosystems, and/or have lacked
key efficiency properties typically asked of threshold systems (which our protocols do

2 We note that it is possible to give a threshold protocol using a combination of Gaussian sam-
pling and trapdoor delegation [15,25], but it is obviously no simpler than Gaussian sampling
alone.
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enjoy). Also, other important applications such as (H)IBE have yet to be realized in a
threshold manner.

Organization. The remainder of the paper is organized as follows. In Section 2 we recall
the relevant background on lattices, secret sharing, and the UC framework. In Section 3
we review the standalone key-generation and discrete Gaussian sampling algorithms of
[25], present our functionalities for these algorithms in the threshold setting, and show
how these functionalities can be implemented efficiently and noninteractively using
trusted setup. We additionally provide a functionality and protocol for trapdoor delega-
tion. In Section 4 we remove the trusted setup assumption and show how to implement
the key generation functionality. Due to space restrictions, we refer to the full version
for implementations of the Gaussian sampling functionalities using offline interaction
instead of trusted setup. The full version also details a simple example application of
our protocols, namely, a threshold version of the GPV signature scheme [22] realizing
the threshold signature functionality of [5].

2 Preliminaries

We denote the reals by R and the integers by Z. For a positive integer �, we let [�] =
{1, . . . , �}. A symmetric real matrix Σ is positive definite, written Σ > 0, if ztΣz > 0
for all nonzero z. Positive definiteness defines a partial ordering on real matrices: we say
that X > Y if X−Y > 0. We say that X is a square root of a positive definite matrix
Σ, written X =

√
Σ, if XXt = Σ. The largest singular value (also called spectral

norm or operator norm) of a real matrix X is defined as s1(X) = maxu �=0‖Xu‖/‖u‖.
For convenience, we sometime write a scalar s to mean the scaled identity matrix sI,
whose dimension will be clear from context.

2.1 Lattices and Gaussians

A lattice Λ is a discrete additive subgroup of Rm for some m ≥ 0. In this work we are
only concerned with full-rank integer lattices, which are subgroups of Zm with finite
index. Most recent cryptographic applications use a particular family of so-called q-ary
integer lattices, which contain qZm as a sublattice for some integer q, which in this
work will always be bounded by poly(n). For positive integers n and q, let A ∈ Z

n×m
q

be arbitrary, and define the full-rank m-dimensional q-ary lattice

Λ⊥(A) = {z ∈ Z
m : Az = 0 mod q}.

For any u ∈ Z
n
q admitting an integral solution x ∈ Z

m to Ax = u mod q, define the
coset (or shifted lattice)

Λ⊥
u (A) = Λ⊥(A) + x = {z ∈ Z

m : Az = u mod q}.
We define the Gaussian function ρ : Rm → (0, 1] as ρ(x) = exp(−π〈x,x〉) =
exp(−π‖x‖2). Generalizing to any nonsingular B ∈ R

m×m, we define the Gaussian
function with parameter B as

ρB(x) := ρ(B−1x) = exp
(−π · xtΣ−1x

)
,
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where Σ = BBt > 0. Because ρB is distinguished only up to Σ, we usually refer
to it as ρ√Σ , and refer to Σ as its covariance matrix. For a lattice coset Λ + c and
covariance matrix Σ > 0, the discrete Gaussian distribution DΛ+c,

√
Σ is defined to

assign probability proportional to ρ√Σ(x) to each x ∈ Λ+ c, and zero elsewhere. That
is, DΛ+c,

√
Σ(x) := ρ√Σ(x)/ρ

√
Σ(Λ + c). A discrete Gaussian is said to be spherical

with parameter s > 0 if its covariance matrix is s2I.
In some of our proofs we use the notion of the smoothing parameter ηε(Λ) of a lattice

Λ [26], generalized to arbitrary covariances. For reasons associated with the smoothing
parameter, throughout the paper we often attach a factor ωn = ωn(n) = ω(

√
logn)

to Gaussian parameters
√
Σ (or ω2

n to covariance matrices Σ), which represents an
arbitrary fixed function that grows asymptotically faster than

√
logn. In exposition we

usually omit reference to these factors, but we always retain them where needed in
formal expressions. The full version gives further background on lattices and Gaussians.

2.2 The GPV Schemes

As mentioned in the introduction, the two non-trivial algorithmic steps of many lattice-
based cryptographic schemes are generating a lattice Λ = Λ⊥(A) together with a strong
trapdoor R, and sampling from discrete Gaussian distributions over a given coset of
Λ. In Section 3, we give functionalities and protocols for these tasks in the threshold
setting.

Here we briefly recall the well-known GPV signature scheme from [22], which uses
these operations (GenTrap and SampleD), and serves as an immediate application of
the present work. The scheme is parametrized by a security parameter n, modulus q,
and message space M, and it uses a hash function H : M → Z

n
q which is modeled

as a random oracle. At a high level, GenTrap(n, q,m) (for sufficiently large m) gen-
erates a matrix A ∈ Z

n×m
q with distribution statistically close to uniform, together

with a trapdoor R. Using these, SampleD(A,R,u, s) generates a Gaussian sample (for
any sufficiently large parameter s) over the lattice coset Λ⊥

u (A). The signature scheme
consists of the following three algorithms:

– KeyGen(1n): Let (A,R)← GenTrap(n, q,m) and output verification key vk = A
and signing key sk = R.

– Sign(sk, μ ∈ M): If (μ, σ) is already in local storage, output signature σ. Other-
wise, let x← SampleD(A,R, H(μ), s), store (μ, σ), and output signature σ = x.

– Verify(vk, μ, σ = x): If Ax = H(m) and x is sufficiently short, then accept;
otherwise, reject.

See [22] for the proof of (strong) unforgeability under worst-case lattice assumptions.
Another immediate application of the present work is the identity-based encryption
(IBE) scheme of [22], where vk and sk above are the master public and secret keys,
respectively, and signatures on identities are the secret keys for individual identities.

2.3 Secret Sharing

In this work we need to distribute secret lattice vectors among � players so that any
sufficiently large number of players can reconstruct the secret, but no group of t < � or
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fewer players collectively get any information about the secret. Because a lattice Λ is an
infinite additive group (and in particular is not a field), it is not immediately amenable
to standard secret-sharing techniques like those of [33]. There is a rich theory of secret
sharing for arbitrary additive groups and modules, e.g., [19,20]. We refer to the full
version of this paper for secret sharing details, and simply note here that a variant of the
Shamir secret sharing scheme has the desired properties.

Our notation is as follows: Let G be any finite abelian (additive) group. We denote
player i’s share of some value v ∈ G by �v�i, and the tuple of all such shares by �v�.

2.4 UC Framework

We frame our results in the Universal Composability (UC) framework [12,11]. In the
UC framework, security is defined by considering a probabilistic polynomial-time (PPT)
machine Z , called the environment. In coordination with an adversary that may corrupt
some of the players, Z chooses inputs and observes the outputs of a protocol executed
in one of two worlds: a “real” world in which the parties interact with each other in
some specified protocol π while a dummy adversaryA (controlled by Z) corrupts play-
ers and controls their interactions with honest players, and an “ideal” world in which
the players interact directly with a functionality F, while a simulator S (communicat-
ing with Z) corrupts players and controls their interactions with F. The views of the
environment in these executions are respectively denoted REALπ,A,Z and IDEALF,S,Z ,
and the protocol is said to realize the functionality if these two views are indistinguish-
able. In this work we are concerned solely with statistical indistinguishability (which is

stronger than the computational analogue), denoted by the relation
s≈.

Definition 1. We say that a protocol π statistically realizes a functionality F (or alter-
natively, is a UC-secure implementation of F) if for any probabilistic polynomial-time
(PPT) adversary A, there exists a PPT simulator S such that for all PPT environments

Z , we have IDEALF,S,Z
s≈ REALπ,A,Z .

What makes this definition so strong and useful is the general composition theorem [12],
which (informally) states that any UC-secure protocol remains secure under concurrent
general composition. This allows for the modular design of functionalities and protocols
which can be composed to produce secure higher-level protocols.

UC framework for threshold protocols. We consider a specialized case of the UC frame-
work that is appropriate for modeling threshold protocols. All of our functionalities are
called with a session ID of the form sid = (P , sid′), where P is a set of � parties
representing the individual trustees in the threshold protocol. We prove security against
t-limited adversaries, which may adaptively corrupt a bounded number t of the parties
over the entire lifetime of a protocol. Corruptions can occur before or after any invoked
protocol/functionality command, but not during its execution. At the time of corruption,
the entire view of the player to that point (and beyond) is revealed to the adversary; in
particular, we do not assume secure erasures. For robustness, we additionally require
that when the environment issues a command to a functionality/protocol, it always does
so for at least h honest parties in the same round.
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In the case of semi-honest corruptions, namely when corrupted parties reveal their
protocol traffic to the adversary but always execute the protocol faithfully, we prove
security for t < |P|/2 and h = t + 1. In the case of malicious corruptions, namely
when corrupted parties send messages on behalf of the adversary that are not necessar-
ily consistent with the protocol, we prove security for t < |P|/3 and h = 2t+1. These
parameters come directly from the secrecy and robustness guarantees of the secret shar-
ing scheme described in Section 2.3.

Many of our protocols require the parties to maintain and use consistent local states,
corresponding to certain shared random variables that are consumed by the protocols.
We note that synchronizing their local states may be nontrivial, if not every party is
involved with executing every command. For this reason we assume some mechanism
for coordinating local state, such as those like hashing suggested in [13], which deals
with similar synchronization issues.

3 Threshold KeyGen, Gaussian Sampling, and Delegation

In this section, we present UC functionalities and protocols for generating a lattice with
a shared trapdoor, for sampling from a coset of that lattice, and for securely delegating
a trapdoor of a higher-dimensional extension of the lattice. As an example application
of these functionalities, we describe threshold variants of the GPV signature and IBE
schemes [22] in the full version. Other signature and (H)IBE schemes (e.g., [15,1,25])
can be adapted similarly (where delegation is needed for HIBE).

In Section 3.1 we recall the recent standalone (non-threshold) key generation and
discrete Gaussian sampling algorithms of [25], which form the basis of our protocols.
In Section 3.2 we present the two main functionalities FKG (key generation) and FGS

(Gaussian sampling) corresponding to the standalone algorithms. We also define two
lower-level “helper” functionalitiesFPerturb and FCorrect, and show how they can be real-
ized noninteractively using either trusted setup or offline precomputation. In Section 3.3
we give an efficient noninteractive protocol that realizesFGS using access toFPerturb and
FCorrect. In Section 3.4 we give a functionality and protocol for trapdoor delegation.

Since key generation tends to be rare in applications, FKG can be realized using
trusted setup; alternatively, later in Section 4 we realizeFKG without trusted setup using
some lower-level functionalities described there. We additionally realize FPerturb and
FCorrect with these and other lower-level functionalities in the full version of the paper.

3.1 Trapdoors and Standalone Algorithms

We recall the notion of a (strong) lattice trapdoor and associated algorithms recently
introduced by Micciancio and Peikert [25]; see that paper for full details and proofs.
Let n and q be positive integers and k = �lg q�. Define the “gadget” vector g =
(1, 2, 4, . . . , 2k−1) ∈ Z

k
q and matrix G := In⊗gt ∈ Z

n×nk
q , the direct sum of n copies

of gt. The k-dimensional lattice Λ⊥(gt) ⊂ Z
k , and hence also the nk-dimensional lat-

tice Λ⊥(G), has smoothing parameter bounded by sg · ωn, where sg ≤
√
5 is a known

constant. There are efficient algorithms that, given any desired syndrome u ∈ Zq , sam-
ple from a discrete Gaussian distribution over the coset Λ⊥

u (g
t) for any given parameter
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s ≥ sg · ωn. Since Λ⊥(G) ⊂ Z
nk is the direct sum of n copies of Λ⊥(gt), discrete

Gaussian sampling over a desired coset Λ⊥
u (G) (with parameter s ≥ sg · ωn) can be

done by concatenating n independent samples over appropriate cosets of Λ⊥(gt).

Definition 2 ([25]). Let m ≥ nk be an integer and define m̄ = m−nk. For A ∈ Z
n×m
q ,

we say that R ∈ Z
m̄×nk
q is a trapdoor for A with tag H∗ ∈ Z

n×n
q if A [RI ] = H∗ ·G.

The quality of the trapdoor is defined to be the spectral norm s1(R).

Note that H∗ is uniquely determined and efficiently computable from R, because G
contains the n-by-n identity as a submatrix. Note also that if R is a trapdoor for A with
tag H∗, then it is also a trapdoor for AH := A− [0 | HG] with tag H∗ −H ∈ Z

n×n
q .

The key-generation algorithm of [25] produces a parity-check matrix A ∈ Z
n×m
q

together with a trapdoor R having desired tag H∗. It does so by choosing (or being
given) a uniformly random Ā ∈ Z

n×m̄
q and a random R ∈ Z

m̄×nk having small s1(R),
and outputs A = [Ā | H∗ ·G− ĀR]. For sufficiently large m ≥ Cn lg q (where C is a
universal constant) and appropriate distribution of R, the output matrix A is uniformly
random, up to negl(n) statistical distance.

The discrete Gaussian sampling algorithm of [25] is an instance of the “convolution”
approach from [30]. It works in two phases:

1. In the offline “perturbation” phase, it takes as input a parity-check matrix A, a
trapdoor R for A with some tag H∗ ∈ Z

n×n
q , and a Gaussian parameter s ≥

Cs1(R) (where C is some universal constant). It chooses Gaussian perturbation
vectors p ∈ Z

m (one for each future call to the online sampling step) having non-
spherical covariance Σp that depends only on s and the trapdoor R.

2. In the online “syndrome correction” phase, it is given a syndrome u ∈ Z
n
q and a tag

H ∈ Z
n×n
q . As long as H∗ −H ∈ Z

n×n
q is invertible, it chooses z ∈ Z

nk having
Gaussian distribution with parameter sg · ωn over an appropriate coset of Λ⊥(G),
and outputs x = p + [RI ] z ∈ Λ⊥

u (AH), where p is a fresh perturbation from the
offline step.

Informally, the perturbation covariance Σp of p is carefully designed to cancel out the
trapdoor-revealing covariance of y = [RI ] z, so that their sum has a (public) spheri-
cal Gaussian distribution. More formally, the output x has distribution within negl(n)
statistical distance of DΛ⊥

u (AH),s·ωn
, and in particular does not reveal any information

about the trapdoor R (aside from an upper bound s on s1(R), which is public).
We emphasize that for security, it is essential that none of the intermediate valuesp, z

or y = [RI ] z be revealed, otherwise they could be correlated with x to leak information
about the trapdoor R that could lead to an attack like the one given in [28].

3.2 Functionalities for Threshold Sampling

Ideal functionalities for threshold key generation and discrete Gaussian sampling are
specified in Figure 1 and Figure 2, respectively; they internally execute the standalone
algorithms described above.
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FunctionalityFKG

Generate: Upon receiving (gen, sid, Ā ∈ Z
n×m̄
q ,H∗ ∈ Z

n×n
q , z) from at least h honest

parties in P :
– Choose R ← Dm̄×nk

Z,z·ωn
, and compute a sharing �R� over Zq . Let A = [Ā | H∗ ·

G− ĀR].
– Send (gen, sid,A, �R�i) to each party i in P , and (gen, sid,A,H∗, z) to the ad-

versary.

Fig. 1. Key generation functionality

To realize FKG in the trusted setup model (as used in [13]) we can simply let the
trusted party play the role of FKG, because key generation is a one-time setup. Without
trusted setup, we give in Section 4 a simple and efficient protocol that realizes FKG

using a simple integer-sampling functionalityFSampZ. This in turn can be realized using
general-purpose multiparty computation tools.

FunctionalityFGS

Initialize: Upon receiving (init, sid,A, �R�i,H∗, s, B) from at least h honest parties i in
P :

– Reconstruct R and store sid, A, R, H∗, s, and B.
– Send (init, sid) to each party in P , and (init, sid,A,H∗, s, B) to the adversary.

Sample: Upon receiving (sample, sid,H ∈ Z
n×n
q ,u ∈ Z

n
q ) from at least h honest parties

in P , if H∗ −H ∈ Z
n×n
q is invertible and fewer than B calls to sample have already

been made:
– Sample x← DΛ⊥

u (AH),s·ωn
using the algorithm from [25] with trapdoor R.

– Send (sample, sid,x) to all parties in P , and (sample, sid,H,u,x) to the adver-
sary.

Fig. 2. Gaussian sampling functionality

We realize FGS in Section 3.3. For modularity, the following subsections first define
two lower-level functionalitiesFPerturb andFCorrect (Figures 3 and 4), which respectively
generate the perturbation and syndrome-correction components of the standalone sam-
pling algorithm. We describe how these helper functionalities can be realized efficiently
and noninteractively using trusted setup, and the full version of this paper realizes them
without trusted setup. The FGS, FPerturb, and FCorrect functionalities are all initialized
with a bound B on the number of Gaussian samples that they will produce in their life-
times. This is so that the trusted setup/offline precomputation phases of our protocols
can prepare sufficient randomness to support noninteractive online phases. (If the bound
B is reached, then the parties can just initialize new copies of FGS, FPerturb, FCorrect.)

Perturbation. Our perturbation functionality FPerturb (Figure 3) corresponds to the of-
fline perturbation phase of the standalone sampling algorithm. The perturb command
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does not take any inputs, so it (and any realization) can be invoked offline, before the
result is needed. With trusted setup, the functionality can be realized trivially by just
precomputing and distributing (shares of) B samples in the initialization phase, which
the parties then draw from in the online phase. Without trusted setup FPerturb can be
realized relatively efficiently using FSampZ and some standard low-level MPC function-
alities (for multiplication and blinding).

Note that FPerturb distributes shares �p�i of a perturbation p to the players, which
themselves do not reveal any information about p to the adversary, just as in the stan-
dalone Gaussian sampling algorithm. However, in order for the perturbation to be use-
ful in the later online syndrome-correction phase, the parties will need to know (and so
FPerturb reveals) some partial information about p, namely, the syndromes w̄ = [Ā |
−ĀR] ·p ∈ Z

n
q and w = [0 | G] ·p ∈ Z

n
q . This is the main significant difference with

the standalone setting, in which these same syndromes are calculated internally but
never revealed. Informally, Lemma 1 below shows that the syndromes are uniformly
random (up to negligible error), and hence can be simulated without knowing p. Fur-
thermore, p will still be a usable perturbation even after w̄,w are revealed, because it
has an appropriate (non-spherical) Gaussian parameter which sufficiently exceeds the
smoothing parameter of the lattice coset to which it belongs. (This fact will be used
later in the proof of security for our FGS realization.)

Functionality FPerturb

Initialize: Upon receiving (init, sid,A−H∗ = [Ā | −ĀR], �R�i, s, B) from at least h
honest parties i in P :

– Reconstruct R to compute covariance matrix Σp = s2 − s2g [
R
I ] [R

t I ] and store
sid, A−H∗ , and Σp.

– Send (init, sid) to all parties in P , and (init, sid,A−H∗ , s, B) to the adversary.
Perturb: Upon receiving (perturb, sid) from at least h honest parties in P , if fewer than B

calls to perturb have already been made:
– Choose p← D

Zm,
√

Σp·ωn
.

– Compute w̄ = A−H∗ · p ∈ Z
n
q and w = [0 |G] · p ∈ Z

n
q .

– Send (perturb, sid, w̄,w) to the adversary, and receive back shares �p�i ∈ Z
m
q for

each currently corrupted party i in P .
– Generate a uniformly random sharing �p� consistent with the received shares.
– Send (perturb, sid, �p�i, w̄,w) to each party i in P .

Fig. 3. Perturbation functionality

Lemma 1. Let Ā ∈ Z
n×m̄
q be uniformly random for m̄ = m−nk ≥ n lg q+ω(logn),

and let

B =

[
Ā −ĀR

G

]
= (Ā⊕G)

[
I −R

I

] ∈ Z
2n×(m̄+nk)
q

(where⊕ denotes the direct sum). Then with all but negl(n) probability over the choice
of Ā, we have ηε(Λ⊥(B)) ≤ √5(s1(R) + 1) · ωn for some ε = negl(n).
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In particular, for p← D
Zm,
√

Σp
where

√
Σp ≥ 6(s1(R)+ 1) ·ωn ≥ 2ηε(Λ

⊥(B)),

the syndrome u = [ w̄w ] = Bp ∈ Z
2n
q is negl(n)-far from uniform, and the conditional

distribution of p given u is D
Λ⊥

u (B),
√

Σp
.

Proof. By [25, Lemma 2.4], we have ηε′(Λ⊥(Ā)) ≤ 2 · ωn (with overwhelming proba-
bility) for some ε′ = negl(n). Also as shown in [25], we have ηε′(Λ⊥(G)) ≤ √5 · ωn.
This implies that

ηε(Λ
⊥(Ā⊕G)) ≤

√
5 · ωn

where (1 + ε) = (1 + ε′)2, and in particular ε = negl(n).
Since T =

[
I −R

I

]
is unimodular with inverse T−1 = [ I R

I ], it is easy to verify that
Λ⊥(B) = T−1 · Λ⊥(Ā⊕G), and hence

ηε(Λ
⊥(B)) ≤ s1(T

−1) · ηε(Λ⊥(Ā⊕G)) ≤
√
5(s1(R) + 1) · ωn.

Syndrome Correction. Our syndrome correction functionality FCorrect (Figure 4) cor-
responds to the syndrome-correction step of the standalone sampling algorithm. Be-
cause its output y must lie in a certain coset Λ⊥

v (A), where v depends on the desired
syndrome u, the functionality must be invoked online. As indicated in the overview, the
standalone algorithm samples z ← Λ⊥

v (G) and defines y = [RI ] z. The functionality
does the same, but outputs only shares of y to their respective owners. This ensures that
no information about y is revealed to the adversary. (Note that the input v itself is not
revealed in the standalone algorithm, but in our setting v is determined solely by public
information like the tags H∗,H and the syndromes w̄,w of the perturbation p.)

FunctionalityFCorrect

Initialize: Upon receiving (init, sid, �R�i, B) from at least h honest parties i in P :
– Reconstruct R and store sid, R, and B.
– Send (init, sid) to all parties in P , and (init, sid,B) to the adversary.

Correct: Upon receiving (correct, sid,v) from at least h honest parties in P , if fewer than
B calls to correct have already been made:

– Sample z← DΛ⊥
v (G),sg·ωn

and compute y = [RI ] z.

– Send (correct, sid,v) to the adversary, receive shares �y�i ∈ Z
m
q for each cor-

rupted party i, and generate a uniformly random sharing �y� consistent with these
shares.

– Send (correct, sid, �y�i) to each party i in P .

Fig. 4. Syndrome correction functionality

Realizing FCorrect with a noninteractive protocol relies crucially on the parallel and
offline nature of the corresponding step of sampling a coset of Λ⊥(G) in the algorithm
of [25]. In particular, we use the fact that without knowing v in advance, that algorithm
can precompute partial samples for each of the q = poly(n) scalar values v ∈ Zq ,
and then linearly combine n such partial samples to answer a query for a full syndrome
v ∈ Z

n
q .
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In the trusted setup model, the protocol realizing FCorrect is as follows.

1. In the offline phase, a trusted party uses the trapdoor R (with tag H∗) to distribute
shares as follows. For each j ∈ [n] and v ∈ Zq , the party initializes queues Qi

j,v

for each party i, does the following B times, and then gives each of the resulting
queues Qi

j,v to party i.
– Sample zj,v ← DΛ⊥

v (gt),sg·ωn
.

– Compute yj,v = [RI ] (ej⊗zj,v), where ej ∈ Z
n denotes the jth standard basis

vector. Note that

AH · yj,v = (H∗ −H)G · (ej ⊗ zj,v) = (H∗ −H)(v · ej),
where as always, AH = A− [0 | HG] for any H ∈ Z

n×n
q .

– Generate a sharing for yj,v, and add �yj,v�
i to queue Qi

j,v for each party i ∈ P .
2. In the online phase, upon receiving (correct, sid,v), each party i dequeues an entry

�yj,vj �
i from Qj,vj for each j ∈ [n], and locally outputs �y�i =

∑
j∈[n]�yj,vj �

i.

Note that by linearity and the secret-sharing homomorphism, the shares �y�i re-
combine to some y = [RI ] z ∈ Z

m for some Gaussian-distributed z of parameter
sg · ωn, such that AH · y = (H∗ −H) · v ∈ Z

n
q .

The full version gives an efficient protocol for FCorrect, without trusted setup. It popu-
lates the local queues Qi

j,v in the offline phase in a distributed manner, using the shares
of R together with access to FSampZ and standard share-blinding FBlind and multiplica-
tion FMult functionalities. In short, it samples (shares of) the values zj,v from the coset
Λ⊥
v (g

t) using FSampZ, the homomorphic properties of secret sharing, and FBlind. Then
using FMult it computes (shares of) yj,v = [RI ] (ej ⊗ zj,v).

Legal Uses of the Functionalities. Putting the key-generation and Gaussian sampling
operations into separate functionalities FKG and FGS, and realizing FGS using these
helper functionalities, aids modularity and simplifies the analysis of our protocols. How-
ever, as a side effect it also raises a technical issue in the UC framework, since environ-
ments can in general provide functionalities with arbitrary inputs, even on behalf of
honest users. The issue is that FGS, FPerturb, and FCorrect are all designed to be initial-
ized with some common, valid state—namely, shares of a trapdoor R for a matrix A as
produced by FKG on valid inputs—but it might be expensive or impossible for the cor-
responding protocols to check the consistency and validity of those shares. Moreover,
such checks would be unnecessary in the usual case where an application protocol, such
as a threshold signature scheme, initializes the functionalities as intended.3

Therefore, we prove UC security for a restricted class of environments Z that always
initialize our functionalities with valid arguments. In particular, environments in Z
can instruct parties to instantiate FKG only with arguments Ā, z corresponding to a
statistically secure instantiation of the trapdoor generator from [25]. Similarly,FGS (and

3 This issue is not limited to our setting, and can arise anytime the key-generation and secret-key
operations of a threshold scheme are put into separate functionalities. We note that using “joint
state” [14] does not appear to resolve the issue, because it only allows multiple instances of
the same protocol to securely share some joint state.
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FDelTrap) can be initialized only with a matrix A, tag H∗, and shares of a trapdoor R
matching those of a prior call to the gen command of FKG, and with a sufficiently large
Gaussian parameter s ≥ Cs1 ·ωn, where s1 is a high-probability upper bound on s1(R)
for the trapdoor R generated by FKG. (The functionalities FPerturb and FCorrect are not
intended for direct use by applications, but for proving the security of their realizations
we also require that they be initialized using a prior output of FKG.) These restrictions
are all described more formally in the full version of the paper.

We emphasize that these restrictions on the environment are not actually limiting in
any meaningful way, since our functionalities are only intended to serve as subroutines
in higher-level applications. As long as an application protocol obeys the above condi-
tions in its use ofFKG andFGS (andFDelTrap), the UC framework’s composition theorem
will still hold for the application itself, without any restriction on the environment.

3.3 Gaussian Sampling Protocol

Figure 5 defines a protocol πGS that realizes the Gaussian sampling functionality FGS

in the (FPerturb,FCorrect)-hybrid model. Its sample command simply makes one call to
each of the main commands of FPerturb and FCorrect, adjusting the requested syndrome
as necessary to ensure that the syndrome of the final output is the desired one. (This
is done exactly as in the standalone algorithm.) The shares of the perturbation p and
syndrome-correction term y are then added locally and announced, allowing the play-
ers to reconstruct the final output x = p + y. The security of πGS is formalized in
Theorem 1, and proved via the simulator SGS in Figure 6.

An essential point is that given the helper functionalities, the protocol πGS is com-
pletely noninteractive, i.e., no messages are exchanged among the parties, except when
broadcasting their shares of the final output. Similarly, recall that our realizations of
FPerturb andFCorrect are also noninteractive, either when using trusted setup or offline pre-
computation. In other words, in the fully realized sampling protocol, where the helper
functionalities are replaced by their respective realizations, the parties can sample from
any desired coset using only local computation, plus one broadcast of the final output
shares. We emphasize that this kind of noninteractivity is nontrivial, because the number
of possible cosets is exponentially large.

Theorem 1. Protocol πGS statistically realizes FGS in the (FPerturb, FCorrect)-hybrid
model for t-limited environments in Z .

Proof (sketch). Essentially, the simulator SGS in Figure 6 just maintains consistent shar-
ings of p = 0 and y = x for each call to sample, and releases player i’s shares of these
values (on behalf of FPerturb and FCorrect) upon corruption of player i. The fact that p
and y in SGS are from incorrect distributions is not detectable (even statistically) by the
environment Z , because it sees at most t shares of each, and the shares are consistent
with announced shares of x = p+ y.

The only other significant issues relate to (1) the syndromes w̄,w output publicly by
FPerturb in the (FPerturb,FCorrect)-hybrid world, versus the simulator’s choices of those
values (on behalf of FPerturb) in the ideal world; and (2) the distribution (conditioned
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Protocol πGS in the (FPerturb, FCorrect)-hybrid model

Initialize: On input (init, sid,A, �R�i,H∗, s, B), party i stores H∗, calls
FPerturb(init, sid,A−H∗ , �R�i, s, B) and FCorrect(init, sid, �R�i, B), and outputs
(init, sid).

Sample: On input (sample, sid,H,u), if H∗ −H ∈ Z
n×n
q is invertible, and if fewer than

B calls to sample have already been made, then party i does:
– Call FPerturb(perturb, sid) and receive (perturb, sid, �p�i, w̄,w).
– Compute v = (H∗ −H)−1(u− w̄)−w ∈ Z

n
q .

– Call FCorrect(correct, sid,v) and receive (correct, sid, �y�i).
– Broadcast �x�i = �p�i + �y�i and reconstruct x = p+ y.
– Output (sample, sid,x).

Fig. 5. Gaussian sampling protocol

Simulator SGS

Initialize: Upon receiving (init, sid,A,H∗, s,B) from FGS, reveal to Z (init, sid) as out-
puts of both FPerturb and FCorrect to each currently corrupted party and any party that is
corrupted in the future.

Sample: Upon receiving (sample, sid,H,u,x) from FGS:
– Choose uniform and independent w̄,w ∈ Z

n
q and compute v = (H∗ −H)−1(u−

w̄)−w ∈ Z
n
q .

– On behalf of FPerturb, send (perturb, sid, w̄,w) to Z and receive back shares �p�i

for each currently corrupted party i in P . Generate a uniformly random sharing
�p� of p = 0 consistent with these shares. Send (perturb, sid, �p�i, w̄,w) to each
corrupted party i in P on behalf of FPerturb.

– On behalf of FCorrect, send (correct, sid,v) to Z and receive back shares �y�i for
each currently corrupted party i in P . Generate a uniformly random sharing �y�
of y = x consistent with these shares. Send (correct, sid, �y�i) to each corrupted
party i in P on behalf of FCorrect.

– Broadcast �x�i = �p�i + �y�i on behalf of each honest party i.
Corruption: When Z requests to corrupt party i, for each previous call to sample, reveal

the corresponding messages (perturb, sid, �p�i, w̄,w) and (correct, sid, �y�i) to party
i on behalf of FPerturb and FCorrect, respectively.

Fig. 6. Simulator for πGS

on any fixed w̄,w) of the final output x in both worlds. For item (1), as proved in
Lemma 1, in the hybrid world the syndromes w̄,w are jointly uniform and independent
(up to negligible statistical distance) over the choice of p by FPerturb, just as they are
when produced by the simulator. Moreover, conditioned on any fixed values of w̄,w,
the distribution of p in the hybrid world is a discrete Gaussian with covariance Σp

over a certain lattice coset Λ⊥
u (B), and the actual value of p from this distribution is

perfectly hidden by the secret-sharing scheme.
For item (2), the above facts imply that in the hybrid world, x = p+y has spherical

discrete Gaussian distribution DΛ⊥
u (AH),s, just as the output x of FGS does in the ideal
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world (up to negligible statistical error in both cases). The proof is almost word-for-
word identical to that of the “convolution lemma” from [25], which guarantees the
correctness of the standalone sampling algorithm (as run by FGS in the ideal world).
The only slight difference is that in the hybrid world, p’s distribution (conditioned on
any fixed values of w̄,w) is a discrete Gaussian with parameter

√
Σp over a fixed coset

of Λ⊥(B), instead of over Zm as in the standalone algorithm. Fortunately, Lemma 1
says that

√
Σp ≥ 2ηε(Λ

⊥(B)), and this is enough to adapt the proof from [25] to the
different distribution of p.

Finally, by the homomorphic properties of secret sharing, the shares �p�i + �y�i

announced by the honest parties are jointly distributed exactly as a fresh sharing of x as
produced by the simulator. We conclude that the hybrid and real views are statistically
indistinguishable, as desired.

3.4 Trapdoor Delegation

Here we sketch a straightforward use of the above protocols to do distributed trapdoor
delegation, which is used in hierarchical IBE schemes. Due to space restrictions, we
leave the formal definition of a trapdoor delegation functionality, protocol, and proof of
security to the full version of the paper.

The functionality FDelTrap corresponds to the algorithm DelTrap in [25] for dele-
gating a lattice trapdoor. That algorithm works as follows: given a trapdoor R for
some A ∈ Z

n×m
q , and an extension A′ = [AH|A1] ∈ Z

n×(m+nk)
q (where AH =

A − [0 | HG] as always) and tag H′ ∈ Z
n×n
q , it outputs a trapdoor R′ for A′ with

tag H′, where the distribution of R′ is Gaussian (and in particular is independent of
R). It does this simply by sampling Gaussian columns of R′ to satisfy the relation
AH ·R′ = H′ ·G −A1. In the threshold setting, where the parties have a sharing of
the trapdoorR, a distributed protocol for this process is trivial in theFGS-hybrid model:
the parties simply use FGS to sample the columns of R′, using the public columns of
H′ ·G−A1 as the desired syndromes.

4 Key Generation without Trusted Setup

Here we show how to implement the key-generation functionality FKG without any
trusted setup, instead using access to two low-level functionalities FBlind and FSampZ.
Informally, FBlind takes shares of some value and returns to each party a fresh sharing
of the same value, andFSampZ distributes shares of a discrete Gaussian-distributed value
over the integer lattice Z (or equivalently,Zh×w for some h,w ≥ 1). The full definitions
of these functionalities, which we use for realizing other functionalities without trusted
setup, are given in the full version of the paper along with descriptions of interactive
protocols realizing them offline. A simplified version of FSampZ that is sufficient for
realizing FKG is given in Figure 7.

The protocol πKG realizing FKG in the (FSampZ,FBlind)-hybrid model is straight-
forward given the homomorphic properties of the secret-sharing scheme and the sim-
ple operation of the standalone trapdoor generator, which just multiplies a public uni-
form matrix Ā with a secret Gaussian-distributed matrix R. The parties get shares
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Functionality FSampZ

Sample: Upon receiving (sample, sid, h× w, z, d) from at least h honest parties in P :
– Sample X← Dh×w

Z,z·ωn
and generate a fresh sharing �X� over Zqd .

– Send (sample, sid, �X�i) to each party i in P and (sample, sid, h×w, z, d) to the
adversary.

Fig. 7. Integer sampling functionality

of a Gaussian-distributed trapdoor R using FSampZ, then announce blinded shares of
A1 = −ĀR mod q and reconstruct A1 to determine the public key A = [Ā | A1].
The blinding is needed so that the announced shares reveal only A1, and not anything
more about the honest parties’ shares �R�i themselves. The formal protocol πKG is
given in Figure 8.

Protocol πKG in the (FSampZ,FBlind)-hybrid model

Generate: On input (gen, sid, Ā ∈ Z
n×m̄
q ,H∗ ∈ Z

n×n
q , z), party i does:

– Call FSampZ(sample, sid, m̄× nk, z, 1) and receive (sample, sid, �R�i).
– Call FBlind(blind, sid,−Ā�R�i) and receive (blind, sid, �A1�

i).
– Broadcast �A1�

i and reconstruct A1 = −ĀR from the announced shares.
– Output (gen, sid,A = [Ā | H∗ ·G+A1], �R�i).

Fig. 8. Key generation protocol

The announced (blinded) shares −Ā�R�i form a uniformly random (and indepen-
dent of the honest parties’ outputs �R�i) sharing of A1 = −ĀR. This is the heart of
the security analysis; a simulator for demonstrating security is given in the full version.

Theorem 2. Protocol πKG statistically realizes FKG in the (FSampZ,FBlind)-hybrid
model for t-limited environments in Z .
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