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Abstract. Sequential aggregate signature (SAS) is a special type of
public-key signature that allows a signer to add his signature into a pre-
vious aggregate signature in sequential order. In this case, since many
public keys are used and many signatures are employed and compressed,
it is important to reduce the sizes of signatures and public keys. Re-
cently, Lee et al. proposed an efficient SAS scheme with short public
keys and proved its security without random oracles under static as-
sumptions. In this paper, we propose an improved SAS scheme that has
a shorter signature size compared with that of Lee et al.’s SAS scheme.
Our SAS scheme is also secure without random oracles under static as-
sumptions. To achieve the improvement, we devise a new public-key sig-
nature scheme that supports multi-users and public re-randomization.
Compared with the SAS scheme of Lee et al., our SAS scheme employs
new techniques which allow us to reduce the size of signatures by increas-
ing the size of the public keys (obviously, since signature compression is
at the heart of aggregate signature this is a further step in understanding
the aggregation capability of such schemes).

1 Introduction

Aggregate signature is a relatively new type of public-key signature (PKS) that
allows a signer to aggregate different signatures generated by different signers on
different messages into a short aggregate signature [6]. Aggregate signature has
many applications like signing certificate chains, proxy signing, secure routing
protocols, and more. After the introduction of aggregate signature by Boneh,
Gentry, Lynn, and Shacham [6], many aggregate signature schemes were pro-
posed by using bilinear groups [1, 2, 4, 6, 10, 11, 13, 15, 17, 21] and trapdoor per-
mutations [7,18,20]. However, the security of many aggregate signature schemes
was proven in the random oracle model. The random oracle model was very
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successful to prove the security of practical schemes, but the security proof in
the random oracle model is not entirely sound [8] and schemes in the standard
model are needed. Standard model solutions for the cases of sequential aggregate
signature (introduced in [18]) [13,15,17,21] (where signatures are aggregated in
a sequence, as in applications like certification chains), and synchronized aggre-
gate signature (where all signers share a synchronized same value, as introduced
by [10]) [1] were given.

A sequential aggregate signature (SAS) scheme without random oracle as-
sumption is what we concentrate on here, such a scheme was first proposed by
Lu et al. [17], but the public-key size of this scheme is too large since the scheme
is based on the PKS scheme of Waters [22]. In public-key based aggregate sig-
nature, reducing the size of public keys is very important since a verifier should
retrieve all the public keys of signers to check the validity of the aggregate sig-
nature, and needless to say the size of the aggregated signature is important
as well. The importance of constructing a SAS scheme with short public keys
was addressed by Lu et al. [17], but they left it as an interesting open prob-
lem. Schröder proposed the first SAS scheme with short public keys based on
the Camenisch-Lysyanskaya (CL) signature scheme [21], but it is only secure
under the interactive LRSW assumption. Recently, Lee et al. [15] proposed an-
other SAS scheme with short public keys based on the identity-based encryption
(IBE) scheme of Lewko and Waters [16] and proved its security without random
oracles under static assumptions.

1.1 Our Contributions

In this paper, we revisit the SAS scheme of Lee et al. [15] and propose an
improved SAS scheme with shorter signature size. The proposed SAS scheme
trades off signature for public-key size since the signature size of our SAS scheme
is shorter than that of Lee et al.’s SAS scheme by two group elements but the
public-key size of our SAS scheme is longer by two group elements. To construct
the SAS scheme with shorter signature size that supports sequential aggregation,
we first propose a new PKS scheme and prove its security without random
oracles under static assumptions. Additionally, we propose a multi-signature
(MS) scheme with shorter signature size and shorter public parameters and
prove its security without random oracles under static assumptions.

We suggest new ideas, and technically speaking, we construct a PKS scheme
that supports multi-users and public re-randomization for a SAS scheme with
shorter signature size. We start the construction from the PKS scheme derived
from the IBE scheme of Lewko and Waters [16] (as was done earlier). However,
this directly converted PKS scheme does not support multi-users and public re-
randomization as pointed out by Lee et al. [15] since the elements g, u, h ∈ G

cannot be published in the public key. Lee et al. solved this problem by modifying
the verification algorithm of the PKS scheme, but the size of signatures increased
by two group elements. In this paper, we solve this obstacle in a different way and
publish gw

cg
1 , uwcu

1 , hwch
1 ∈ G in the public key instead of publishing g, u, h ∈ G

to maintain the same size of signatures (loosely speaking, we lift the verification
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parameters to the exponent). However, note that this method increases the size
of public keys by two group elements compared with that of Lee et al.’s scheme
since additional group elements should be published in the public key to make
public gw

cg
1 , uwcu

1 , hwch
1 .

1.2 Related Work

Aggregate Signature. The concept of aggregate signatures was introduced
by Boneh et al. [6], and they proposed the first aggregate signature scheme in
bilinear groups. Their aggregate signature scheme is the only unique one that
supports full aggregation, but the security is proven in the random oracle model
and the verification algorithm requires l number of pairing where l is the number
of signers in the aggregate signature. To remedy this situation, other types of
aggregate signatures were introduced.

Lysyanskaya et al. [18] introduced the concept of sequential aggregate signa-
ture (SAS) and proposed a SAS scheme in trapdoor permutations. Lu et al. [17]
proposed the first SAS scheme without random oracles, but the size of public
keys is very large. To reduce the size of public keys, SAS schemes with short
public key was proposed [13, 15, 21]. Recently, SAS schemes that do not require
a verifier to check the validity of the previous signature were proposed [7, 9].
Boldyreva et al. [4] proposed an identity-based sequential aggregate signature
scheme in bilinear groups and proved its security under an interactive assump-
tion. Recently Gerbush et al. [11] proposed a modified identity-based sequential
aggregate signature scheme in composite order bilinear groups and proved its
security in the random oracle model under static assumptions.

Gentry and Ramzan [10] introduced the concept of synchronized aggregate sig-
nature and proposed an identity-based synchronized aggregate signature scheme
in the random oracle model. Ahn et al. [1] proposed an synchronized aggre-
gate signature scheme and proved its security without random oracles. Recently,
Lee et al. [13] proposed a synchronized aggregate signature scheme with shorter
aggregate signatures based on the CL signature and proved its security in the
random oracle model.

Multi-signature. The concept of multi-signature (MS) was introduced by
Itakura and Nakamura [12]. MS is a special type of aggregate signatures where
all signers generate signatures for the same message. Micali et al. [19] defined
the first formal security model of MS and proposed a MS scheme based on
the Schnorr signature. Boldyreva defined a general security model for multi-
signatures and proposed a MS scheme in bilinear groups that is secure in the
random oracle model [3]. Lu et al. [17] proposed the first MS scheme that is
secure without random oracles by modifying their SAS scheme. Recently, Lee
et al. [15] proposed a MS scheme with short public parameters and proved its
security without random oracles.
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2 Preliminaries

In this section, we define asymmetric bilinear groups and introduce complexity
assumptions in this bilinear groups.

2.1 Asymmetric Bilinear Groups

Let G, Ĝ and GT be multiplicative cyclic groups of prime order p. Let g, ĝ be
generators ofG, Ĝ. The bilinear map e : G×Ĝ → GT has the following properties:

1. Bilinearity: ∀u ∈ G, ∀v̂ ∈ Ĝ and ∀a, b ∈ Zp, e(u
a, v̂b) = e(u, v̂)ab.

2. Non-degeneracy: ∃g, ĝ such that e(g, ĝ) has order p, that is, e(g, ĝ) is a gen-
erator of GT .

We say that G, Ĝ,GT are bilinear groups with no efficiently computable isomor-
phisms if the group operations in G, Ĝ, and GT as well as the bilinear map e are
all efficiently computable, but there are no efficiently computable isomorphisms
between G and Ĝ.

2.2 Complexity Assumptions

We employ three static assumptions in prime order (asymmetric) bilinear groups.
Assumptions 1 and 2 were introduced by Lewko and Waters [16], while Assump-
tion 3 has been used extensively.

Assumption 1 (LW1). Let (p,G, Ĝ,GT , e) be a description of the asymmet-
ric bilinear group of prime order p with the security parameter λ. Let g, ĝ be
generators of G, Ĝ respectively. The assumption is that if the challenge values

D = ((p,G, Ĝ,GT , e), g, g
b, ĝ, ĝa, ĝb, ĝab

2

, ĝb
2

, ĝb
3

, ĝc, ĝac, ĝbc, ĝb
2c, ĝb

3c) and T

are given, no PPT algorithm B can distinguish T = T0 = ĝab
2c from T = T1 =

ĝd with more than a negligible advantage. The advantage of B is defined as
AdvA1

B (λ) =
∣
∣Pr[B(D,T0) = 0] − Pr[B(D,T1) = 0]

∣
∣ where the probability is

taken over the random choice of a, b, c, d ∈ Zp.

Assumption 2 (LW2). Let (p,G, Ĝ,GT , e) be a description of the asymmetric

bilinear group of prime order p. Let g, ĝ be generators of G, Ĝ respectively. The
assumption is that if the challenge values

D = ((p,G, Ĝ,GT , e), g, g
a, gb, gc, ĝ, ĝa, ĝa

2

, ĝbx, ĝabx, ĝa
2x) and T

are given, no PPT algorithm B can distinguish T = T0 = gbc from T = T1 =
gd with more than a negligible advantage. The advantage of B is defined as
AdvA2

B (λ) =
∣
∣Pr[B(D,T0) = 0] − Pr[B(D,T1) = 0]

∣
∣ where the probability is

taken over the random choice of a, b, c, x, d ∈ Zp.
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Assumption 3 (Decisional Bilinear Diffie-Hellman). Let (p,G, Ĝ,GT , e)
be a description of the asymmetric bilinear group of prime order p. Let g, ĝ be
generators of G, Ĝ respectively. The assumption is that if the challenge values

D = ((p,G, Ĝ,GT , e), g, g
a, gb, gc, ĝ, ĝa, ĝb, ĝc) and T

are given, no PPT algorithm B can distinguish T = T0 = e(g, ĝ)abc from
T = T1 = e(g, ĝ)d with more than a negligible advantage. The advantage of
B is defined as AdvA3

B (λ) =
∣
∣Pr[B(D,T0) = 0] − Pr[B(D,T1) = 0]

∣
∣ where the

probability is taken over the random choice of a, b, c, d ∈ Zp.

3 Public-Key Signature

In this section, we propose an efficient public-key signature (PKS) scheme with
short public keys that supports multi-users and public re-randomization, and
prove its security without random oracles under static assumption.

3.1 Construction

To construct a PKS scheme with short public keys that supports multi-users
and public re-randomization, we can derive a PKS scheme with short public
keys from the IBE scheme in prime order groups of Lewko and Waters [16]
by applying the transformation of Naor [5] and representing the signature in
G to reduce the size of signatures. However, this PKS scheme does not support
multi-users and public re-randomization since the elements g, u, h ∈ G cannot be
published in the public key. Lee et al. [15] solved this problem by re-randomizing
the verification elements of the signature verification algorithm, but the number
of signatures increased by two group elements, and our main issue here is further
compression of the signature size.

To this end, we present another solution for the above problem that allows
the elements g, u, h to be safely published in the public key. In the PKS scheme
of Lewko and Waters [16], if g, u, h ∈ G are published in the public key, then the
simulator of the security proof can easily distinguish normal verification compo-
nents from semi-functional verification components of the signature verification
algorithm for a forged signature without the help of an adversary. Thus the simu-
lator of Lewko and Waters sets the CDH value into the elements g, u, h to prevent
the simulator from creating these elements. Our idea for solving this problem is
to lift the published values into the exponent and publish gw

cg
1 , uwcu

1 , hwch
1 that

are additionally multiplied with random elements instead of directly publishing
g, u, h. In this case, the simulator can create these elements since the random
exponents cg, cu, ch can be used to cancel out the CDH value embedded in the
elements g, u, h. Additionally, the simulator cannot distinguish the changes of
verification components for the forged signature because of the added elements
w

cg
1 , wcu

1 , wch
1 . This solution does not increase the number of group elements in

the signatures, rather it increases the number of public keys since additional
elements w

cg
2 , wcg , wcu

2 , wcu , wch
2 , wch should be published.
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Our PKS scheme in prime order bilinear groups is described as follows:

PKS.KeyGen(1λ): This algorithm first generates the asymmetric bilinear

groups G, Ĝ of prime order p of bit size Θ(λ). It chooses random elements

g, w ∈ G and ĝ ∈ Ĝ. Next, it selects random exponents ν, φ1, φ2 ∈ Zp and
sets τ = φ1 + νφ2. It also selects random exponents α, x, y ∈ Zp and sets

u = gx, h = gy, û = ĝx, ĥ = ĝy, w1 = wφ1 , w2 = wφ2 . It outputs a private
key SK = (α, x, y) and a public key by selecting random values cg, cu, ch ∈ Zp

as

PK =
(

gw
cg
1 , w

cg
2 , wcg , uwcu

1 , wcu
2 , wcu , hwch

1 , wch
2 , wch , w1, w2, w,

ĝ, ĝν , ĝ−τ , û, ûν , û−τ , ĥ, ĥν , ĥ−τ , Λ = e(g, ĝ), Ω = e(g, ĝ)α
)

.

PKS.Sign(M,SK): This algorithm takes as input a message M ∈ Zp and a pri-
vate key SK = (α, x, y). It selects random exponents r, c1, c2 ∈ Zp and outputs
a signature as

σ =
(

W1,1 = (gw
cg
1 )α((uwcu

1 )M (hwch
1 ))rwc1

1 ,

W1,2 = (w
cg
2 )α((wcu

2 )Mwch
2 )rwc1

2 , W1,3 = (wcg )α((wcu )Mwch)rwc1 ,

W2,1 = (gw
cg
1 )rwc2

1 , W2,2 = (w
cg
2 )rwc2

2 , W2,3 = (wcg )rwc2
)

.

PKS.Verify(σ,M,PK): This algorithm takes as input a signature σ on a mes-
sage M ∈ Zp under a public key PK. It chooses a random exponent t ∈ Zp and
computes verification components as

V1,1 = ĝt, V1,2 = (ĝν)t, V1,3 = (ĝ−τ )t,

V2,1 = (ûM ĥ)t, V2,2 = ((ûν)M ĥν)t, V2,3 = ((û−τ )M ĥ−τ )t.

Next, it verifies that
∏3

i=1 e(W1,i, V1,i) ·
∏3

i=1 e(W2,i, V2,i)
−1 ?

= Ωt. If this equa-
tion holds, then it outputs 1. Otherwise, it outputs 0.

If we implicitly sets c̃1 = cgα + (cuM + ch)r + c1, c̃2 = cgr + c2, then the
signature is restated as the following form

W1,1 = gα(uMh)rwc̃1
1 , W1,2 = wc̃1

2 , W1,3 = wc̃1 ,

W2,1 = grwc̃2
1 , W2,2 = wc̃2

2 , W2,3 = wc̃2 .

3.2 Security Analysis

We prove the security of our PKS scheme without random oracles under static
assumptions. To prove the security, we use the dual system encryption technique
of Lewko and Waters [16]. The dual system encryption technique was originally
developed to prove the full-model security of IBE and its extensions, but it also
can be used to prove the security of PKS by using the transformation of Naor [5].
Recently Lee et al. [15] proved the security of their PKS scheme by using the dual
system encryption technique, and Gerbush et al. [11] developed the dual form
signature technique that is a variation of the dual system encryption technique
to prove the security of theirs PKS schemes.
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Theorem 1. The above PKS scheme is existentially unforgeable under a chosen
message attack if Assumptions 1, 2, and 3 hold.

Proof. Before proving the security, we first define two additional algorithms for
semi-functional types. For the semi-functionality, we set f = gyf , f̂ = ĝyf where
yf is a random exponent in Zp.
PKS.SignSF. The semi-functional signing algorithm first creates a normal sig-
nature using the private key. Let (W ′

1,1, . . . ,W
′
2,3) be the normal signature of a

message M with random exponents r, c1, c2 ∈ Zp. It selects random exponents
sk, zk ∈ Zp and outputs a semi-functional signature as

σ =
(

W1,1 = W ′
1,1 · (f−ν)skzk , W1,2 = W ′

1,2 · f skzk , W1,3 = W ′
1,3,

W2,1 = W ′
2,1 · (f−ν)sk , W2,2 = W ′

2,2 · f sk , W2,3 = W ′
2,3

)

.

PKS.VerifySF. The semi-functional verification algorithm first creates a nor-
mal verification components using the public key. Let (V ′

1,1, . . . , V
′
2,3) be the nor-

mal verification components with a random exponent t ∈ Zp. It chooses random
exponents sc, zc ∈ Zp and computes semi-functional verification components as

V1,1 = V ′
1,1, V1,2 = V ′

1,2 · f̂ sc , V1,3 = V ′
1,3 · (f̂−φ2)sc ,

V2,1 = V ′
2,1, V2,2 = V ′

2,2 · f̂ sczc , V2,3 = V ′
2,3 · (f̂−φ2)sczc .

Next, it verifies that
∏3

i=1 e(W1,i, V1,i) ·
∏3

i=1 e(W2,i, V2,i)
−1 ?

= Ωt. If this equa-
tion holds, then it outputs 1. Otherwise, it outputs 0.

If the semi-functional verification algorithm is used to verify a semi-functional
signature, then an additional random element e(f, f̂)sksc(zk−zc) is left in the left
part of the above verification equation. If zk = zc, then the semi-functional ver-
ification algorithm succeeds. In this case, we say that the signature is nominally
semi-functional.

The security proof uses a sequence of games G0,G1,G2,G3: The first game
G0 will be the original security game and the last game G3 will be a game such
that an adversary A has no advantage. Formally, the hybrid games are defined
as follows:
Game G0. This game is the original security game. In this game, the signatures
that are given to A are normal and the challenger use the normal verification
algorithm PKS.Verify to check the validity of the forged signature of A. Note
that A can forge a normal signature or a semi-functional signature to win this
game since normal or semi-functional signatures are always verified in the normal
verification algorithm.
Game G1. This game is almost identical to G0 except that the challenger use
the semi-functional verification algorithm PKS.VerifySF to check the validity
of the forged signature of A. Note that A should forge a normal signature to
win this game since semi-functional signatures cannot be verified in the semi-
functional verification algorithm.
Game G2. This game is the same as the G1 except that the signatures that
are given to A will be semi-functional. At this moment, the signatures are
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semi-functional and the challenger use the semi-functional verification algorithm
PKS.VerifySF to check the validity of the forged signature. Suppose that A
makes at most q signature queries. For the security proof, we define a sequence
of hybrid games G1,0, . . . ,G1,k, . . . ,G1,q where G1,0 = G1. In G1,k, a normal
signature is given to A for all j-th signature queries such that j > k and a
semi-functional signature is given to A for all j-th signature queries such that
j ≤ k. It is obvious that G1,q is equal to G2.
Game G3. This final game differs from G2 in that the challenger always rejects
the forged signature of A by replacing the element Ω in the verification equation
to a random element. Therefore, the advantage of this game is zero since A
cannot win this game.

To prove the security using the dual system encryption technique, we should
show that it is hard for A to forge a normal signature and a semi-functional
signature. At first, from the indistinguishability between G0 and G1, we obtain
that A can forge a normal signature with a non-negligible probability while he
cannot forge a semi-functional signature when only normal signatures are given
to A. To finish the proof, we additionally should show that it is hard for A to
forge a normal signature. From the indistinguishability between G1 and G2, we
obtain that the probability of A to forge a normal signature does not change
when the signatures given to A are changed from a normal type to a semi-
functional type. Finally, from the indistinguishability between G2 and G3, we
obtain that it is hard for A to forge a normal signature when only semi-functional
signatures are given to the adversary. Therefore, we have the unforgeability of
the adversary through the indistinguishability of hybrid games. ��
Lemma 1. If Assumption 1 holds, then no polynomial-time adversary can dis-
tinguish between G0 and G1 with non-negligible advantage.

Lemma 2. If Assumption 2 holds, then no polynomial-time adversary can dis-
tinguish between G1 and G2 with non-negligible advantage.

Lemma 3. If Assumption 3 holds, then no polynomial-time adversary can dis-
tinguish between G2 and G3 with non-negligible advantage.

The proof of Lemma 1 is given in Appendix A and the proofs of other lemmas
are given in the full version of this paper [14].

4 Sequential Aggregate Signature

In this section, we propose an efficient sequential aggregate signature (SAS)
scheme with short public keys and prove its security without random oracles.

4.1 Definitions

The concept of SAS was introduced by Lysyanskaya et al. [18]. In SAS, all signers
first generate public keys and private keys, and then publishes their public keys.
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To generate a sequential aggregate signature, a signer may receive an aggregate-
so-far from a previous signer, and creates a new aggregate signature by adding
his signature to the aggregate-so-far in sequential order. After that, the signer
may send the aggregate signature to a next signer. A verifier can check the
validity of the aggregate signature by using the pubic keys of all signers in the
aggregate signature. A SAS scheme is formally defined as follows:

Definition 1 (Sequential Aggregate Signature). A sequential aggregate
signature (SAS) scheme consists of four PPT algorithms Setup, KeyGen, Ag-
gSign, and AggVerify, which are defined as follows:

Setup(1λ). The setup algorithm takes as input a security parameter 1λ and
outputs public parameters PP .

KeyGen(PP ). The key generation algorithm takes as input the public param-
eters PP , and outputs a public key PK and a private key SK.

AggSign(AS′,M,PK,M, SK). The aggregate signing algorithm takes as input
an aggregate-so-far AS′ on messages M = (M1, . . . ,Ml) under public keys
PK = (PK1, . . . , PKl), a message M , and a private key SK, and outputs
a new aggregate signature AS.

AggVerify(AS,M,PK). The aggregate verification algorithm takes as input
an aggregate signature AS on messages M = (M1, . . . ,Ml) under public
keys PK = (PK1, . . . , PKl), and outputs either 1 or 0 depending on the
validity of the sequential aggregate signature.

The correctness requirement is that for each PP output by Setup,
for all (PK, SK) output by KeyGen, any M , we have that
AggVerify(AggSign(AS′,M′,PK′,M, SK),M′||M,PK′||PK) = 1 where
AS′ is a valid aggregate-so-far signature on messages M′ under public keys
PK′.

The security model of SAS was defined by Lysyanskaya et al. [18], but we
use the security model of Lu et al. [17] that requires for an adversary to register
key-pair of other signers except the target signer. The security model of SAS is
formally defined as follows:

Definition 2 (Security). The security notion of existential unforgeability un-
der a chosen message attack is defined in terms of the following experiment
between a challenger C and a PPT adversary A:

1. Setup: C first initializes a certification list CL as empty. Next, it runs Setup
to obtain public parameters PP and KeyGen to obtain a key pair (PK, SK),
and gives PK to A.

2. Certification Query: A adaptively requests the certification of a public key
by providing a key pair (PK, SK). Then C adds the key pair (PK, SK) to
CL if the key pair is a valid one.

3. Signature Query: A adaptively requests a sequential aggregate signature
(by providing an aggregate-so-far AS′ on messages M′ under public keys
PK′), on a message M to sign under the challenge public key PK, and
receives a sequential aggregate signature AS.
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4. Output: Finally (after a sequence of the above queries), A outputs a forged
sequential aggregate signature AS∗ on messages M∗ under public keys PK∗.
C outputs 1 if the forged signature satisfies the following three conditions, or
outputs 0 otherwise: 1) AggVerify(AS∗,M∗,PK∗) = 1, 2) The challenge
public key PK must exists in PK∗ and each public key in PK∗ except the
challenge public key must be in CL, and 3) The corresponding message M
in M∗ of the challenge public key PK must not have been queried by A to
the sequential aggregate signing oracle.

The advantage of A is defined as AdvSAS
A = Pr[C = 1] where the probability is

taken over all the randomness of the experiment. A SAS scheme is existentially
unforgeable under a chosen message attack if all PPT adversaries have at most
a negligible advantage in the above experiment.

4.2 Construction

To construct a SAS scheme from a PKS scheme, the PKS scheme should support
multi-users by sharing some elements among all signers and the randomness of
signatures should be sequentially aggregated to a single value. We can employ
the randomness reuse method of Lu et al. [17] to aggregate the randomness of sig-
natures. To apply the randomness reuse method, we should re-randomize the ag-
gregate signature to prevent a forgery attack. Thus we build on the PKS scheme
of the previous section that supports multi-users and public re-randomization to
construct a SAS scheme.

The SAS scheme in prime order bilinear groups is described as follows:

SAS.Setup(1λ): This algorithm first generates the asymmetric bilinear groups

G, Ĝ of prime order p of bit size Θ(λ). It chooses random elements g, w ∈ G and

ĝ ∈ Ĝ. Next, it selects random exponents ν, φ1, φ2 ∈ Zp and sets τ = φ1 + νφ2,
w1 = wφ1 , w2 = wφ2 . It publishes public parameters by selecting a random value
cg ∈ Zp as

PP =
(

gw
cg
1 , w

cg
2 , wcg , w1, w2, w, ĝ, ĝν , ĝ−τ , Λ = e(g, ĝ)

)

.

SAS.KeyGen(PP ): This algorithm takes as input the public parameters PP .

It selects random exponents α, x, y ∈ Zp and sets û = ĝx, ĥ = ĝy. It outputs a
private key SK = (α, x, y) and a public key by selecting random values c′u, c

′
h ∈

Zp as

PK =
(

uwcu
1 = (gw

cg
1 )xw

c′u
1 , wcu

2 = (w
cg
2 )xw

c′u
2 , wcu = (wcg )xw

c′u
2 ,

hwch
1 = (gw

cg
1 )yw

c′u
1 , wch

2 = (w
cg
2 )yw

c′u
2 , wch = (wcg )yw

c′u
2 ,

û, ûν = (ĝν)x, û−τ = (ĝ−τ )x, ĥ, ĥν = (ĝν)y , ĥ−τ = (ĝ−τ )y, Ω = Λα
)

.

SAS.AggSign(AS′,M′,PK′,M, SK): This algorithm takes as input an aggregate-
so-far AS′ = (S′

1,1, . . . , S
′
2,3) on messages M′ = (M1, . . . ,Ml−1) under pub-

lic keys PK′ = (PK1, . . . , PKl−1) where PKi = (uiw
cu,i

1 , . . . , Ωi), a message



212 K. Lee, D.H. Lee, and M. Yung

M ∈ Zp, a private key SK = (α, x, y) with PK = (uwcu
1 , . . . , Ω) and PP . It

first checks the validity of AS′ by calling SAS.AggVerify(AS′,M′,PK′). If
AS′ is not valid, then it halts. If the public key PK of SK does already exist in
PK′, then it halts. Next, it selects random exponents r, c1, c2 ∈ Zp and outputs
an aggregate signature as

AS =
(
S1,1 = S′

1,1(gw
cg
1 )α(S′

2,1)
xM+y ·

l−1∏

i=1

((uiw
cu,i
1 )Mi (hiw

ch,i
1 ))r((uwcu

1 )M (hw
ch
1 ))rw

c1
1 ,

S1,2 = S′
1,2(w

cg
2 )α(S′

2,2)
xM+y ·

l−1∏

i=1

((w
cu,i
2 )Mi (w

ch,i
2 ))r((wcu

2 )Mw
ch
2 )rw

c1
2 ,

S1,3 = S′
1,3(w

cg )α(S′
2,3)

xM+y ·
l−1∏

i=1

((wcu,i )Mi (wch,i ))r((wcu )Mwch)rwc1 ,

S2,1 = S′
2,1 · (gwcg

1 )rw
c2
1 , S2,2 = S′

2,2 · (wcg
2 )rw

c2
2 , S2,3 = S′

2,3 · (wcg )rwc2
)
.

SAS.AggVerify(AS,M,PK): This algorithm takes as input a sequential ag-
gregate signature AS on messages M = (M1, . . . ,Ml) under public keys PK =
(PK1, . . . , PKl) where PKi = (uiw

cu,i

1 , . . . , Ωi). It first checks that any pub-
lic key does not appear twice in PK and that any public key in PK has been
certified. If these checks fail, then it outputs 0. If l = 0, then it outputs 1 if
S1 = S2 = 1, 0 otherwise. It chooses a random exponent t ∈ Zp and computes
verification components as

C1,1 = ĝt, C1,2 = (ĝν)t, C1,3 = (ĝ−τ )t,

C2,1 =
l∏

i=1

(ûMi

i ĥi)
t, C2,2 =

l∏

i=1

((ûν
i )

Mi ĥν
i )

t, C2,3 =
l∏

i=1

((û−τ
i )Mi ĥ−τ

i )t.

Next, it verifies that
∏3

i=1 e(S1,i, C1,i) ·
∏3

i=1 e(S2,i, C2,i)
−1 ?

=
∏l

i=1 Ω
t
i . If this

equation holds, then it outputs 1. Otherwise, it outputs 0.

4.3 Security Analysis

Theorem 2. The above SAS scheme is existentially unforgeable under a chosen
message attack if the PKS scheme is existentially unforgeable under a chosen
message attack.

Proof. Suppose there exists an adversary A that forges the above SAS
scheme with non-negligible advantage ε. A simulator B that forges
the PKS scheme is first given: a challenge public key PKPKS =
(gw

cg
1 , w

cg
2 , wcg , uwcu

1 , . . . , wch , w1, w2, w, ĝ, ĝ
ν , ĝ−τ , û, . . . , ĥ−τ , Λ,Ω). Then B

that interacts with A is described as follows:
Setup: B first constructs PP = (gw

cg
1 , w

cg
2 , wcg , w1, w2, w, ĝ, ĝ

ν , ĝ−τ , Λ) and

PK∗ = (uwcu
1 , . . . , wch , û, . . . , ĥ−τ , Ω) from PKPKS . Next, it initializes a certi-

fication list CL as an empty one and gives PP and PK∗ to A.
Queries: A may adaptively requests certification queries or sequential aggregate
signature queries. If A requests the certification of a public key by providing
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a public key PKi = (uiw
cu,i

1 , . . . , Ωi) and its private key SKi = (αi, xi, yi),
then B checks the private key and adds the key pair (PKi, SKi) to CL. If A
requests a sequential aggregate signature by providing an aggregate-so-far AS′

on messages M′ = (M1, . . . ,Ml−1) under public keys PK′ = (PK1, . . . , PKl−1),
and a messageM to sign under the challenge private key of PK∗, then B proceeds
the aggregate signature query as follows:

1. It first checks that the signature AS′ is valid and that each public key in
PK′ exits in CL.

2. It queries its signing oracle that simulates PKS.Sign on the message M for
the challenge public key PK∗ and obtains a signature σ.

3. For each 1 ≤ i ≤ l − 1, it constructs an aggregate signature on message
Mi using SAS.AggSign since it knows the private key that corresponds
to PKi. The result signature is an aggregate signature for messages M′||M
under public keys PK′||PK∗ since this scheme does not check the order of
aggregation. It gives the result signature AS to A.

Output: Finally, A outputs a forged aggregate signature AS∗ = (S∗
1,1, . . . , S

∗
2,3)

on messages M∗ = (M1, . . . ,Ml) under public keys PK∗ = (PK1, . . . , PKl) for
some l. Without loss of generality, we assume that PK1 = PK∗. B proceeds as
follows:

1. B first checks the validity of AS∗ by using SAS.AggVerify. Additionally,
the forged signature should not be trivial: the challenge public key PK∗

must be in PK∗, and the message M1 must not be queried by A to the
signature query oracle.

2. For each 2 ≤ i ≤ l, it parses PKi = (uiw
cu,i

1 , . . . , Ωi) from PK∗, and it
retrieves the private key SKi = (αi, xi, yi) of PKi from CL. It then computes

W1,1 = S∗
1,1

l∏

i=2

(

gαj (S∗
2,1)

xiMi+yi
)−1

, W1,2 = S∗
1,2

l∏

i=2

(

(S∗
2,2)

xiMi+yi
)−1

,

W1,3 = S∗
1,3

l∏

i=2

(

(S∗
2,3)

xiMi+yi
)−1

, W2,1 = S∗
2,1, W2,2 = S∗

2,2, W2,3 = S∗
2,3.

3. It outputs σ = (W1,1, . . . ,W2,3) as a non-trivial forgery of the PKS scheme
since it did not make a signing query on M1.

The public parameters and the public key are correctly distributed, and the se-
quential aggregate signatures are also correctly distributed since this scheme does
not check the order of aggregation. The result signature σ = (W1,1, . . . ,W2,3) of
the simulator is a valid PKS signature on the message M1 under the public key
PK∗ since it satisfies the following equation:

3∏

i=1

e(W1,i, V1,i) ·
3∏

i=1

e(W2,i, V2,i)
−1

= e(S∗
1,1, ĝ

t) · e(S∗
1,2, ĝ

νt) · e(S∗
1,4, ĝ

−τt) · e(
l∏

i=2

gαi , ĝt)−1·



214 K. Lee, D.H. Lee, and M. Yung

e(S∗
2,1,

l∏

i=2

(ûMi

i ĥi)
t)−1 · e(S∗

2,2,

l∏

i=2

(ûMi

i ĥi)
νt)−1 · e(S∗

2,3,

l∏

i=2

(ûMi

i ĥi)
−τt)−1·

e(S∗
2,1, (û

M1 ĥ)t)−1 · e(S∗
2,2, (û

M1 ĥ)νt)−1 · e(S∗
2,3, (û

M1 ĥ)−τt)−1

= e(S∗
1,1, C1,1) · e(S∗

1,2, C1,2) · e(S∗
1,3, C1,3) · e(

l∏

i=2

gαi , ĝt)−1·

e(S∗
2,1,

l∏

i=1

(ûMi

i ĥi)
t)−1 · e(S∗

2,2,
l∏

i=1

(ûMi

i ĥi)
νt)−1 · e(S∗

2,3,
l∏

i=1

(ûMi

i ĥi)
−τt)−1·

=

3∏

i=1

e(S∗
1,i, C1,i) ·

3∏

i=1

e(S∗
2,i, C2,i)

−1 · e(
l∏

i=2

gαi , ĝt)−1 =

l∏

i=1

Ωt
i ·

l∏

i=2

Ω−t
i = Ωt

1

where δi = xiMi + yi and s̃2 =
∑l

i=2(xiMi + yi)s1 + s2. This completes our
proof.

4.4 Discussions

Multi-signature. A MS scheme can be easily constructed from our SAS scheme
by moving some group elements in the public key to the public parameters. This
scheme is also secure without random oracles under static assumptions and the
signature size of this scheme is shorter than that of Lee et al.’s MS scheme [15].

5 Conclusion

In this paper, we improved the SAS scheme of Lee et al. [15] by reducing the size
of aggregate signatures and similarly proved its security without random oracles
under static assumptions. To reduce the size of signatures, we first devised a PKS
scheme that supports multi-users and public re-randomization and proved its
security using the dual system encryption technique. The proposed SAS scheme
of this paper trades off signature size against public-key size compared with the
scheme of Lee et al. since the signature size of our scheme decreases by two group
elements but the public-key size increases by two group elements (but signatures
are many and a public key is published once). Our techniques include lifting and
randomization of verification parameters used in the previous scheme.
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A Security Proofs of Lemmas

A.1 The Proof of Lemma 1

The proof of this lemma is almost similar to the proof of Lemma 1 in [16] ex-
cept that the public key is generated differently and the proof is employed in
the PKS setting. Suppose there exists an adversary A that distinguishes be-
tween G0 and G1 with non-negligible advantage. A simulator B1 that solves
Assumption 1 using A is given: a challenge tuple D = ((p,G, Ĝ,GT , e),

k, kb, k̂, k̂a, k̂b, k̂ab
2

, k̂b
2

, k̂b
3

, k̂c, k̂ac, k̂bc, k̂b
2c, k̂b

3c) and T where T = T0 = k̂ab
2c

or T = T1 = k̂ab
2c+d. Then B1 that interacts with A is described as follows: B1

first chooses random exponents φ2, A,B, α ∈ Zp, random values yg, yu, yh, yw ∈
Zp. It computes w1 = wφ1 = (kb)yw , w2 = wφ2 = kywφ2 , w = kyw by implicitly
setting φ1 = b. It implicitly sets cg = −b/yw + c′g, cu = −bA/yw + c′u, ch =
−bB/yw+ c′h, ν = a, τ = b+aφ2 and publishes a public key by selecting random
values c′g, c′u, c′h ∈ Zp as

gw
cg
1 = kygw

c′g
1 , w

cg
2 = (kb)−b2w

c′g
2 , wcg = (kb)−1wc′g ,

uwcu
1 = kyuw

c′u
1 , wcu

2 = (kb)−b2Aw
c′u
2 , wcu = (kb)−Awc′u ,

hwch
1 = kyhw

c′h
1 , wch

2 = (kb)−b2Bw
c′h
2 , wch = (kb)−Bwc′h , w1, w2, w,

ĝ = k̂b
2

k̂yg , ĝν = k̂ab
2

(k̂a)yg , ĝ−τ = (k̂b
3

(k̂b)yg(k̂ab
2

)b2(k̂a)ygb2)−1,

û = (k̂b
2

)Ak̂yu , ûν = (k̂ab
2

)A(k̂a)yu , û−τ = ((k̂b
3

)A(k̂b)yu(k̂ab
2

)Ab2(k̂a)yub2)−1,

ĥ = (k̂b
2

)B k̂yh , ĥν = (k̂ab
2

)B(k̂a)yh , ĥ−τ = ((k̂b
3

)B(k̂b)yh(k̂ab
2

)Bb2(k̂a)yhb2)−1,

Λ = e(kb
3

, k̂b) · e(kb2 , k̂)2yg · e(k, k̂)y2
g , Ω = Λα.

It implicitly sets g = kb
2

kyg , u = (kb
2

)Akyu , h = (kb
2

)Bkyh , but it cannot create

these elements since kb
2

is not given. Additionally, it sets f = k, f̂ = k̂ for
the semi-functional signature and verification. A adaptively requests a signature
for a message M . To response this sign query, B1 first selects random exponents
r, c′1, c

′
2 ∈ Zp. It implicitly sets c1 = −b(α+(AM+B)r)/yw+c′1, c2 = −br1/yw+

c′2 and creates a normal signature as

W1,1 = kygα+(yuM+yh)r(w1)
c′1 , W1,2 = (W1,3)

φ2 , W1,3 = (kb)−(α+(AM+B)r)wc′1 ,

W2,1 = kygr(w1)
c′2 , W2,2 = (W2,3)

φ2 , W2,3 = (kb)−rwc′2 .
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Finally, A outputs a forged signature σ∗ = (W ∗
1,1, . . . ,W

∗
2,3) on a message M∗

fromA. To verify the forged signature, B1 first chooses a random exponent t ∈ Zp

and computes verification components by implicitly setting t = c as

V1,1 = k̂b
2c(k̂c)yg , V1,2 = T (k̂ac)yg , V1,3 = ((k̂b

3c)(k̂bc)yg (T )φ2(k̂ac)ygφ2)−1,

V2,1 = (k̂b
2c)AM∗+B(k̂c)yuM

∗+yh , V2,2 = (T )AM∗+B(k̂ac)yuM
∗+yh ,

V2,3 =
(

(k̂b
3c)AM∗+B(k̂bc)yuM

∗+yh(T )φ2(AM∗+B)(k̂ac)φ2(yuM
∗+yh)

)−1
.

Next, it verifies that
∏3

i=1 e(W
∗
1,i, V1,i) ·

∏3
i=1 e(W

∗
2,i, V2,i)

−1 ?
= Ωt. If this equa-

tion holds, then it outputs 0. Otherwise, it outputs 1.

To finish this proof, we show that the distribution of the simulation is correct.
We first show that the distribution using D,T0 = k̂ab

2c is the same as G0. The
public key is correctly distributed as

gw
cg
1 = (kb

2

kyg )(kbyw)−b/yw+c′g = kygw
c′g
1 ,

uwcu
1 = (kb

2Akyu)(kbyw)−bA/yw+c′u = kyuw
c′u
1 ,

hwch
1 = (kb

2Bkyh)(kbyw)−bB/yw+c′h = kyhw
c′h
1 .

The simulator cannot create g, u, h since kb
2

is not given in the assumption,
but it can create gw

cg
1 , uwcu

1 , hwch
1 since cg, cu, ch can be used to cancel out kb

2

.
The signature and the verification components are also correctly distributed
since these are similar to the simulation in [16]. We next show that the dis-

tribution of the simulation using D,T1 = k̂ab
2c+d is the same as G1. We only

consider the distribution of the verification components since T is only used
in the verification components. The difference between T0 and T1 is that T1

additionally has k̂d. Thus V1,2, V1,3, V2,2, V2,3 that have T in the simulation addi-

tionally have k̂d, (k̂d)φ2 , (k̂d)AM∗+B, (k̂d)φ2(AM∗+B) respectively. If we implicitly
set sc = d, zc = AM∗ +B, then the verification components of the forged signa-
ture are semi-functional since A and B are information-theoretically hidden to
the adversary.
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