

E. Petrinja et al. (Eds.): OSS 2013, IFIP AICT 404, pp. 30–44, 2013.
© IFIP International Federation for Information Processing 2013

How Healthy Is My Project? Open Source Project
Attributes as Indicators of Success

James Piggot and Chintan Amrit

Department of IEBIS
University of Twente

The Netherlands
j.j.h.piggott@student.utwente.nl,

c.amrit@utwente.nl

Abstract. Determining what factors can influence the successful outcome of a
software project has been labeled by many scholars and software engineers as a
difficult problem. In this paper we use machine learning to create a model that
can determine the stage a software project has obtained with some accuracy.
Our model uses 8 Open Source project metrics to determine the stage a project
is in. We validate our model using two performance measures; the exact
success rate of classifying an Open Source Software project and the success rate
over an interval of one stage of its actual performance using different scales of
our dependent variable. In all cases we obtain an accuracy of above 70% with
one away classification (a classification which is away by one) and about 40%
accuracy with an exact classification. We also determine the factors (according
to one classifier) that uses only eight variables among all the variables available
in SourceForge, that determine the health of an OSS project.

1 Introduction

Determining what makes a software project successful has been a research topic for
well over 20 years. The first model that defined the factors influencing software
success was published in 1992 by Delone and McLean [1], as the Information
Systems Success Model. Since then there has been a considerable effort in research to
determine what can be done to minimize project failure. However, factors that
influence commercial projects differ from those known as FLOSS or Free/Libre Open
Source Software. Attempts at remedying this gap have focused on statistical models
that focus on certain aspects of a software development lifecycle. Only recently, has
historical data been used to determine the changing nature of factors for success
during a projects lifecycle[2].

In this paper we use machine learning in the form of decision trees, to predict the
development stage of an Open Source project based on project metrics1, project
constraints and circumstance. This model will serve as an indicator of OSS project
health that will enable developers to determine accurately in what stage their

1 We use the terms metric and attribute to mean the same concept in this paper.

 How Healthy Is My Project? Open Source Project Attributes as Indicators 31

project is in and what is necessary to improve project success. For organizations
seeking to use OSS it can also be used to determine what risks are associated with
sponsoring a project.

Previous research has tried to understand which indicators influence a project’s
success and how these indicators are interrelated but there have been very few
working models[3]. What this paper proposes is that, through machine learning we
can model which available project metrics are of importance in determining OSS
project health. Our method differs from previous attempts at building a model, which
were based on statistical correlations that approximated success factors without
revealing how they actually influenced project’s status [4-6].

In the last few years a considerable number of papers have been published that
have tried to determine what the indicators of OSS project success are and how these
indicators are interrelated. Often a number of these metrics are empirically tested on
OSS projects found on SourceForge2, a key OSS depository. In this paper we try to
estimate the status of a project based on various metrics related to an OSS project. We
also determine the accuracy of the subjective status of an OSS project in SourceForge
that is provided by the OSS project leader. To this extent, we extend the research
work on the problems with reporting the status of a software project [7], to OSS
projects. For the purposes of this research we use SourceForge to obtain a data
sample and use longitudinal data collected from 2006 to 2009. We have limited the
sample to projects starting in 2005, in order to observe all stages of a project’s
lifecycle.

2 Literature Review

Recent research on OSS success factors has focused on enlarging the scope of
influences, common elements found cite factors such as user/developer interest [2],
the critical number of active developers [8] and software quality [5].

Ever since the publication of the Information Systems Success model by Delone
and Mclean[1] researchers have attempted to define in what way factors that influence
Open Source Software differ from those of commercial software. Early research
showed that due to geographical dispersal of developers and lack of formal
managerial methods, coordination becomes more difficult [9], this has been off-set by
the proliferation of software forges that act as a single locale for communication and
development for a project as well as a download site for users. To determine which
metrics found on a software forge can be used to determine project success, an
explanation of the IS success model is in order.

2.1 Open Source Health

In order to gauge the success of the Open Source projects we studied in this paper,
we looked into literature on measuring Open Source success.

2 http://www.sourceforge.net

32 J. Piggot and C. Amrit

Crowston et al. [3] collect data on the bug tracker and the mailing list of the
projects to determine the health of the projects. They propose that the structure of the
OSS community determines the health of the community and state that an onion
structure is one of the better OSS community structures. Subramanian et al. [2]
measure an Open Source project’s success by measuring user interest, project interest
and developer interest. They measure user interest by calculating the number of
project downloads and to measure the developer interest in the project, Subramanian
et al. [2] count the number of active developers in the project. Finally, they measure
project activity by calculating the number of files released in the project [2].

Other authors such as Stewart et al. [10] find that licence choice (i.e. how
restrictive the licence is) and organizational sponsorship (i.e its affiliation with a for-
profit company or university) determine how successful the OSS projects are. In
addition to these measures, Sen et al. [11] also find subscriber base (i.e. the number of
individuals who chose to be updated about the project developments) and number of
developers to reflect the ”healthiness” of an OSS project [11]. Chenglur-Smith et
al.[12] work on similar lines, and predict that a OSS project’s age and size help in the
sustainability of the project (i.e. its ability to retain interest and continue to attract
developers) [12]. Amrit and Hillegersberg [13], on the other hand, explore the core-
periphery shifts of development activity and its impact on OSS project health. They
find that a steady movement of developers away from the core of the software code is
indicative of an unhealthy OSS project [13].

Regarding the techniques used to analyse OSS data, English and Schweik [14]
produce a six-part classification for OSS projects. They base this classification on
phone interviews with OSS developers, manual coding of a sample of OSS projects
from SourceForge.net, and theoretical insights from Hardin’s “Tragedy of the
Commons”. English and Schweik operationalize these definitions and test them on
110,933 SourceForge projects, with low error rates. Wiggins and Crowston [15]
extend this research and analyse another SourceForge data set. Of 117,733 projects,
they classify 31% as abandoned at the Initiation stage, 28% as abandoned at the
Growth stage, and 14% as successful at both the Initiation and Growth stages.

Though the dependent variables of English and Schweik [14] are well thought out,
they do not explore the relationship of their classification with the existing
classification of projects in SourceForge. Furthermore, their focus is by and large to
determine the number of successful and unsuccessful OSS projects and to classify
projects into their six categories. In this paper, we also try to determine the factors
that affect the heath of an OSS project. Specifically, we try to predict the subjective
classification provided by the project managers and developers of the different
SourceForge projects in order to (1) check the validity of the subjective classification
and (2) if the classification is indeed valid, one can use the classifier to determine the
variables that affect project health.

2.2 Success Factors

Previous research has focused on using three well known metrics to determine project
success with the added benefit they have corresponding metrics on SourceForge [2, 3].

 How Healthy Is My Project? Open Source Project Attributes as Indicators 33

The use of longitudinal data from past projects hosted by SourceForge.net to
determine OSS success is also an innovation in recent studies [2]. They divide the
independent variables into two groups; time-variant and time-invariant and
determined how they affect the success measures. The outcome of this study validates
the idea of using historical data, as they have proved that past levels of developer and
user interest influence present interest. The effect of this change in popularity is that
lead-developers and project managers should better anticipate the future need for
resources and manage both the internal and external network size of a project [16].

The choice of software license can also have a detrimental influence on the success
of a project [4]. They find that if more effort is necessary to complete the project,
developers tend to choose less restrictive licenses such as those from the No-Copyleft
or Weak-Copyleft categories as opposed to Strong-Copyleft. This even holds true
when developers prefer to use more restrictive licenses to ensure that derivative work
is adequately protected. The choice of license can be influenced by external factors
such as royalties and network effects. As such the preferred license can differ from
the optimal license. Other research has shown that when a project has managed to
pass through the initial stages of its lifecycle with a less than optimal license it will
not severely influence future success [17].

A difficult topic to study relates to determining what factors influence OSS
projects in both the initial stage and in the growth stage. As data from a project’s
initial stages is often absent, this resolves to determining what time-invariant factors
can influence the growth stage. Research has found that the initial stage of an OSS
project is indeed the most vulnerable time period as a project competes for legitimacy
with other similar projects in attracting developers.

3 Methodology

3.1 Data and Variable Definitions

In order to build a model that approximates the status value of a software project on
SourceForge we need to gather factors that might influence developers to assign a
particular value of status.

Table 1. Overview of SourceForge’s status classification

Classification
Number

Development Stage

1 Planning
2 Pre-Alpha
3 Alpha
4 Beta
5 Production / Stable.
6 Mature
7 Inactive

34 J. Piggot and C. Amrit

3.2 Dependent Variables

To determine the success of software project we try and categorize what status (stage)
of development a project has reached.

3.2.1 Project Status
The current progress of a software project can be placed in one of five development
stages according to the System development life cycle: these are Requirements
Planning, Analysis, Design, Development and Maintenance [2]. Another way to
describe a projects progress is through terms such as Planning, Alpha, Beta and
Stable. Shifts in progress are marked by improvements in completeness, consistency,
testability, usability and reliability [2].

SourceForge.net maintains a system of 7 status designations (Table 1). The
numbers 1 through 6 are for Planning, Pre-Alpha, Alpha, Beta, Production/Stable and
Mature The last status is an outside category for projects that are Inactive. Previous
research [2] makes it clear that it can be expected that projects reaching advanced
stages of their life cycle will be more in favor with users and those in earlier stages, as
their input goes beyond mere maintenance. As more users make use of the software,
they also generate more bug reports, feature requests and feedback/suggestions. In
turn developers develop more patches. As such, the latter stages of development are
marked by more development activity related to patches, bugs and feature requests.
The use of historical data in previous research [2] shows that increased numbers of
developers and users will show later on in increased project activity. To better mark
this relationship between different time periods within a project we have selected
projects on SourceForge that have valid data from a period of four years from 2006 to
2009. The 7 stage status category used by SourceForge is considered by some [2, 11],
an awkward use of the typical lifecycle definitions used in software development.
SourceForge uses only vague descriptions for each, and much is left to developers to
decide the status their project is in. Especially the difference between pre-alpha and
alpha, as well as between production/stable and mature, may be cause for confusion.
To overcome this, we also consider the binary project status representing whether the
project is active, and the project status variable that has four categories; namely
Planning, Alpha and Beta and Stable. To achieve the four stages of the project status,
we collapsed the inactive and planning stages to the Planning stage, we aggregated
the stages Pre-Alpha, Alpha to Alpha stage and Production/Stable and Mature to the
Mature category.

Projects on SourceForge.net can also be differentiated along a different dimension,
that of project activity. It can be reasonably assumed that both projects in the planning
stages and those that are inactive do not have either code to download or developers
to work on the project. As such they should be markedly different from those projects
of which code is available for download and alteration. We propose to check for ways
in which projects that are inactive differ from those that are active, apart from the
aforementioned variables.

 How Healthy Is My Project? Open Source Project Attributes as Indicators 35

3.3 Time-Invariant Variables

Variables that can influence the success of an OSS project can be divided into two
groups – time-invariant factors and time-variant factors. The variables included have
been previously identified in literature as affecting OSS success [3, 11].

For time-invariant variables we have chosen those that define a project in general
terms such as license [4], the operating system that can be used and the programming
language [2] in which the code is written, to determine if they are factors that have an
influence on the project status. Each variable is divided into binary variable categories
such as Strong-CopyLeft, Weak-Copyleft and No-Copyleft for license and after which
each project is assigned either the value 0 or 1 to show if it supports a particular feature.

The time-invariant variables have been further augmented with simple numerical
variables that list the number of features of each category that a project supports. So
for license, there is a variable that would count the number of licenses used by a
project.

License
The license used by a project can influence the amount of support it gets, as it affects
the interests of users and developers [10]. Software licenses can be broadly divided
into three groups based on the level of restrictiveness that would determine whether
users can distribute derivatives or modify the software (copyfree).

These categories are Strong-Copyleft, Weak-CopyLeft and No-CopyLeft. Licenses
such as GPL (General Public License) and BSD (Berkeley Software Distribution)
License are grouped into these categories depending on whether they support issues
such as ‘copyfree’ or not. Various research papers already use this division of licenses
and where licenses fall into [9, 10]. However, numerous licenses cannot be exactly
assigned to any of the three categories because they do not conform the GPL format.
As far as possible, they are assigned based on the effect these licenses have on user
and developer choices.

Operating System
The operating system used for development and use of a project can have a severe
impact on its popularity as it determines how many users it could potentially reach as
well as what type of license the developer intends to use [2]. Traditionally open
source software has used UNIX, Linux and its derivatives for development, which
caused OSS to be somewhat excluded from other operating systems such as Windows
and Mac OS X. With the popularity of languages such as a Java that make portability
possible Windows has become an increasingly more popular for OSS developers.
Previous research[2] has indeed focused on these three categories of operating
system: the Windows-family, UNIX (also includes Linux and POSIX) and a other
category that includes MAC OS X. They prove that UNIX and Linux type operating
system have a negative correlation with user interest, but a positive correlation with
developer interest and explain this based on the roots of the OSS community who
frequently started their career on UNIX and Linux machines.

We have expanded the number of OS groupings to also include ‘OS Independent’
as a category to denote the increasing popularity of portability. Mac OS X has also
been grouped into a separate category as an acknowledgement of its increasing

36 J. Piggot and C. Amrit

popularity. Other operating systems were left out of this study. The increase in
number of categories should allow for better rules to be deduced from our data mining
efforts.

Similar to the license variables these categories denote binary variables and an
outside category has been added that counts the number of operating systems
supported by a project.

Programming Language
The effects of the programming language used in a project has previously solely
focused on the C-family of languages, while others where either excluded from study
or aggregated into one category [2, 3]. This study intends to rectify this deficiency to
also include popular languages such as Java and PHP as separate categories without
denying the continued importance of C-type languages.

Because the C programming language was used for the implementation of UNIX is
has remained popular with UNIX and Linux developers ever since [2]. Despite
memory allocation problems it has remained a favorite for projects that have more
stringent processing and real-time requirements. Through the prevalence of high
quality compilers and the importance of derivative languages (C++ C# and Visual
C++) the use of C can be associated with more developers and project activity [2].

For our study we have expanded the number of language categories to 5 and
included ‘C-family’, ‘Java’, ‘PHP’, ‘Python’ and ‘Others’ as separate categories.

3.4 Time-Variant Variables

The three success measures previously mentioned that have their roots in the IS
Success Model also have their equivalents in OSS projects found on SourceForge.
These are Project Activity (number of files, bug fixes and patches released), User
Activity (number of downloads) and Developer Activity (number of developers per
project). Crowston et al. (2006)[3] discovered that these measures are interrelated as
developers are often users which means that the number of downloads and developers
is thus correlated. Project Activity is also closely correlated with User Activity as the
latter often download the latest software releases, developers tend to flock to such
projects as well. We use the above three metrics as the basis for our time-variant
variables.

Other variables include the number of donors, forum posts, mailings lists, feature
requests and ‘Service Requests’ that allow users to ask for help from developers. Our
dataset also includes the project age in days from 2009 backwards as a control
variable. Combined, we have constructed a dataset that contains 38 variables
including 35 independent variables and three variations of one dependent variable, i.e.
project status with 7, 4 and 2 project statuses.

3.5 Dataset Sampling

SourceForge.net is the largest web portal for the development of Open Source
Software, it acts as a repository for code, as a tracking system for bugs and features
and as a communication outlet for those involved in software development. As of
November 2012 it hosts some 300,000 projects that differ in a wide range of

 How Healthy Is My Project? Open Source Project Attributes as Indicators 37

categories such as intended audience, the topic of the project, the license used as well
as technical attributes in which projects can distinguish itself; programming language,
OS supported as well as the Graphical User Interface used. For the purpose of this
study it is impossible to gather data directly from SourceForge through a screen
scraper as the servers of Sourceforge.net cannot distinguish this activity from more
nefarious ones such as a Denial of Service attack.

The dataset used has thus been obtained through a third source which has made the
data publicly available [18]. FlossMole.org contains data collected for the period 2006
to December 2009 from which a dataset was compiled of 125,700 projects.
Unfortunately, many projects had missing data, due to the fact that no data was
entered by developers, or project portals were not maintained, or the screen scraper
that collected data often did so wrongly, which corrupted portions of the dataset.

Our dataset initially contained 125,700 projects and most projects had incomplete
data for the time period 2006 to 2009. Hence, upon cleaning the data we were left
with 28,282 rows in our database,

4 Experiment Methodology

We used the SPSS 2.0 decision tree analysis able to analyze the data and predict
project status. In our research we chose the CHAID[19] and the CART[20] method of
data classification, in order to handle over 35 independent variables some of them
being categorical, numeric and non-parametric.

Decision trees can suffer from over-training, whereby the trees continue to grow
and might afterwards not be able to validate test-data because it uses rules learned
from the training data that are incompatible with the test data. Both CHAID and
CART use different ways to limit the growth of decision trees.

CHAID
Which stands for ‘Chi-squared Automatic Interaction Detection’ uses a statistical
stopping rule to keep the tree from growing to impossible sizes. CHAID has the
advantage of being able to handle categorical variables. Other research using this
method indicate that it excels at analyzing all the factors that can possible influence a
dependent variable but it’s result at predicting these value with subsequent data
samples is often poor.

CART
Also known as ‘Classification and Regression Trees’ builds a tree based on theory
quite different from CHAID. CART uses a non-parametric approach which can work
with both categorical and numerical variables, and also has the ability to model the
complex interactions among the variables[20]. It first grows the tree to its full size and
afterwards it prunes the tree until the accuracy of the tree is similar for both the
training dataset and the test dataset.

The reason why we chose CHAID and CART is that while both classifiers can
work with categorical variables and use different theoretical models, they are also
comparable in some aspects (lift in response)[21].

38 J. Piggot and C. Amrit

Cross Validation
With both methods of growing a decision tree we have used our dataset in two ways. The
first is cross-validation of the entire data sample whereby data is partitioned multiple
times over in both trainings sets to build the tree and test sets to validate the tree.

This is a process whereby data is manually split into training and test sets. For the
purposes of this study we used a 50-50 data split in order to avoid overtraining.

5 Results

Below are the results of for each of the three types of project status. The results
include both the CHAID tests as well as the Cross-validation and data-split methods.

The accuracy with which our classification tree has been able to determine the
correct project status can be seen in tables 2 and 3.

5.1 Data Split

The results in table 2 have been obtained through a 50-50 data split (to prevent
overtraining) and represents the results of the training set. The method obtained two
results of importance, the first is the exact match of 39.6 % whereby of the 24582 data
samples 9729 achieved the correct corresponding status value. For a 7-fold category
this result can be considered acceptable (as compared to 1/7 ~ 0.14 for random
chance). The second method, or 1-away result, shows what percentage of data
samples either had exactly the correct status value, or were just 1 value off the mark.
The accuracy for this is 76.2 % and suggests that the results are closely distributed
around the correct value. This result validates the decision tree that was grown from
the rules deduced from this test.

Table 2. Results of the CHAID decision tree with 7 stage project status

Exact match = 39.6%.
number of hits / total cases = 9729 / 24582.
1-away match = 76.2%.
(number of hits + number of 1-away hits) / total cases
= (9729 + 9013) / 24582.

 How Healthy Is My Project? Open Source Project Attributes as Indicators 39

5.2 Cross-Validation

For the cross-validation method, the final score seems to closely match those of the
data split method. However, for status value corresponding to Planning (1) and
Inactive (7) the results differ significantly, as this method partitions the data set
multiple times it would average out the more extreme values obtained through the
data-split method.

Table 3. Status results through cross-validation

Exact match = 40.7%.
Number of hits / total cases = 19929 / 48966.
1-away match = 76.0%
(number of hits + number of 1-away hits) / total cases
= (19929 + 17294) / 48966.

Both results validate our method to classify software projects found in
SourceForge.

5.3 Four Stage Project Status: Planning, Alpha, Beta and Stable

In table 4 are the results of our efforts to classify projects in the four categories
popularly described in literature. The test results were obtained using the CHAID
method with a 50-50 split of the dataset.

The accuracy of 45.4% is better than the score for the 7-fold status category,
though it’s predictive value is especially undermined by the low score in its efforts to
classify projects in Beta stage. This could be seen as proof that this stage is a
subjective stage that is hard to classify through machine learning. The 1-away score
of 86.0 % once again proof that the scores are distributed around the correct value
though for a 4-fold category the value loses in importance.

This result validates that out method works to determine the correct stage in its
lifecycle a software project is in.

40 J. Piggot and C. Amrit

Table 4. Results of CHAID for 4 stage project status

 Categories. Accuracy.

 1. 2. 3. 4. Exact
match

1-
away

.
1877 2081 157 73 44.8%

2
.

1270 5049 1274 858 59.4%

3
.

424 2405 1837 1327 30.7%

4
.

201 1621 1384 2094 39.5%

 45.4%
 86.0%

Fig. 1. Stage results

Growing method; CHAID.
Exact match = 45.4%.
Number of hits / total cases = 10857 / 23932.
1-away match = 86.0%.
(number of hits + number of 1-away hits) / total cases
= 20598 / 23932.

5.4 Binary Project Status: Active and Inactive

We get an accuracy of 82.4% for classification of projects based on a binary status of
active or inactive. The results can be considered to be better, if we consider that the
inactive state is an aggregation of the Planning status and the Inactive status, they
share many things in common but also have crucial differences for the former can
have developers assigned to it.

Table 5. Results of CHAID for a binary project status

5.5 Cross Validation Result

The cross-validation method seems better able to determine whether a project is
active (1), because the method splits the dataset 10 times and tests each iteration we
can presume that the lower score for the above 50-50 data split is an aberration.

 How Healthy Is My Project? Open Source Project Attributes as Indicators 41

Table 6. Results of CHAID, CV for binary project status

This result of 82.8% accuracy, shows that our method can successfully distinguish
active projects from inactive projects.

6 Discussion

The results of our classification show a nearly 40% accuracy for an exact match of the
subjective classification and a 76% 1-away match (Table 2) indicates that subjective
classification performed by the OSS project leader is quite accurate and correlates
with the project data. This is quite unlike what is reported for commercial projects [7].
The errors and implications of this finding can be a subject for future research.

By using the CART method of decision tree analysis, we obtained a model for
status classification, as shown in Figure 2. The tree shows that numerical metrics such
as downloads, donors, developers and forum posts are far more explanatory of project
health than time-invariant metrics such as license used, or the operating system
supported.

This is in-line with earlier research [2]. However, this should not be surprising as
those time-invariant metrics are usually decided upon when the project is initiated,
and change little over its lifecycle. When they do change, they change only to suit
users and developers. On the other hand, time-variant metrics, by their definition, can
gauge what popularity a project has presently obtained. The order of importance that
metrics have taken in the model is also as expected and follows established literature
[2, 3].

In the early stages of a project lifecycle, the ability to attract developers is of vital
importance in order to be able to develop software along the stated goals. In the latter
stages of the software life cycle, it can be expected that users and developers generate
more forum posts. This model also shows that the number of donors is an indication
as to whether the project has status 4, 5 or 6. This can serve as an indicator, for
example, that a project sponsor can have a positive influence on project success. This
is in line with the findings of Stewart et al.[10].

The number of SVN commits relates to the number of changes developers have
uploaded to the central software repository on SourceForge. In the model (Figure 2) it
is closely related with the number of developers on a project in the early stages of the
software lifecycle. The number of CVS commits denotes the number of official
software releases and surprisingly is not part of the model obtained.

The choice of license is also not an important factor in determining whether a
project will be able to continue to succeed in the growth stage. This validates other
research [10, 17] but for the most part contradicts long established views on how a
project would compete for resources.

42 J. Piggot and C. Amrit

Fig. 2. The CART decision tree for our data

Even though our dependent variable is the SourceForge subjective classification
done by the OSS project leaders, we can definitely say that given the predictive
accuracy of 1-away classification, the classification model does reflect the
stage/health of the OSS projects. As validation of this claim, we find that most of the
important variables are also mentioned by other authors[2, 3, 5, 6]

With our model we have managed to predict the status of a project with reasonable
accuracy. The model in figure 2 shows this when status 7 (inactive) is reached after a
combination of few downloads few active developers and only a small number of bug
reports have been generated.

7 Conclusion

We make two primary contributions with this research: (i) we demonstrate that the
subjective project status (especially the 1-away value) reflects the actual health of the
OSS project. This finding is in line with that of [2] and shows that, in this respect
OSS projects differ from commercial projects [7] (ii) we determine the variables that
affect project status and in turn affect project health based on nearly 30 K projects
over a period of four years.

 How Healthy Is My Project? Open Source Project Attributes as Indicators 43

Our research shows that with a limited set of just 8 variables (Figure 3), we can
gauge the status of a software project on SourceForge. Analyzing these 8 attributes of
the OSS project can help alert Project controllers that their project is either poorly
supported or will become obsolescent in the near future due to lack of developer
interest. For prospective developers and sponsors this model can give an idea,
whether a project is on track to pass through the early difficult stages of a software
life cycle on schedule and is in fact not already failing.

We think our results can provide further research opportunities in projects that also
suffer from users and developers being flooded with data, whose accuracy cannot be
interpreted easily. Crowd funding sites such as Kickstarter3 offers an index of project
that are considered ‘popular’ and ‘most funded’ but there may be lopsided metrics as
projects size, ambition and accessibility can negatively influence them.

References

[1] DeLone, W.H., McLean, E.R.: The DeLone and McLean model of information systems
success: a ten-year update. Journal of Management Information Systems 19, 9–30
(2003)

[2] Subramaniam, C., et al.: Determinants of open source software project success: A
longitudinal study. Decision Support Systems 46, 576–585 (2009)

[3] Crowston, K., et al.: Information systems success in free and open source software
development: theory and measures. Software Process Improvement and Practice 11,
123–148 (2006)

[4] Comino, S., et al.: From planning to mature: On the success of open source projects.
Research Policy 36, 1575–1586 (2007)

[5] Lee, S.Y.T., et al.: Measuring open source software success. Omega 37, 426–438
(2009)

[6] Midha, V., Palvia, P.: Factors affecting the success of Open Source Software. Journal of
Systems and Software (2011)

[7] Snow, A.P., Keil, M.: The challenge of accurate software project status reporting: a
two-stage model incorporating status errors and reporting bias. IEEE Transactions on
Engineering Management 49, 491–504 (2002)

[8] Mockus, A., et al.: Two Case Studies of Open Source Software Development: Apache
and Mozilla. ACM Transactions on Software Engineering and Methodology 11, 309–
346 (2002)

[9] Wang, J.: Survival factors for Free Open Source Software projects: A multi-stage
perspective. European Management Journal (2012)

[10] Stewart, K.J., et al.: Impacts of license choice and organizational sponsorship on user
interest and development activity in open source software projects. Information Systems
Research 17, 126–144 (2006)

[11] Sen, R., et al.: Open source software licenses: Strong-copyleft, non-copyleft, or
somewhere in between? Decision Support Systems (2011)

[12] Chengalur-Smith, I., et al.: Sustainability of free/libre open source projects: A
longitudinal study. Journal of the Association for Information Systems 11, 5 (2010)

3 http://www.kickstarter.com/

44 J. Piggot and C. Amrit

[13] Amrit, C., van Hillegersberg, J.: Exploring the impact of socio-technical core-periphery
structures in open source software development. Journal of Information Technology 25,
216–229 (2010)

[14] English, R., Schweik, C.: Identifying success and abandonment of FLOSS commons: A
classification of Sourceforge. net projects. Upgrade: The European Journal for the
Informatics Professional VIII 6 (2007)

[15] Wiggins, A., Crowston, K.: Reclassifying success and tragedy in FLOSS projects. In:
Ågerfalk, P., Boldyreff, C., González-Barahona, J.M., Madey, G.R., Noll, J. (eds.) OSS
2010. IFIP AICT, vol. 319, pp. 294–307. Springer, Heidelberg (2010)

[16] Sharda, R., Delen, D.: Predicting box-office success of motion pictures with neural
networks. Expert Systems with Applications 30, 243–254 (2006)

[17] Wang, J., et al.: Human agency, social networks, and FOSS project success. Journal of
Business Research (2011)

[18] Howison, J., et al.: FLOSSmole: A collaborative repository for FLOSS research data
and analyses. International Journal of Information Technology and Web Engineering
(IJITWE) 1, 17–26 (2006)

[19] Kass, G.V.: An exploratory technique for investigating large quantities of categorical
data. Applied Statistics, 119–127 (1980)

[20] Breiman, L., et al.: Classification and regression trees. Chapman & Hall/CRC (1984)
[21] Haughton, D., Oulabi, S.: Direct marketing modeling with CART and CHAID. Journal

of Interactive Marketing 11, 42–52 (1997)

	How Healthy Is My Project? Open Source Project
Attributes as Indicators of Success
	1 Introduction
	2 Literature Review
	2.1 Open Source Health
	2.2 Success Factors

	3 Methodology
	3.1 Data and Variable Definitions
	3.2 Dependent Variables
	3.3 Time-Invariant Variables
	3.4 Time-Variant Variables
	3.5 Dataset Sampling

	4 Experiment Methodology
	5 Results
	5.1 Data Split
	5.2 Cross-Validation
	5.3 Four Stage Project Status: Planning, Alpha, Beta and Stable
	5.4 Binary Project Status: Active and Inactive
	5.5 Cross Validation Result

	6 Discussion
	7 Conclusion
	References

