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Abstract. Crowd monitoring in mass events is a highly important tech-
nology to support the security of attending persons. Proposed methods
based on terrestrial or airborne image/video data often fail in achieving
sufficiently accurate results to guarantee a robust service. We present a
novel framework for estimating human density and motion from video
data based on custom tailored object detection techniques, a regression
based density estimate and a total variation based optical flow extrac-
tion. From the gathered features we present a detailed accuracy analysis
versus ground truth information. In addition, all information is projected
into world coordinates to enable a direct integration with existing geo-
information systems. The resulting human counts demonstrate a mean
error of 4% to 9% and thus represent a most efficient measure that can
be robustly applied in security critical services.

Keywords: Airborne, crowd monitoring, human density and motion,
geo-referencing.

1 Introduction

The recognition of critical situations in crowded scenes is very important to pre-
vent escalations and human casualties. On large scale events, like music festivals
or sport events, important parameters for estimating the riskiness of a situation
are, as follows, the density of individuals per square meter, the general motion
direction of groups of people and motion patterns (like dangerous forward and
backwards motions in front of a stage or an entrance). These parameters can be
used to estimate the human pressure which indicates potential locations of vio-
lent crowd dynamics [I]. Despite the huge number of security forces and crowd
control efforts, hundreds of lives are lost in crowd disasters each year (like at
Roskilde Festival in 2000, or in Mina/Makkah during the Hajj in 2006, or in
Duisburg at Love Parade in 2010). In the future, the presented framework will
provide sufficiently robust cues to prevent such disastrous incidences.

In this paper we introduce a setup based on HD video data which can ei-
ther be captured from a tower-mounted camera or from an airborne vehicle
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(airplane, helicopter, UAV). The resulting video, capturing parts of the crowded
scene, is analyzed with computer vision techniques which extract the target
parameters (density, motion). To be able to pipe such information in a crowd
simulation framework the per-pizel information has to be geo-referenced into a
world-coordinate system. This enables to measure in physical units, e.g. number
of persons per square meter. A crucial parameter to detect critical situations in
crowds is the human pressure P, defined by P(x,t) = p(x,t)Var(V (x,t)) where
@ is the spatial location, ¢t the time, p the estimated density and V the motion [IJ,
which can be estimated employing the proposed framework. Such information
can then be used to alert security staff who then triggers appropriate actions,
like opening or closing a gate or restricting the access of following people.

Our Contribution. The main difference in our approach to the related work
is to apply higher order features for density estimation and provide an accurate
performance analysis in a geo-referenced framework, such as, using an object
detector tailored for person detection, learning the density estimate from image
features w.r.t. a given ground truth (can be seen as an automatic feature selec-
tion) and rectifying all information from image geometry to world coordinates.
In addition, the proposed framework is general and could be combined with any
existing visual features, with any object category and with any object detection
method. For example, it could be applied - appropriate features presumed - to
count trees or cars in airborne videos.

2 Related Work

Some principles for crowd monitoring and person counting have been published.
For example, [2] count people in an outdoor scenario based on a fixed mounted
static video camera using a motion segmentation followed by a feature extraction
that serves as input for a Gaussian regression model. The main drawback w.r.t.
our application is the prior motion segmentation. Such a system can only iden-
tify moving people, therefore all standing people are not counted. In addition,
other moving objects like cars or pets will also appear in the motion segmenta-
tion. Authors of [3] detect individual people and crowd outlines from airborne
nadir looking images. While isolated persons are detected using a custom tai-
lored object detector, regions containing crowds are recognized when many local
features (features from accelerated segment test (FAST)) jointly occur. The work
does not contain an accuracy analysis and lacks a concept of how to map po-
tential crowd regions to estimated person counts. It also seem problematic to
define regions of crowds by low-level features, as in an arbitrary scenario also
other objects than people will give a high FAST response (like e.g. textured
vegetated areas). The work of [4] also deals with airborne nadir looking images.
This very interesting approach is similar to our methodology in terms that it
extracts local features (in this case again FAST) and uses them to estimate
the crowd density. The authors also include a feature selection step to reject
local features which potentially are not corresponding to persons. The density
itself is extracted using a kernel density estimate based on the feature occurrence.
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The number of individuals is spatially aggregated also using the FAST responses.
In the following we discuss related work in particular for object counting, density
estimation, motion estimation and geo-referencing.

Object Counting and Density Estimation. There are three main methodolo-
gies: (1) Counting by detection: The idea is to detect each individual object in-
stance in the image and count their number (actually this is how human count).
However, in computer vision object detection is far from being solved [5] and the
detection is a harder problem than counting alone. Huge problems arise when ob-
jects are overlapping and occlude each other. (2) Counting by regression: Those
methods try to find a mapping from various image features to the number of ob-
jects using supervised machine learning methods. However, those methods do not
use the location of the objects in the image instead they just find the regression
to a single number, i.e. the number of objects. Therefore, huge training datasets
are necessary to achieve useful results [6]. (3) Counting by density estimation: The
main concept is to estimate an object density function whose integral over any
image region gives the count of objects within this region [7]. For learning the pro-
posed methods employ the ground truth location of objects and the learning can be
posed as a convex linear or quadratic program. An additional benefit of the method
is that after learning the density function can be estimated by simple multiplica-
tion of the individual features with learned weights and is therefore very efficient.

Motion Estimation. Estimating small motions from adjacent video frames is
considered to be solved, or to state it differently, the accuracy of state-of-the-art
algorithms are sufficient for our needs. The so-called optical flow can be extracted
by total variation methods in image geometry, e.g. [8].

Geo-Referencing. Geo-referencing, also called ortho-rectification, is a standard
method in photogrammetry and in remote sensing (cf. e.g. [9]) which projects
the image onto the earth’s surface with a given map projection. To be able to
handle the distortions due to the topography a digital surface model (DSM) is
used (global digital surface models like SRTMI or ASTER GDEMA are freely
available). If the terrain is rather flat the DSM can be replaced by the knowledge
of the mean terrain height. For areas containing many obstacles like stages,
bridges, etc. a laser scanner model will deliver most accurate results.

3 Owur Approach

3.1 Workflow

The proposed approach is sketched in Figure[Il and in Figure Bl The main idea
is to extract image features which are related to the human density by machine
learning techniques. We employ discretized features where the learning provides
a weight for each feature number. Thus, after learning the density function can
be calculated by simple multiplications. In addition, the density estimate is a
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real density function, meaning that the integral over the density yields the object
count (therefore, the integral over a subregion holds the number of objects in
this particular region). The motion between video frames is extracted using a
variational method. All gathered information is then geo-referenced and can
therefore be visualized and processed in any geographic information system.
Figure 2] shows a video frame superimposed with the estimated density and
motion and the same information geo-referenced and overlayed in Google Earth.

22, 0 a L1
3 50 100 150 200 250 300 350 400 450 500
feature number

Fig. 1. Our proposed workflow for human density estimation: An image with anno-
tated humans (yellow dots), discretized features (in this specific case the results of an
object detector), the learned weights for each feature and the estimated human density
function (estimated count equals 250) are shown

Fig. 2. Geo-referencing of a given image, the human density and motion estimate for
test site Lakeside: (a) input image with superimposed color coded human density func-
tion, motion, and estimated number of individuals and (b) the geo-referenced version
of (a) shown as Google Earth? overlay

3http://earth.google.com
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3.2 Object Counting and Density Estimation

For object counting and density estimation we employ the method by [7]. This
method takes dense discretized feature maps extracted from the input images
and learns the density estimate via a regression to a ground truth density. Since
we want to detect persons we apply the object detector of [10] with the learned
model for persons of the VOC 2009 challenge [5]. This detector yields confidences
which have to be discretized. As we know from experience and previous tests
that very small and very high confidences are useless for object counting, we set
the minimal value to —4.0 and the maximal to —0.6 for all tests. These bounds
are used to scale the confidences to [0,255] € N. In addition, we extract dense
scale-invariant feature transform (SIFT) descriptors [L1] using the implementa-
tion in [12] for each pixel. To be able to discretize this information we define 256
SIFT prototypes and the closest prototype for each descriptor defines the quan-
tized SIFT number. Therefore, for each pixel we get a discretized SIFT value in
[0,255] € N. For evaluation we train the density estimation framework for each
feature class individually and for both, which is done by stacking the features.

The training itself minimizes the regularized Mazimum Excess over SubAr-
rays (MESA) distance (cf. [7]) where we use the L; and the Tikhonov regular-
ization [I3] to solve the linear or quadratic equation system (i.e. min, ||Ax — b||
or ming ||Ax — b|| + ||(z'I"z)/2|| with ||z > 0]| and Tikhonov matrix I" being the
identity matrix in our case). The result is a weight for each of the discretized fea-
tures and the resulting density is calculated by multiplying the according weight
with the extracted feature value. Thus, for each pixel the density function is
given and the sum over all pixels represents the number of objects in the image,
i.e. our person count.

Therefore, in the testing phase the discretized features are extracted for each
image and multiplied by the learned weight vector directly resulting in the den-
sity estimation per pixel and corresponding person count. It should be noted
that this approach introduces virtually no overhead over feature extraction [7].
In case of very efficient feature extractor methods, like decision tree and forests
[14] or cascades of boosted weak classifiers [I5], the whole density estimation
would also run in real time.

3.3 Motion Estimation

The motion is estimated based on the optical flow in image geometry [8] where
we used the implementation atl. To get a more robust estimate the flow is
not gathered from two adjacent video frames but from frames with a temporal
distance of 10 frames. In addition a given number of those flows are averaged to
ensure smooth motion vectors.

3.4 Geo-referencing

To keep it simple we define a common map frame for each of our test sites in
WGS84 UTM 33 North projection (EPSG 32633) since our sites are located in
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western Austria, Europe. Then for each image and for each column/line coordi-
nate the according world coordinate is calculated which are used to rectify the
density and motion information.

Density. For projecting the density we use a forward transformation and project
each density pixel into the common frame. If a pixel gets hit more than one time
the values are summed up. This ensures that the sum of the density, i.e. the
human count, stays the same in image and world coordinates. Since it happens
that some pixels are hit more often than their neighbors due to rounding effects,
the whole geo-referenced density is smoothed using a Gaussian kernel.

Motion. Rectifying the motion is a bit tricky. In image geometry we cannot
differentiate between object motion and camera motion. However, when trans-
forming the reference image coordinate into the common frame using the ref-
erence transformation and the corresponding matched image coordinate with
the search transformation, absolute world coordinates can be extracted. These
two world coordinates define the real object motion independent of the camera
movement.

4 Experimental Results

4.1 Test Data

For evaluation of the presented concept videos from two different scenarios were
acquired in HD quality. The first one, referred as Lakeside, originates from a
music festival in Styria, Austria (cf. Figure 2l). The video camera was mounted
on a tower (approximately 30 meters above ground). The camera was therefore
more or less static with small jiggling due to wind. To geo-reference the scene only
one image was manually rectified and defines the geometry for all other images.
The second scenario, called Donauinsel, originates from a huge open air festival
in Vienna, Austria (cf. Figure B]). Here the video camera was mounted on an
airplane. For geo-referencing, the meta-data (GPS/IMU) supplied by the camera
system was taken for each frame. Since every frame has a different exterior
parameters, it was necessary to geo-reference every frame independently. Table [I]
lists the details of the video setups and parameters. We also manually labeled
many frames to get the ground truth values used in training and later in the
testing phase (overall over 23500 persons were annotated with a mean human
height of 90 pixels, cf. Table[). It is important to note that the scenes for learning
are similar however different than the testing scenes. Since the Lakeside scenario
contains a much larger data set, most of the experimental results are focused
on this set. The Donauinsel scenario contains insufficient images for sustainable
training and testing. In addition, the density estimate is evaluated in detail since
the motion estimation can be solved by state-of-the-art algorithms.
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Table 1. Test video data sets for the two scenarios

Image size Frame Number of Length Camera parameters
in pixels rate  frames in m:ss
Lakeside 1440 x 1080 25 6801 4:32 Canon HV30 camera
fixed mounted on a tower
Donauinsel 1280 x 720 50 721 0:14 FLIR Star Safire HD camera

mounted on DA42 MPP airplane®

Table 2. Manually labeled persons for the two scenarios

Lakeside number of persons Donauinsel number of persons
images total mean std images total mean std

Training 12 3154 263 7.3 Training 5 672 134 41.7

Testing 68 18884 278 13.2 Testing 6 848 141 35.8

Fig. 3. Geo-referencing of a given image for the test site Donauinsel: (a) Airborne
video frame and (b) the geo-referenced version of (a) overlayed on a true ortho image
with 4cm GSD

4.2 Density Estimation

Learning. The accuracy of the learning process are listed in Table Bl It can be
seen that the used object detector has a better impact on the density estimation
than the dense SIFT descriptors. Using both features increases the accuracy. It is
also interesting that the two regularizations yield similar results, even though the
learned weights are very different. Overall, the L; regularization tends towards
a zero-solution, i.e. setting many weights to zero, while the Tikhonov regular-
ization populates the weights a lot smoother (this is a property of the Tikhonov
regularization, as it improves the condition of the problem and enables a more
stable numerical solution). This aspect seems not important for the learning set,
however it changes the performance in the testing phase. If e.g. we have a slight
motion blur in one of the images, the according L, weights drop to zero, while
the Tikhonov weights do not. For the Donauinsel the Tikhonov based regular-
ization yields a lower accuracy than L in case of dense SIFTs. We assume that

5http://www.diamond-air.at
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Table 3. Accuracy of density learning and testing. Given are the average errors of the
total human count and the percental error over the training and test images, for two
regularization options and different image features.

Lakeside training testing
L1 Tikhonov L1 Tikhonov
object detector 4.7 (1.8%) 4.75 (1.8%) 13.3 (4.8%) 10.6 (3.8%)
dense SIFT 7.0 (2.7%) 6.7 (2.5%) 11.2 (4.0%) 11.1 (4.0%)
4.5 ( (

both 1.7%) 4.4 (1.7%) 10.8 (3.9%) 10.0 (3.6%)
Donauinsel training testing
L1 Tikhonov L1 Tikhonov

object detector 7.1 (5.3%) 7.0 (5.2%) 12.7 (9.0%) 10.0 (7.1%)
dense SIFT 7.0 (5.2%) 10.3 (7.7%) 15.9 (11.3%) 18.0 (12.8%)
both 7.1 (5.3%) 5.6 (4.2%) 11.9 (8.4%) 12.1 (8.6%)
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Fig. 4. Density learning: The learned weights for the combined features (dense SIFT
and object detector) are given for (a) L regularization and (b) Tikhonov regularization.
While the solution of (a) contains many zero-weights (502), the solution of (b) contains
significantly less (59).

the low number of learning samples and the unfavorable mapping of discretized
SIFT values to the real occurrence of persons (the stage rack contains many
vertical structures, i.e. the same features of a person) yield a bad condition of
the equation system and therefore the solution tends to a local minimum in-
stead of the global one. Figure Ml shows the described behaviors. The first 256
features represent the quantized SIFT keys and the second 256 the discretized
object detection scores. While learning based in L; regularization picks a few
SIFT keys and a few object detection scores, the Tikhonov based learning takes
more SIFTs and a logical weight distribution of the object detector. Where
logical means that the learned weights are dependent on the object detector
confidences.

Testing. The accuracy of the density estimation is given in Table 3l Like in the
training phase the Tikhonov regularization yields slightly higher accuracies than
the L1 one. On average the mean person counting error is 4% of the Lakeside and
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Fig. 5. Person counting: Estimated person count using L; regularization (blue) and
Tikhonov regularization (green) for the Lakeside scenario. The red dots indicate the
manually measured ground truth for the test images.
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Fig. 6. Person counting uncertainty: Box plots for the Lakeside scenario

9% for the Donauinsel data set. FigureBlshows the estimated person count of Lake-
side with superimposed manually measured ground truth. Both resulting curves
are similar however the Tikhonov regularization creates a smoother result. Exper-
imentally we can prove this assumption by taking a look at the temporal smooth-
ness of the estimated person count. The standard deviation of per frame differences
of the estimated count is 4.4 for Ly regularization and 3.8 for Tikhonov regulariza-
tion (for Lakeside and when using both feature sets). Obviously, a lower number
represents a more real settings, as the number of persons in two adjacent frames
should not vary much. When taking a close look to Figure [l a rather huge error
is visible towards the end of the sequence (image number 6500 to 6700). The rea-
son for this issue are strong winds causing camera shaking and therefore a mo-
tion blur in the images. Consequently, the extracted features are different to the
learned weights resulting in a lower human density estimate. Figurel@lvisualizes the
statistics of absolute errors in terms of box plots for different features and regular-
izations. It could be seen that using all features and the Tikhonov regularization
results in the smallest standard deviation and to no gross outliers.

5 Conclusion and Outlook

In this work we presented a method for crowd monitoring from airborne imagery.
The estimated parameters from a given video stream were human density and
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motion for each pixel. This information was geo-referenced into a world coor-
dinate system. The accuracy was improved over previous work by employing a
custom tailored object detector instead of simple images features amongst other
implementation details. Overall, the estimated human counts were highly accu-
rate with resulting 4% and 9% count error for the two presented scenarios. The
proposed framework is therefore higly important for security applications.

Outlook. Currently, the framework is optimized for oblique views and thus
it will not yield reasonable accuracies when e.g. employing nadir images. We
envision to train the system on several viewing conditions, where the object
detector should also be custom tailored (like a detector for head and shoulders
for oblique views and a blob-like detector for nadir views). The viewing condition
itself can be derived from the airplane’s geo-sensors. When extracting the human
densities the system is able to choose from the learned models according to the
viewing parameters. Of course it would also be of interest to test different features
and detectors on the accuracy and various regularizations for minimizing the
MESA distance in the machine learning approach.
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