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Abstract. Automated object detection is perhaps the most central task
of computer vision and arguably the most difficult one. This paper ex-
tends previous work on part-based models by using accurate geomet-
ric models both in the learning phase and at detection. In the learning
phase manual annotations are used to reduce perspective distortion be-
fore learning the part-based models. That training is performed on rec-
tified images, leads to models which are more specific, reducing the risk
of false positives. At the same time a set of representative object poses
are learnt. These are used at detection to remove perspective distortion.
The method is evaluated on the bus category of the Pascal dataset with
promising results.

1 Introduction

Object detection or localization aims at predicting a 2D bounding box with a
category label in the image. It is a difficult task not only because the intra-
class variation in shape or texture could lead to different appearance of object
instances of a certain category, but the changes in lights, viewpoints as well
as non-rigid deformation could also account for the difficulty of the task. The
dominant approach to object detection is to perform a sliding-window search
[1,2,3]. Essentially, this means considering all possible bounding boxes in the
image, and much work has focused on reducing the computational load [4,5].

A type of methods that has received lot of attention are the part-based mod-
els, e.g. the early work by Fischler and Elschlager [6]. Central for this paper
is the work on deformable part-based models (DPM) of Felzenszwalb et al. [3]
using a root filter to encode the global appearance, a collection of part filters
to capture the local appearance, and a deformation model for the spatial distri-
bution of parts. Zhu et al. [7] reformulate the DPM as a structural SVM and
use a hierarchy of parts at different granularities. Vedaldi and Zisserman [8] also
propose a structured output model for object detection which implicitly models
parts by accounting for alignment of the features representing an object class.

To handle different viewpoints, Felzenszwalb et al. [3] cluster bounding boxes
based on their aspect ratios and train separate part-based models for each clus-
ter. This introduces a trade-off: If the number of different models is to small
they will not be specific enough and if they are too many a very large training
set is required. One way to work around this that also increases efficiency is to
allow different models to share parts [9,10].

J.-K. Kämäräinen and M. Koskela (Eds.): SCIA 2013, LNCS 7944, pp. 396–407, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Improved Object Detection and Pose Using Part-Based Models 397

Other work explicitly incorporates geometric information in the detection or
even infer the geometric properties of the objects [11,12,13,14,15,16], e.g. the
3D pose of the object. In order to do so, these methods normally require more
detailed manual annotations, both the computational properties of training and
the quality of the models are improved. This paper follows along these lines of
and use richer annotations of the training dataset. A way to reduce the time
required for annotations is to use interactive learning as proposed by [17]. As
the detector improves, only the difficult examples require manual annotation.

Similar to [12,18] we will model an object as a number of approximately planar
aspects. For each aspect a DPM is built with the method from [3] and the scores
from the different aspect detectors are combined to produce the final object
detection.

Since the individual aspects are approximately planar and object pose can
be computed from the annotations, we can rectify the training images before
learning the aspect models. This allows us to learn highly discriminative mod-
els in spite of varying viewpoints. At detection, we hypothesize different object
poses from a learnt set of typical poses, transform the image according to the
hypothetical pose and run the detector. In effect, we get not only an accurate
bounding box but also roughly the pose of the object. This is appealing as it ex-
tracts more information from the 2D images, and enables a richer understanding
of the object in its context. For example, a simple bounding box cannot tell in
which direction a car is facing.

Modeling an object with a set of approximately planar aspects works well for
a large number of categories, see [12] for examples. In the experiments, we work
with the bus category from the Pascal VOC challenge.

Overview of the paper. The rest of this paper is organized as follows. Section 2
describes how we model our objects both in terms of appearance and geometry.
This includes showing how to compensate for varying viewpoint in training the
individual aspect models and a discussion on how to select a set of typical object
poses. Section 3 is concerned with the detection pipeline and Section 4, contains
quantitative and qualitative experimental results on the bus category of the
Pascal dataset. Finally, Section 5 contains a concluding discussion.

2 Modeling Appearance and Geometry

Our object model is defined as a number of roughly planar aspects models to-
gether with a set of typical object poses. We will assume that we have anno-
tated training images and a method to estimate the object pose from annota-
tions. Hence we train each aspect model from rectified image patches using a
deformable part-based model [3]. One could argue that a deformable model is
not quite suited for a rigid object like a bus, but clearly it is still desirable since
the position of the parts might vary between different instances of an object.

The fact that aspect models are learnt from rectified image patches, introduce
a problem at detection, when the ground-truth object pose is unknown. To re-
solve this we learn a small set of typical object poses from the annotated training
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set. At detection we transform the image according to each of the learnt typical
poses. If the training set is large enough it will contain most important object
poses.

Scores from the aspect detectors are generated by running each aspect model
on each of the transformed images. Detections from the different aspect mod-
els are combined and thresholded to produce the final object detection. More
specifically, once we run the aspect model on the transformed image, a multi-
scale score pyramid is generated. Each location in the pyramid defines a score
and bounding box indicating the confidence of the object defined by the bound-
ing box occurring at that location. To combine the detection of frontal aspect
with the right aspect, we need to find in the side score pyramid the expected
position of side given the location of frontal aspect. The size of the frontal basi-
cally gives us clues about where to find the side. Also, we enforce the consistency
constraints that the edges which both sides share should have the same height.

2.1 Estimating Object Pose

Pose estimation is a crucial building block in training aspect models and learning
representative poses. It is not possible to infer the object pose from training
images labeled only with a rectangular bounding boxes. Extra information is
necessary either from some pre-built model, e.g. a CAD model, or from the
manual annotation. Here we manually annotate each visible aspect of the object
in training images, as shown in Figure 1.

Fig. 1. Annotation of each visible aspect of the object in training images

The annotations give us a set of known points on the object. The next task is
to estimate the pose of the camera relative to the object. We will assume that all
internal camera parameters have standard values, except the focal length which
we estimate. More precisely, we assume that the principal point lies at the center
of the image, that the aspect ratio is 1 and that skew is 0.

If a 3D model of the object is known, four points is sufficient to estimate
camera pose and focal length [19,20], but for the case of block-shaped objects,
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e.g. buses we use a more specialized approach, which does not require an explicit
3D model. The goal is to estimate a camera matrix P = (R | t) and the camera
focal length f .

Normally, the upper and lower edge of of the bus side are parallel in the 3D
world. Hence the corresponding lines in the image intersect at a vanishing point,
being the projection of a point at infinity. Let x be a vanishing point in the
image and (X, 0)T the homogeneous coordinates of the corresponding infinity
point. Then,

λ

(
x
f

)
= (R | t)

(
X
0

)
= RX. (1)

The same computations for the front (or rear) side of the bus yields

λ

(
y
f

)
= RY. (2)

We note that X and Y represent the front and sideways directions of the bus.
This means that they must be perpendicular,

xT y + f2 ∝ XTRTRY = XTY = 0 (3)

which allows us to estimate the focal length. Knowing the focal length, (1) and
(2) also allows us to estimate the camera rotation relative to the orientation of
the bus. Finally, we place the origin in the front right corner of the bus and
compute the camera translation from its corresponding image projection.

2.2 Training Aspect Models

Rectifying the training images. Detectors trained on the objects under varying
viewpoint will tend to be less specific and can lead to high false positive rates.
With the method described in the last section, we can estimate the pose of
an object and use this to transform the training images such that each visible
aspect is rectified. However, at detection we cannot estimate the object pose
very accurately, so a model trained on perfectly rectified image patches might
not be flexible enough. Hence we add a small perturbation to the exact pose
when rectifying the training images.

Assume the pose we estimated for object O is P , where P = (R, t). We gener-
ate a small perturbation by picking a rotation angle from a uniform distribution
on [0, 5◦]. Now let Rx(θ) be a rotation about the x-axis, with rotation angle θ
and let S be a random rotation picked from the uniform distribution over all
rotations. Then the desired perturbed rotation is Rp = RT

r Rx(θ)RrR. We also
add a small perturbation to the ground truth translation, tp = t+ n, where n is
multivariate normal with standard deviation 0.005.

The next step is to transform the image such that one of the planar aspects is
rectified. Let us say that we want to transform a bus image such that the side is
rectified. Let v1 and v2 be a basis for the subspace parallel to the plane and let p
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be a point in the plane. Any point in the plane can be written X1v1 +X2v2 + p
and its projection

λ
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1

⎞
⎠ = P

(
v1 v2 p
0 0 1

)⎛
⎝X1

X2

1

⎞
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⎛
⎝X1

X2

1

⎞
⎠ . (4)

Thus we have found the homography, H , relating points in the aspect plane
with points in the image. By transforming the image according to H−1, we get
a rectified image of the aspect, having axis-parallel edges.

Building the Models. We use the standard latent-SVM (LSVM) training of de-
formable part-based model [3] and will just very briefly review the training.
Since the part locations are unknown, they are regarded as latent variables in
the training. In latent-SVM, each example x is evaluated by a function of the
following form

fβ(x) = max
z∈Z(x)

β · φ(x, z) (5)

where β is a vector of model parameters describing the root filter, part filters,
’anchor’ positions of parts and deformation coefficents, z is the latent variable
specifying the location of root filter and part filters and φ(x, z) yields the feature
vector for a specific configuration.

The goal is to learn the model parameters β from the labeled examples
〈x1, y1〉 , · · · , 〈xn, yn〉, where yi = −1, for negative examples and +1 for posi-
tive examples. This is achieved by minimizing

L(β) = μ||β||2 +
n∑

i=1

max{0, 1− yifβ(xi)}. (6)

Here max{0, 1−yifβ(xi)} is the standard hinge loss and μ determines the relative
weight of the regularization term. Figure 2 illustrates the aspect models of the
bus category of the Pascal VOC 2011 dataset. One can clearly make out some
parts of the bus, especially the wheels.

2.3 Finding Representative Poses

The previous sections have shown how to estimate highly specific models by
compensating for varying viewpoint. This introduces a problem since at detection
the viewpoint is unknown and cannot be compensated for. To handle this we
learn a small set of typical object poses. At detection an image is transformed
according to each of these poses and the detector is run on each of the generated
views.

To find this set of representative object poses we look again to the annotated
training set. Each annotated object yields an object pose that we can use in
the learning. Let Pi be the ith pose and let Si be the set annotated objects
which have a similar pose to Pi, where the exact meaning of similarity will be
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Fig. 2. The two aspect models for the bus category of Pascal VOC 2011. The upper
row shows the frontal model and the lower row shows the side model.

described soon. To find k poses which are representative for the training we seek
k sets Si1 , . . ., Sik such that

∣∣⋃
j Sij

∣∣ is maximized. This is a maximum k-cover
problem and for unbounded k it is NP-hard, but for the size problems that we
are considering it is unproblematic to solve with software such as CPLEX.

It remains to define the notion of similar poses. To determine if the pose
of an annotated bus is similar to a given pose P , we transform the annotated
points according to P . Ideally, both the front and the side of the bus will be
transformed to rectangles. Hence as measure of similarity, we measure how much
the upper/lower edge of the transformed bus deviates from being horizontal, as
illustrated in Figure 3. A certain training example is similar to a pose P if the
average angular deviations for the front and side,

1

2
(θ11 + θ12) and

1

2
(θ21 + θ22) . (7)

are below a predefined threshold.

��

θ���

θ��� θ���

θ���

Fig. 3. Measure of angular deviation for pose similarity

3 Detection

Training the aspect models and learning a set of representative poses gives us
more specific model representation as well as more flexible choice during detec-
tion. For a given test image, we use the set of typical poses to transform it into
a number of transformed images. The aspect detectors are run on each of these
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images individually. Given that the model consists of M aspects and N typical
poses, each pose will define M homographies, each of which is used to rectify the
aspect patches. Thus a test image is transformed into M ·N candidate images.
Still, with small M and using a fast cascade implementation of the detector,
see [21], the computational load is no big issue. For buses, we used M = 2 and
N = 11.

Front detector
Side detector

N
on-m

axim
um

suppression

Fig. 4. Overview of the detection pipeline. In the first step the input image is trans-
formed according to each of representative poses. This produces a multiple images that
are individually run through the aspect detectors creating a set of score pyramids con-
taining the detector scores at different scales. These are merged into one pyramid per
aspect, in the original image coordinate system. Finally, the front and side scores are
combined and non-maximum suppression is performed.

3.1 Generating Score Pyramid for a Single Aspect

Now considering a single aspect model D, score pyramids Po
i , where i = 1, 2, ...,

N , are generated as the aspect model is run through N transformed image.
Different levels in the pyramid corresponds to the different scales with which the
image is resized. This is inherited from the original part-based model to enable
multi-scale object detection. Each location (xj , yj, sj) in the pyramid defines a
rectangular bounding box and a score indicating the likelihood of the object
aspect occuring at (xj , yj) with scale sj.

To compare and combine the score pyramids generated from the N different
transformed images, we transform all the bounding boxes to the coordinate sys-
tem of the original image. This yields new score pyramids, where each location
implicitly defines a skewed bounding box.

We note that in the original score pyramids, all bounding boxes at a certain
level have the same size, but after transformation to the original coordinate
frame they are skewed and might change size. When we combine aspects to a
object detection we do not want to combine aspects of significantly different
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sizes. Hence we only allow combinations where the shared edge of two aspects
have approximately the same length. For example, when combining the bounding
box of frontal and left side, then we require the right edge of frontal bounding
box and the left edge of side bounding box be of the same length. In the next
section we will see how this constraint can be enforced in an efficient fashion.

3.2 Combining the Score Pyramids

Let Pf
i and Ps

i for i = 1, 2, ...N denote the N score pyramids of frontal aspect and
side aspect respectively. To combine the score pyramids from different poses and
different aspect models, we need to solve the following problem. For each location
(xj , yj, sj) in Pf

i , we need to determine the corresponding location (xk, yk, sk) in
Ps
i , of a skewed bounding box BBs

j for the side aspect. We know that the top-left
corner of BBs

k should coincide with the top-right corner of frontal bounding box

BBf
j , which is implicitly defined at (xj , yj , sj). Let (xk, yk), denote the exact

location of right-top corner of BBf
j . We will consider all locations in a small

neighborhood of that point.

���	
���������������� ������������������

Fig. 5. The illustration on the left shows how to estimate the side location (the brown
dot) given the frontal location (blue dot) and the size of skewed frontal bounding box.
The illustration on the right shows we search in a small neighborhood (blue circle) of
expected location for each level.

To determine sk, we could search a small neighborhood of (xk, yk) for all
the levels of Ps

i for i = 1, 2, ..., N to find the bounding box which fulfills all
size constraints. To do so efficiently, we propose a new representation of score
pyramid and combine the score pyramids Pf

i and Ps
i for i = 1, 2, ..., N into new

score pyramids Pf and Ps.
To make the search more efficient, these score pyramids Pf and Ps are created

with different levels depending on the length of shared edge. More specifically, we
divide the possible bounding box heights into L intervals l1, ..., lL and create L
corresponding levels in the score pyramid. For each bounding box in the original
score pyramids, we check the length of shared edge (the right edge for frontal,
the left edge for side) and let this determine where to put it in the new score
pyramid. To further simplify the search, we use its top-right corner to represent
the front bounding box instead of its top-left corner. Hence this will coincide
with the location of side.

Now we have combined the score pyramids from different poses and obtained
new score pyramids Pf and Ps for the front and side. To get a final detection
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we combine these two score pyramids to one score pyramid P . As we use the top-
right corner to represent the bounding box in frontal pyramid, we could efficiently
combine the two pyramids by directly taking the average of the scores at the same
location. To also handle cases when only the front or side is visible, we introduce
a threshold sthr. If an aspect has a lower score than sthr we assume that it is not
visible. In that case the total score is computed as the average of sthr and the score
of the visible aspect. Hence, the score of a combined detection is

s(x, y, h) =

⎧⎪⎨
⎪⎩

sf (x,y,h)
2 + ss(x,y,h)

2 if sf (x, y, h) ≥ sthr, ss(x, y, h) ≥ sthr
sf (x,y,h)

2 + sthr

2 if ss(x, y, h) < sthr
ss(x,y,h)

2 + sthr

2 if sf (x, y, h) < sthr

(8)

where sf (x, y, h) and sf (x, y, h) denote the score at location (x, y, h) in the com-
bined score pyramids, Pf and Ps respectively.

For each location in the final score pyramid P , two skewed bounding boxes
are implicitly defined respectively for frontal and side. This gives us a layout
estimation of the object. So the layout estimation is inherent in the object de-
tection. Finally, non-maximum suppression is applied on P to greedily remove
detections which has significant overlap; see [3] for details.

4 Experiments

We evaluated our method on the bus category of Pascal VOC 2011 training
and validation dataset. The training set has 5717 images of 20 categories among
which there are 213 images containing buses. The validation set has 5823 images
with 208 containing buses. Since the ground truth annotation is not provided for
Pascal VOC 2011 test set, we trained the model on the training set and tested
our model on the validation set.

We manually annotated every visible aspect for each positive training exam-
ple. Pose estimation on annotated training images gives the pose and the actual
dimensions of the object up to a scale factor, from which we rectify each aspect
of the object. We use both the left and right aspects to train a side detector.
Considering the rear and frontal of a bus are quite similar, we trained a frontal
detector using both frontal and rear patches. It turned out that this detector
worked well for both cases. When determining the similarity of two poses, we
set the threshold in (7) as 5 degrees.

In the end, we used 10 different poses to transform the input image. The
frontal and side detectors were run on these images but also on the original
image so we get 11 score pyramids. Combining the front and side score pyramids,
we set the threshold in (8) to sthr = −1.0. The experiments are done on a 3.6
GHz Intel Core i7 PC with 64 GB memory, the training takes around 4 hours
to train a single aspect model. Detection takes on average 50 seconds per image,
but could be speeded up significantly by using the cascade detector from [21].

The precision-recall curve for the bus category is obtained by thresholding all
the detection scores at different values, as shown in Figure 6. Average precision is



Improved Object Detection and Pose Using Part-Based Models 405

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
r
e
c
i
s
i
o
n

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

p
r
e
c
i
s
i
o
n

 

 

Fig. 6. Precision-recall curves for bus category of Pascal VOC 2011 validation set.
The left plot shows the result for the entire set and the right plot shows the result
when examples with a lot of occlusion are removed. The green curves are the result
using the original part-based model with the average precision AP = 0.450 and 0.587
respectively. The red curves are obtained with our method with AP = 0.468 and 0.644
respectively.

Fig. 7. Example results. Detected bounding boxes are shown in green and their layout
in red. The first three rows shows correctly detected objects with roughly correct pose.
The method was able to automatically handle cases when only one side is visible. The
last row shows the buses of which the pose estimation is less accurate.
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calculated by measuring the area under the precision-recall curve using numerical
integration. In terms of average precision the improvement over the original
part-based model from [3] is limited - from 0.450 to 0.468, but at high precision
rates the difference is more significant. We note that Pascal VOC dataset is
regarded as a very difficult dataset for detection, occluded and truncated objects
usually exist in the dataset, which we do not really expect to handle. To examine
this more closely, we removed a third of the bus images that contained largely
occluded buses or very distant buses. On the remaining examples we got an
average precision of 0.644 compared to 0.587 for [3]. We illustrate some detection
results as well as the layout estimation in Figure 7.

5 Conclusions

We described an approach to object detection and layout estimation for objects
which can be represented by a number of roughly planar aspects. By training
several aspect models and learning a small set of representative poses, we ob-
tained a model with high specificity and flexible choices for detecting objects
from various viewpoints. The cost is some extra annotation work as well as in-
creased complexity at detection. We should also mention the limitation of our
method which requires the object to be a rigid object with discriminative aspects.
The pose estimation in our method is especially well-suited to block-structured
objects like the buses.

For the bus category challenging Pascal VOC 2011 dataset, our method
achieved better detection results than the original deformable part-based model
while keeping a specific and compact model representation. Beyond that, the
proposed method also produce geometric information of the detected object,
e.g. a pose/layout estimation.
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