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Abstract. In this paper we propose a novel method for constructing
Local Binary Pattern (LBP) statistics for image appearance description.
The method is inspired by the kernel density estimation designed for
estimating the underlying probability function of a random variable.
An essential part of the proposed method is the use of Hamming dis-
tance. Compared to the standard LBP histogram statistics where one
labeled pixel always contributes to one bin of the histogram, the proposed
method exploits a kernel-like similarity function to determine weighted
votes contributing several possible pattern types in the statistic. As a
result, the method yields a more reliable estimate of the underlying LBP
distribution of the given image. In overall, the method is easy to imple-
ment and outperforms the standard LBP histogram description in tex-
ture classification and in biometrics-related face verification. We demon-
strate that the method is extremely potential in problems where the
number of pixels is limited. This makes the method very promising, for
example, in low-resolution image description and the description of in-
terest regions. Another interesting property of the proposed method is
that it can be easily integrated with many existing LBP variants that
use label statistics as descriptors.

1 Introduction

Image appearance descriptors aim to extract features that effectively describe
the salient class information in the images. Besides, they are often required to
cope with within-class variations due to degradations caused by, for example,
varying imaging conditions. Image descriptors play a key role in almost all com-
puter vision applications concerning detection, recognition and classification,
and therefore, they have been one of the most important topics in the field. Ac-
cording to one aspect, the development of image descriptors can be seen as an
experimental science guided by best practices more than by solid theory [1].

Different methods have been proposed in literature for image appearance de-
scription, such as Gabor wavelets, Histograms of Oriented Gradients (HOG),
and Local Binary Patterns (LBP). Usually, the methods are first benchmarked
on texture classification and then on the rest of the potential applications. Tex-
ture can be defined as the description of variation of data on scales smaller than
the scales of interest. It is a fundamental property of natural images and has
gained a lot of interest in the field of image analysis and computer vision.
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Widely used local binary patterns is a type of image description. The method
is based on a grayscale invariant texture operator, derived from a general defini-
tion of texture in a local neighborhood. The simplest form of LBP operates on
image pixels by thresholding their 3×3 neighborhood with the center value and
treating the subsequent 8-bit binary string as a decimal number. The histogram
of these labels (or codes) is then used as an image description. Besides being
computationally simple, local binary patterns have been shown to be highly dis-
criminative. They are shown to be very successful in encoding image appearance
in a number of computer vision problems [2].

The basic form of the LBP as well as many of its recently developed deriva-
tives suffer from two fundamental problems. The first one arises due to vector
quantization which may lead to unstability in the sense that a small change in
the input, due to noise for example, causes large errors in the output. Another
serious issue is linked with the problems inherent to histograms, the commonly
used statistic for LBP-based image description. The histogram is a simple form
of density estimation, but indeed has several drawbacks. Regarding to LBP his-
tograms, the main concern is the number of pixels as a small number of those
may fail to provide enough information to build up a discriminative histogram
description. Unarguably, low amount pixels leads to a low number of LBP occur-
rences which may further lead to sparse and unstable descriptions. In this paper,
we tackle these two problems by introducing a novel method for constructing
a more robust estimate of the underlying LBP distribution of the given im-
age. Our approach is inspired by the function estimation theory, especially by
the Kernel Density Estimation (KDE) methods. An enabling factor for using a
KDE-like method in the context of local binary patterns is the use of Hamming
distance. Compared with the conventional way of binning LBP occurences for
image description, our method uses a voting function to place votes according
to the Hamming distance between the detected pattern and all the possible out-
comes in the LBP space at hand. As a result, the method yields more stable and
discriminative statistics for image description. Especially, the proposed voting
scheme works better than the histogram method in situations where only a low
amount of pixels is available.

The rest of this paper is organized as follows. Section 2 describes the LBP
methodology and discusses some of the most important extensions and recently
introduced derivatives. We introduce our proposed soft voting scheme in Section
3 and then provide extensive performance evaluation and comparative analysis
in Section 4. Conclusions are drawn in Section 5.

2 Local Binary Patterns

Local Binary Patterns (LBP) [3] offer a powerful means for grayscale invariant
texture description and has become highly popular in various computer vision
applications.
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The first form of LBP operates on 3×3 pixel neighborhoods. Later, it was
extended to arbitrary circular neighborhoods with any radius and number of
sampling points using bilinear interpolation at sub-pixel coordinates leading to
the notation given by

LBPP,R(xc, yc) =
P−1∑

p=0

t(gp − gc)2
p, (1)

where gc = I(xc, yc), gp refers to the gray values of P equally spaced sampling
points in a circle of radius R, and t defines a thresholding function with t(x)=1
if x≥0 and t(x)=0 otherwise. LBP codes can be regarded as texture primitives
including different types of curved edges, spots, flat areas, and so on. The occur-
rences of the LBP codes in the image are usually collected into a histogram. The
classification can then be performed by computing simple histogram similarities.
The efficiency of the LBP method has later inspired the research community to
invent a wide variety of extensions and tuned derivatives for specific applications.

2.1 LBP Extensions and Derivatives

Among the most important early extensions are the rotation invariant version
of the LBP operator and the feature selection process, better known as uniform
patterns. Rotation invariant (ri) local binary patterns can be achieved by cir-
cularly rotating the binary code into its minimum value. The other extension,
uniform patterns (u2 ), was inspired by the fact that some binary patterns occur
more commonly than others. Shortly, uniform patterns are those that contain
at most two bitwise transitions from 0 to 1 or vice versa. Finally, by using these
extensions, for example the original LBP8,1 histogram with 256 dimensions can
be reduced in three different ways, namely using ri, u2, or riu2, to a feature
space with 36, 59, and 10 dimensions, respectively.

A major drawback of the LBP operator lies in the use of only signs of local
pixel differences. As a result, the operator fails to take advantage of the contrast
information available in the given image. To exploit contrast information, the
original form of the LBP operator was slightly revised leading to a local con-
trast measure, and further, to a so called VAR measure [2,3]. The most recently
proposed LBP-based method of measuring contrast is the magnitude coding of
the so called completed modeling of LBP (CLBP) [9]. In that the magnitudes of
the local pixel differences are coded replacing the threshold function in Eq. 1 to
t(mp, c), where mp is the magnitude of local pixel difference and c is a predeter-
mined threshold value usually set as the mean value of local pixel differences in
the whole image.

There are some other remarked issues in the original LBP concerning, for
example, the inability to capture large-scale structures or anisotropic information
that may be the dominant features of some textures. To solve the above problems,
there are dozens of potential derivatives available. An extensive review of LBP
methods can be found in [2]. Although forming a very promising compilation
of methods to describe texture, it appears that many of these LBP variants



122 J. Ylioinas, X. Hong, and M. Pietikäinen

inherit problems due to vector quantization and the number of label occurrences,
causing problems especially with the usual way of describing textures, namely
histograms. This is partly due to the inherent characteristics of the histogram
method, but also due to the finite number of pixels available in the given image.

One of the first works to mitigate the problem of sparse and unstable LBP
histograms was presented by Ahonen and Pietikäinen [4]. The key idea of their
soft histogram method was to use fuzzy membership functions to determine
contributions of each distinct LBP neighborhood in the image to all bins in the
final LBP histogram. Another work, proposed by the same authors [5], makes use
of KDE for producing the LBP distribution per pixel in an image. However, the
method was particularly designed for face recognition to tackle the downsides of
the block-based facial description.

In [6], Yang et al. proposed to produce LBP histograms using the uniform u2
mapping with a Hamming distance constraint. Instead of assorting all uniform
patterns to a single bin, they incorporated non-uniform patterns into uniform
patterns by minimizing the Hamming distance between them. By the Hamming
distance constraint, one is able to collect more information, but the downside
is that the useful information provided by non-uniform patterns may still not
be optimally utilized. As some textures (e.g. facial images) may retain more
discriminative information in some non-uniform pattern than in some uniform
ones put together, it makes unreasonable to connect them. However, acting on
u2 -mapped LBP space by design the method has potential.

A fairly new method based on denser sampling of LBP codes can also be seen
as a solution to the inadequate descriptors due to unstable histograms [7]. The
idea there is to sample images so that the center of the LBP operator’s neighbor-
hood scans also pixel corners. Undoubtedly, this kind of denser sampling scheme
enables one to extract more LBP codes from the given image, which may further
yield statistically more robust estimates of the underlying LBP distribution. A
feasible way for practically implementing the dense scheme, although not re-
marked in the original paper, would be to first upsample the original image of a
size M×N pixels to (2∗M−1)×(2∗N−1) using bilinear interpolation (without
any pre- or post-filtering), at the same time doubling the radius R of the used
LBPP,R operator to 2∗R. Actually, by this way one is able to extract even more
LBP codes than in the original dense sampling scheme described in [7].

The above described methods (soft histograms, KDE-based LBP distribu-
tions at specific xy-locations, Hamming distance constraint, and dense sam-
pling) provide all potential means to tackle the issue present in using histograms
for estimating LBP distributions. Still, they bring some new disadvantages,
whether they are computationally too demanding, too application-specific, or
otherwise not discriminative enough. As an alternative to these we next introduce
a novel method for constructing more reliable estimates of the underlying LBP
distribution.
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3 Soft Voting

The major drawback of all LBP methods using vector quantization is the un-
stability in the sense that even small variations in the input can cause large
variations in the output. This undesirable property, not taken into consideration
while using histograms, is such that even a one-level-decrease in the intensity of
a single pixel may result in several alterations in the adjacent LBP labels in the
same region. Another concern is the image size, as a low number of pixels results
in a low number of LBPs which finally may not yield stable histograms.

To tackle these issues, we propose a novel method for producing more robust
LBP statistics. Instead of voting to a single bin as the standard LBP histogram
does, our method assigns weighted votes, not for a single bin, but for several can-
didates. The weighted votes are placed based on the similarity between the de-
tected and candidate patterns covering all possible outcomes of the used LBPP,R

operator.
Let us first have an LBP labeled image ILBPP,R

and one labeled pixel value l
at a position (x, y) so that l = LBPP,R(x, y). If we then consider the label as a
binary word so that l ∈ BP (P -dimensional binary space with B ∈ {0, 1}), the
voting weight, given l, to the pattern type lj , j = 0, . . . , 2P − 1, is defined by

w(lj |l;β) = Kβ(d(lj , l)), (2)

where Kβ(·) is a kernel function including the approriate parameters β. Further,
from the observation that LBP words lie in the P -dimensional binary space the
similarity d is set as the Hamming distance defined by

d(lj , l) =

P∑

i=1

(lij ⊕ li), (3)

where li corresponds to the ith bit of the code l and ⊕ denotes bitwise exclusive
OR operation. The chosen kernel can be any of the ones commonly in use to es-
timate the probability density function of a random variable including Gaussian,
uniform, triangular, Epanechikov, Cosine, or the one proposed in [11]. Moreover,
as the range of possible distances, using a particular LBPP,R, is given by a set of
positive integers {0, 1, 2, . . . , P}, the number of generated weights w is bounded
to P . Finally, instead of a histogram, an alternative estimate of the relative fre-
quency of a pattern type lj in an image is the summation of all weights given
by

f̂β(lj) =
∑

x,y

w(lj |l;β), j = 0, . . . , 2P − 1. (4)

Evidently, the resulting statistic can be characterized as a kernel density estimate
of the underlying LBP distribution enabled by the Hamming distance between
two LBP codes.

Kernel density estimation methods belong to the class of non-parametric mod-
els to estimate the probability density function of a random variable, based on
a finite data sample [10]. Our assumption is that the potential solution to the
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sparse and unstable LBP histograms, especially in a situation where the number
of pixels is low, can be found from a KDE-based method, just like our voting
scheme is.

In our method, the selection of the kernel specifies the weighting in the voting
function. Constructing the statistic it simply means the more similar patterns
the bigger the given vote. Basically, the selection can be made from all kernels
commonly in use to estimate the probability density function, but the votes
can also be handcrafted. In our experiments, we use Gaussian kernels, so that
the kernel becomes Kσ(d) = (σ

√
2π))−1 exp(−d2/(2σ2)). Fig. 1 illustrates some

possible voting functions generated by a Gaussian kernel with a chosen σ.

Fig. 1. Example votes given by a Gaussian kernel using a specific σ. This kind of
voting function is suitable for 8 bit binary codes, such as ones generated by the LBP8,2

operator.

Different from soft histograms [4], our method approximates LBP distribu-
tions using weighted votes determined by a suitable kernel and the pattern sim-
ilarity. To begin with, our method does not make use of any complicated (e.g.
fuzzy membership functions or other mappings) methods integrated into the
LBP operator to calculate contributions to different bins, but rather calculates
the original labels given by the pure LBP operator to distribute weighted votes
finally producing a smoother estimate of the true underlying LBP distribution.
Furthermore, unlike in [5], where pixelwise LBP distributions using KDE is pro-
posed, our method does not estimate distributions in specific xy-locations, but
rather outputs a total distribution of LBP labels for the given image.

The use of the Hamming distance is needed as local binary patterns are not
actually defined in the Euclidean space but rather in the multidimensional bi-
nary space. Unlike in [6], we use the Hamming distance to define points among
which the weighted votes are placed. Clearly, our method makes good use of
the whole LBP space defined by the number of samples P and the radius of the
neighborhood R.

It must be noted, that the standard LBP histogramming (or binning) is a
special case of our proposed voting based estimation of the true underlying LBP
distributions. From the perspective of voting, in the standard LBP histogram
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a weight of 1 is given to the pattern type similar as the detected pattern l
and 0 to the rest, more formally, using a kernel Kδ(d(lj , l)) = 1 if d(lj , l) = 0
and Kδ(d(lj , l)) = 0 otherwise. The soft voting method is also universal in the
sense that it can be used with different LBP variants that use label statistics as
descriptions.

4 Experimental Analysis

To evaluate the performance of our proposed soft voting method for constructing
LBP statistics, we conducted experiments on two different problems using pub-
licly available databases commonly used by the research community. We carried
out experiments in texture classification and in biometrics-related face verifi-
cation. In texture classification, the aim is to assign an unseen texture sample
into one of the predefined classes, whereas in face verification, given two facial
images, one needs to determine if they contain the same individual.

In both problems, we analyzed the effect of the proposed soft voting scheme
on the completed modeling of LBP operator [9]. We compared separate and
concatenated CLBP sign and magnitude histograms against the ones constructed
by soft voting. We also experimented on combining the dense LBP scheme [7]
and soft voting. In both problems, we experimented Gaussian kernels as a basis
for determining the votes. Moreover, in texture classification, we further made
an experiment where we illustrate the functionality of our method in a so called
limited-sample-size scenario where the available information, i.e. the size of the
image, dramatically drops.

From now on, we refer to CLBP sign and magnitude components as signs and
magns, whereas the dense sampling scheme is referred as dense(·).

4.1 Texture Classification

In texture classification, we conducted experiments on the CUReT database
containing 61 texture classes collected from real-world surfaces with varying
properties. In the database, each texture class contains 205 images captured at
several viewpoints and under different illumination orientations. We considered
the publicly available cropped dataset [12] having a total of 5,612 images with 92
samples for each class. Fig. 2 depicts some examples from the CUReT database.
In our experiments, we use only gray-scale versions of the original cropped ones.

Fig. 2. Texture image samples from the CUReT dataset



126 J. Ylioinas, X. Hong, and M. Pietikäinen

In our experiments, we randomly selected 46 images from each class for train-
ing whereas we used the remaining 46 samples for testing. We tested the soft
voting method in two scenarios. In the first one we took the original CUReT sam-
ples, size of 200×200 pixels, and computed the LBP histogram and voting based
descriptions out of them. Considering a rather big size of the original samples
we further performed the second experiment. In that we wanted to validate our
hypothesis about the feasibility of our KDE-motivated voting scheme especially
in limited-sample-size scenarios where the number of available information, i.e.
number of pixels, is much lower. Therefore, for the second experiment, we took
only the inner part of the cropped CUReT images (img(80:120,80:120)), a
patch size of 41×41 pixels, computed the LBP descriptions and performed the
same experiment. In both experiments, we used the nearest neighbor (NN) clas-
sifier with the Euclidean distance metric. For obtaining the results, we analysed
the average classification performance of ten permutations.

In our results, we compare the classification results using raw LBPs, but also
u2 and ri-mapped versions. Formagns we ended up using only the ri-mapping as
we think that measures of contrast should always be rotation invariant. However,
it is highly important that while using whatever mapping it is to be applied
only after constructing the statistic in the whole LBP space. Moreover, while
using voting and u2 -mapping we do not make use of the last 59th dimension
corresponding to all non-uniform patterns. For voting, we found σ = 0.6 and
σ = 0.5 to perform best for signs and magns, respectively.

The obtained results on the original CUReT images, summarized in Table 1,
show quite equally balanced results among the signs and magns descriptions.
A conclusion, although a very careful one, is that the voting scheme used to-
gether with standard sampling performs the best. To compare voting and dense
sampling as separate methods, it seems that the voting scheme performs better.
The final conclusion might be that the histogram method is good enough for the
estimation of the true underlying LBP distribution for image description. The
added computational workload while using dense sampling and voting, together
or separately, may not be worthwhile enough as the improvement in accuracy
seems to be only moderate.

In the limited-sample-size scenario, in turn, we found quite interesting results,
summarized in Table 2. As described, with the images size of 41×41 pixels we
wanted to ensure a much lower amount of LBP codes of which the statistical
description is formed, using the same parameters as in the previous experiment.
Based on the results, it is evident that the standard histogram method starts
suffer from the limited amount of information. In comparison to the voted de-
scriptions, the difference in accuracy is absolutely tremendous. For example,
using standard signs, without any mapping, together with voting yields an im-
provement over 20 percentage points compared to the standard signs histogram.
Using dense sampling and voting the improvement is even better. The results
clearly demonstrate that histograms can be very unstable while the amount of
information is limited, whereas the KDE-based voted statistic may offer a pow-
erful means to compensate in limited-sample-size scenarios of this kind.
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Table 1. Mean accuracy on the original cropped CUReT images (200×200) where
(a) represents results using standard circular LBP (denoted as signs according to the
completed modeling), (b) represents results using the magnitude component (denoted
as magns), and (c) results using the concatenated descriptor. In this experiment, we
used the (8,2)-neighborhood with raw (-), u2 and ri mapped signs; and raw (-) and
ri mapped magns. For the concatenated descriptor, we used u2 for signs and ri for
magns.

(a)

descriptor - u2 ri

signs 94.38 93.71 85.68
signs + voting 95.51 94.25 89.01
dense(signs) 94.81 92.74 88.90
dense(signs) + voting 94.54 93.23 89.30

(b)

descriptor - ri

magns 85.87 82.62
magns + voting 84.07 82.10
dense(magns) 87.64 86.25
dense(magns) + voting 84.87 84.53

(c)

descriptor accuracy

signs magns 95.37
signs magns + voting 95.71
dense(signs magns) 95.22
dense(signs magns) + voting 95.49

4.2 Face Verification

To evaluate performance on face verification we used the publicly available La-
beled Faces in the Wild (LFW) database [8]. In our experiments, we use the
LFW-a [1] version where all the original LFW images are aligned using a com-
mercial alignment system.

The database consists of 13,233 images of 5,749 people, which are organized
into 2 views. View 1 is a development set of 2,200 pairs for training and 1,000
pairs for testing, on which to build models and choose features; and View 2 is a
10-fold cross-validation set of 6,000 pairs, on which to evaluate final performance.
We use View 1 for high-level model selection and report performances on each of
the folds in View 2. Furthermore, there are two proposed benchmark protocols
in the LFW from which we report results on the one called ”image restricted
training”.

We used croppings of 84× 74 (img(94:177,89:162)) from the original 250×
250 pixels size of images. Fig. 3 shows some exemplars of the cropped images.
Once cropped, local descriptors are then extracted from uniformly distributed
patches across the face. The face image is first divided into a set of N overlapping
patches of a size 14×14. Each patch overlaps its vertical and horizontal neighbors
by four pixels. With the used image size, this results in a total of 56 patches.

In the dense mode, instead of the original scheme [7], we explored the function-
ality of the above described alternative implementation for the dense sampling
combining it with our soft voting scheme. Therefore, we first upsample cropped
images to 167×147 correspondingly magnifying the block window size to 27×27
and the overlapping to seven pixels. As in the standard mode we set the R = 2
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Table 2.Mean accuracy on the CUReT under the limited-sample-size scenario (41×41)
where (a) represents results using signs, (b) represents results using magns, and (c)
results using the concatenated descriptor. Parameters set as in the previous experiment
(see Table 1).

(a)

descriptor - u2 ri

signs 50.63 53.14 29.54
signs + voting 72.76 66.87 40.82
dense(signs) 64.16 63.46 37.56
dense(signs) + voting 76.92 69.89 44.74

(b)

descriptor - ri

magns 44.75 30.76
magns + voting 57.20 38.02
dense(magns) 56.99 38.70
dense(magns) + voting 65.45 64.80

(c)

descriptor accuracy

signs magns 64.21
signs magns + voting 76.91
dense(signs magns) 73.82
dense(signs magns) + voting 79.80

(a) (b)

Fig. 3. Cropped exemplars from the LFW database where (a) shows pairs from same
and (b) from not same individuals

for the given operator, in the dense mode the radius must be doubled yielding
R = 4. In both modes, we use the u2 -mapping for signs and the ri-mapping for
magns. Again, mappings are applied only after constructing the LBP statistic in
the whole LBP space. Also, using u2 -mapping the last 59th dimension was not
taken into account. In the experiments, the alternative dense scheme is referred

as d̂ense(·).
To make a decision whether two images are coming from the same person,

we use Euclidean distance between the corresponding image descriptions. Before
calculating the distance, we perform min-max normalization to the training and
testing feature vectors in order to minimize the sensitiveness of the distance
function to those dimensions that exhibit the largest range in values. Finally, to
classify the resulting distance scores we make use of linear SVM. As suggested by
the authors of the LFW database, we perform high-level model selection using
the View 1 and then report the performance on View 2 showing mean accuracy
and standard errors. Based on the model selection on View 1, we found σ = 0.6
and σ = 0.5 to perform the best for signs and magns, respectively.

The results, shown in Table 1, indicate that the voting scheme always im-
proves the accuracy no matter using it in the standard sampling or in the dense
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Table 3. Mean (± standard error) accuracy on the LFW-a face verification benchmark
(View 1). (a) Represents results using signs, (b) represents results using magns, and
(c) represents results using the concatenated descriptor. In all cases, we used the (8,2)-
neighborhood.

(a)

descriptor accuracy

signs 69.10 ± 0.50
signs + voting 69.37 ± 0.49
̂dense(signs) 69.48 ± 0.40
̂dense(signs) + voting 70.05 ± 0.53

(b)

descriptor accuracy

magns 64.90 ± 0.72
magns + voting 67.77 ± 0.73
̂dense(magns) 66.75 ± 0.63
̂dense(magns) + voting 68.03 ± 0.64

(c)

descriptor accuracy

signs magns 68.97 ± 0.67
signs magns + voting 70.98 ± 0.52
̂dense(signs magns) 70.33 ± 0.51
̂dense(signs magns) + voting 70.92 ± 0.50

sampling mode. It is also visible, as hinted in [9], that the sign component is more
discriminative compared to the magnitude. The most interesting fact is that the
combination features signs magns with voting outperforms its dense counter-
part. Moreover, the improvement to the standard signs magns combination is
over two percentage points.

5 Conclusion

In this paper, we introduced a novel soft voting scheme for constructing robust
statistics for LBP-based image appearance description. Inspired by the kernel
density estimation, the method determines a set of weighted votes contributing
several possible pattern types yielding a more reliable estimate of the underlying
LBP distribution of the given image.

Compared to the conventional way of binning LBP occurences or code words,
our method uses a voting function to place votes for the statistic according to the
similarity of the detected pattern and all the possible candidates in the LBPP,R

space at hand. Pattern similarity is measured by the Hamming distance. As a
result, the uncertainty in each LBP code is taken better into consideration mak-
ing the description less sensitive to small changes in the input image. Another
pleasing property of the method is that the resulting description may no longer
suffer from the reduced amount of data, a common issue with LBP histograms
constructed from small image patches.

In our experiments, we tested the proposed method in two major problems,
namely texture classification and face verification. Based on the results, the
voting scheme seems to be promising especially while using small images. In
our limited-sample-size scenario, the voting based description outperformed the
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standard histogram description with a huge margin. It is worth noting that the
method generalizes the standard LBP histogram description and thereby takes
shape as an important element for LBP image description methods.

For future directions, we plan to do more comprehensible investigation of
the capabilities of the soft voting method with different kernel selections and
parameter tunings. We also plan to test the voting sheme with other image de-
scription methods outputting pixelwise binary codes for histogram based image
descriptions.
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