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Abstract. Business model ontologies capture the complex interdepen-
dencies between business objects. The analysis of the hence formalized
knowledge eludes traditional OLAP systems which operate on numeric
measures. Many real-world facts, however, do not boil down to a single
number but are more accurately represented by business model ontolo-
gies. In this paper, we adopt business model ontologies for the represen-
tation of non-numeric measures in OLAP cubes. We propose modeling
guidelines and adapt traditional OLAP operations for ontology-valued
measures.
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1 Introduction

Business model ontologies capture the complex interdependencies between busi-
ness objects. More specifically, business model ontologies represent knowledge
about the creation of value by economic agents (or actors) through the utiliza-
tion, production, and exchange of economic resources (or value objects) [TI23].
For example, the company BMW produces the Z4 car model which it sells to
customers in exchange for money. Knowledge represented in multiple ontologies
can be extracted and collected into a single ontology, thereby establishing a com-
mon vocabulary. For example, the definition of BMW as a company and Z/4 as
a car model establishes a common vocabulary for ontologies in the automotive
industry. The usage of this vocabulary by different ontologies allows for their
comparison.

In Online Analytical Processing (OLAP), business analysts examine real-
world facts which are quantified by measures and organized in a multidimen-
sional space (see [4, p. 977 et seq.]), the OLAP cube. The dimensions of this
OLAP cube are hierarchically organized. Dedicated query operations allow for
the aggregation of facts along the dimension hierarchies as well as the selection
of relevant facts. For example, the revenues of car sales are available by country
for each quarter of a year. Using the roll-up operation, an analyst could obtain
the revenues of car sales by year rather than quarter and by continent rather
than country. Furthermore, the analyst could choose to view only car sales in
Europe and Asia. In traditional OLAP systems, however, the query operations
are restricted to numeric measures.
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Many real-world facts are more naturally represented by business model on-
tologies than numeric measures. The analysis of business model ontologies, how-
ever, eludes traditional OLAP systems but OLAP cubes can be extended with
ontology-valued measures. As a consequence, OLAP operations become avail-
able for the aggregation of knowledge from various business model ontologies in
order to gain new insights into a business situation. For example, in India, BMW
sells cars to upper-class customers whereas the company Suzuki sells cars mainly
to the middle class. Based on this knowledge alone, Suzuki might not perceive
BMW as a rival. By including knowledge from other countries, however, Suzuki
might come to the conclusion that BMW is indeed a potential threat to its In-
dian business, with BMW already selling cars to the middle class in Europe.
On the other hand, by including knowledge from the production department,
Suzuki might identify synergies in the supply chain, leading to the appreciation
of BMW as a prospective partner.

In this paper, we introduce ontology-valued measures for facts in OLAP cubes.
We propose to model these measures based on the concepts defined in the well-
researched and widely-accepted REA business model ontology [1]. We adapt the
REA modeling methodology in order to fit the particularities of OLAP systems.
We use RDF for the formalization of ontology-valued measures. We associate
named RDF graphs [5] with facts, yielding cubes of contextualized RDF data
similar to contextualized knowledge repositories for the Semantic Web [6]. We
redefine traditional OLAP operations using the SPARQL query language for
RDF data in order to select knowledge from various facts and condense this
knowledge into a more abstract and concise form.

The remainder of this paper is organized as follows. In Sect. 2l we illustrate the
modeling of facts with ontology-valued measures. In Sect. Bl we adapt traditional
OLAP operations for ontology-valued measures. In Sect. [ we briefly present a
proof-of-concept prototype. In Sect. Bl we review related work. We conclude with
a summary and an outlook on future work.

2 Facts with Ontology-Valued Measures

Base facts, as opposed to derived facts which are the result of OLAP operations,
explicitly assign values to measures. Traditional OLAP cubes allow base facts
only at the finest level of granularity. We advocate the use of base facts at
coarser levels of granularity which serve as shared facts for the definition of
common knowledge inherited by the lower-level base facts.

2.1 Base Facts

We base the representation of ontology-valued measures in OLAP cubes on the
REA business model ontology [I]. We make use of common business patterns [7]
but restrict our considerations, with the addition of types and groups, to the core
concepts of REA. The core concepts in REA are economic Resources, Events,
and Agents. The main focus of interest are economic events which use, consume,
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or produce economic resources or cause flows of stock. In the course of economic
events, agents provide and receive control over these resources. Events always
occur in duality, each event having a reciprocal, compensatory event. Economic
resources, events, and agents may be collected into groups or characterized by
types.

The Resource Description FrameworK]] (RDF) for the Semantic Web serves as
the language for the formalization of ontology-valued measures. In RDF, knowl-
edge is represented as triples of subject, predicate, and object. In such triples,
the subject and the predicate are resources, the object is either a resource or a
literal. Every resource is denoted by a Uniform Resource Identifier (URI) which
may be shortened using prefixes. In the graphical representation, ovals represent
resources used as subjects or objects, arrows represent predicates, and rectangles
represent literals. For simplicity, and since the formalization of REA does not
require their inclusion, we omit blank nodes.

RDF Schema? (RDFS) allows for the definition of classes and properties in
order to structure RDF data. Classes are sets of RDF resources. Properties
are directed relationships from a domain class to a range class. The rdf:type
property explicitly defines membership of a resource in a class. Classes and
properties may also be arranged in hierarchies of sub-classes and sub-properties.
Notice, however, that definitions in RDF'S, unlike a database schema, do not
impose any constraints on the instantiating RDF data. Rather, RDFS permits
logical inferencing through automated reasoning.

rdfs:domain rdfs:domain

tea:provide

rdfs:domain

rea:stockflow

rdfs:range

rdfs:domain {rdfs:domain rdfs:domain

fea:produce

rdfsirange  rdfs:range

rea:Resource

rdfs:range rdfs:range rdfs:domain

CeatpyD  "CaTypd Geagownd G

Fig. 1. Definition in RDF Schema of the REA business model ontology’s core concepts
and their relationships

rdfs:range

rea:duality

We use RDFS for the definition of the REA ontology’s core concepts and the
relationships between these concepts (Fig.[Il). Each REA concept translates to an
RDFS class, each relationship between concepts translates to an RDFS property.
Unlike standard REA models, the RDF formalization has relationships that are
directed. The RDF resources rea:Resource, rea:Event, rea:Agent, rea:Type,
and rea:Group are implicitly defined as classes since they are the domain and/or
range of properties. The other RDF resources are implicitly defined as properties
since they have a domain and/or range. In order to describe occurrences of real-
world events, the defined classes and properties are instantiated.

!http://www.w3.org/RDF/
2 http://www.w3.org/TR/rdf-schema/
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Depending on the application domain, specializations of the generic REA con-
cepts and their relationships can improve the expressiveness of an ontology. For
example, a competitor analysis might consist of analyses of sales events and value
chains. Therefore, an ontology for a competitor analysis introduces specialized
events (Fig. ). On the one hand, sales events are provided in exchange for a
payment; sales have a sold quantity, payments generate revenue. On the other
hand, there are production events; a production has a produced quantity. Tool
models, product models, and payment types are kinds of types. Logical reason-
ing over ontology-valued measures based on the specialized set of classes and
properties may return more informative results than direct instantiations of the
generic classes and properties alone. Whether or not a generic class or property
is specialized depends on the scope of the analysis.

rdfs:subClassOf rdfs:domain

rdfs:subClassOf

x:ProductModel x:PaymentType
rea:duality

rdfs:subClassOf  rdfs:range /) "dfs:subPropertyOf

x:qtyProduced

rdfs:domain

rdfs:subClassOf

rdfs:domain

Fig. 2. Specializations of the generic REA concepts for competitor analysis

The RDF formalization of REA differs from standard REA modeling which
distinguishes between metamodel, application model, and runtime model [7]. The
metamodel defines the general concepts and the relationships between them. In
the formalization, the definitions in Fig. [ correspond to the metamodel. The
application model applies the metamodel to a particular domain. In the RDF
formalization, the specializations in Fig. 2] correspond to the application model.
The runtime model captures the occurrences of events, individual resources and
agents. In the RDF formalization, the instantiations of the generic REA classes
and properties as well as their specializations correspond to the runtime model.
This approach differs notably from other formalizations of REA where the in-
stances of the generic concepts constitute the application model [8]. The ap-
proach is similar to the object-oriented implementation of a sample problem
provided by Hruby [7, p. 133 et seq.].

The realization of the application model as a specialization of the meta-
model, and with it the possibility to instantiate the metamodel as part of the
runtime model, has several advantages. First, since the generic concepts are spe-
cialized only where needed for the analysis, the ontologies remain concise and fo-
cused on the important aspects, which facilitates the task of the analyst. Second,
the ontologies are compatible with the decidable subsets of the Web Ontology
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Fig. 3. The German sales department’s competitor analysis for the second quarter of
2012 using an adaptation of REA for OLAP (inferred knowledge dashed)

Languageﬁ (OWL), which is important for compatibility with existing tools and
the efficiency of reasoning.

Figure Bl illustrates a fictitious scenario in the automotive industry which in-
stantiates the generic REA concepts and their specializations. The German sales
department of a car company conducts a competitor analysis for the second quar-
ter of 2012. From the sales department’s point of view, the competitor analysis
consists of conducting a survey on what products the different companies in the
industry sell to customers. The analyzing company (x:We) sells one hundred ve-
hicles of its truck model (x:0urTruck) to a producer of aliments (x:Food Inc).
In exchange, the company receives a payment of money which generates a rev-
enue of 10,200,000. Another car company (x:FunnyCar) sells SUVs to families
in exchange for payments of money.

The ontology in Fig. Bl captures economic events at various levels of granular-
ity. In this regard, the ontology extends the standard REA modeling methodol-
ogy. The REA ontology originates from accounting information systems which
are transactional and not primarily intended for analysis. A high level of detail
characterizes standard REA modeling. For example, an ontology following the
standard REA modeling methodology might represent that the Millers bought a
car of the FunnySUV product model with serial number 7329 on May 15th, 2012.
OLAP systems, however, use data from data warehouses which typically abstract
from individual economic events. Rather, a data warehouse contains data of

3http://www.w3.org/TR/owl-semantics/
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Fig. 4. The German production department’s competitor analysis for the second quar-
ter of 2012

interest at an adequate level of detail [4, p. 977]. For example, an ontology-valued
measure might represent the knowledge that Families bought SUVs from Fun-
nyCar in the second quarter of 2012. This use of groups and types instead of
individual resources, events, and agents is non-standard REA methodology. We
propose a variation of the REA modeling methodology for OLAP which allows
for the use of groups and types instead of individuals.

Variations from the standard REA modeling methodology should be made
explicit. For example, in Fig. Bl the sales events are explicitly defined as in-
stances of class x:Group. Through inference, these groups are automatically
classified as instances of class x:Sale and transitively as instances of class
rea:Event. Similarly, the exchanged resources are explicitly defined as instances
of x:ProductModel and x:PaymentType, respectively, and thus instances of
rea:Type. Through inference, these types are automatically classified as in-
stances of rea:Resource. The automatic classification stems from the RDFS
definitions. When types and groups are used like individual events, resources,
et cetera, the RDFS inference engine views them as individuals. The explicit
definition as groups and types, however, reminds the analyst of the deviation
from the standard modeling methodology.

The ontology in Fig.[Blis similar in intent to a sales cube in traditional OLAP.
Still, the ontology has a different focus and is less-structured than a traditional
OLAP cube; the ontology is also multi-granular. The ontology emphasizes the
relationships between producers and customers whereas a traditional OLAP
cubes’s focus is on numbers. The ontology is less-structured since sales events
and payments of the rival company (x:FunnyCar) have no figures available.



520 C. Schiitz, B. Neumayr, and M. Schrefl

The ontology is multi-granular in the sense that sales of one company are
captured by product model (x:0urSUV) whereas sales of the other com-
pany (x:FunnyCar) are captured by product category (x:SUVs).

The production department’s analysis of the business situation (Fig.Hl), where
the interdependencies of the companies in the value chain are the focus of in-
terest, is another case of knowledge better represented by an ontology than a
numeric measure. The company produces a truck engine (x:0urTruckEngine
which, together with the chassis from a supplier (x:CleverCar), is converted
into a car model (x:0urTruck). The same truck engine is also used by another car
manufacturer (x:FunnyCar) as the basis for an SUV engine (x : FunnySUVEngine).
This ontology is another example of REA modeling with adaptations for OLAP
because the events abstract from the individual workers who carry out the tasks.
For example, FunnyCar provides the production event of x:FunnySUVEngine. In
this case, the individual worker is of no interest for the analysis.

2.2 Shared Facts

We use the Dimensional Fact Model (DFM) [9] as the conceptual modeling
approach for the multidimensional organization of OLAP cubes. In the DFM, the
main modeling primitives are fact schemas and dimensions. Dimensions consist
of several dimension attributes, the aggregation levels, which are ordered from
most to least granular. A fact schema represents a real-world event of interest
and defines a set of measures which quantifies the fact. Instances of the fact
schema represent occurrences of the event. Measures may be aggregated along
the aggregation levels of the dimensions.

Typically, in the DFM, instances of the fact schema, which are the base facts
of the OLAP cube, exist only for the most granular level. Using optional aggre-
gation paths, however, we work around this restriction of the DFM in order to
allow for base facts at multiple levels of granularity. The base facts at coarser
levels of granularity serve as shared facts which define common knowledge in-
herited by the lower-level base facts. Thus, rather than duplicating common
knowledge in every base fact, shared facts make explicit the existence of such
shared knowledge and its scope, which facilitates the task of the analyst.

Figure [l illustrates the fact schema, Strategy, of a three-dimensional cube for
competitor analysis. Arcs between levels indicate aggregation paths, for example,

Organization

Location cally Time

call» call >

«department

<« continent » cyear)

< country » «quarter »

Strategy

+ competition: RDF

Fig. 5. The Strategy fact schema in DFM notation
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Fig. 6. Shared facts of the Strategy fact schema in Fig.

countries may be aggregated to continents. Optional aggregation paths are marked
with a dash and denote the possibility that some instances of the fact schema may
not roll-up to a particular level. The possibility of optional aggregation paths is im-
portant for the representation of base facts at a granularity level that is not the most
detailed. For example, an instance of the Strategy fact schema may be defined at
the department level for all locations and all points in time. The granularity level of
this fact is not the most detailed. The fact may serve as a shared fact which contains
knowledge inherited by the facts at more detailed levels of abstraction.

For each ontology-valued measure, a base fact assigns a named RDF graph,
the knowledge that is valid in the context of the fact. Named graphs denote
sets of RDF triples and allow for the representation of context and provenance
of RDF data [5]. In this sense, OLAP cubes with ontology-valued measures are
similar to contextualized knowledge repositories for the Semantic Web [6]. The
dimensions set the context for the knowledge that is encoded in the RDF data
of the cube.

In Fig. [6 different base facts instantiate the Strategy fact schema and assign
named RDF graphs as values for the competition measure. The knowledge repre-
sented in RDF graph x:0rganization Model is valid in the context of the whole
organization for all locations and all points in time. The knowledge represented
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Fig. 7. Specifications of how base facts inherit knowledge from the shared facts in
Fig.

in RDF graphs x:Sales Model and x:Production Model is valid only for the
sales and production department, respectively.

The hierarchical organization of the dimensions, which is defined in the DFM,
establishes an implicit order between facts which can be used for the definition
of a common vocabulary local to specific regions of the OLAP cube. For a formal
definition of the hierarchical order of fact instances, we refer to existing work on
data warehousing [I0J9] and contextualized knowledge repositories [6]. From a
context point of view, all knowledge that is valid in the general context is also
valid in the specific context. Therefore, the measure values define a common
vocabulary which is applicable to different parts of the cube. The lower-level
base facts inherit knowledge represented in the higher-level ancestor base facts
which are thus shared facts. The facts in Fig. [l are such shared facts.

We use SPARQL & queries to obtain, for a given base fact, the RDF triples
inherited from the ancestor base facts (Fig. [[]). For example, the German sales
department’s competitor analysis for the second quarter of 2012 inherits the
definitions specific to the whole organization as well as the definitions for the
sales department. Likewise, the German production department’s analysis for
the same period of time inherits the definitions for the organization and the
production department. The result contains the union of all RDF triples from
a base fact and its ancestor base facts. The generation of the queries can be
automated. We use a similar query structure for the roll-up of facts in Sect. Bl

4http://www.w3.org/TR/sparqlii-query/
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3 OLAP with Ontology-Valued Measures

Roll-up, slice, and dice are the most common OLAP operations. A roll-up
changes the OLAP cube’s level of granularity by summarizing the data. Slice
and dice select a set of facts from an OLAP cube based on criteria. In this
section, we adapt the most common OLAP operations for cubes with ontology-
valued measures.

In traditional OLAP, the roll-up operation retrieves measure values from mul-
tiple facts and applies an aggregation function on this set of values. The applica-
tion of the aggregation function transforms the set of values into a single value.
The result is a summarized view of real-world events.

For ontology-valued measures, the roll-up operation merges ontologies from
multiple facts and applies an abstraction pattern on the merged ontology. This
abstraction pattern transforms the knowledge that is represented in the merged
ontology such that the propositions are more general but also more intelligible
for the analyst, which often involves a reduction of the propositions. In the RDF
formalization, merge and abstract are defined in terms of SPARQL queries over
the RDF graphs that are stored in the facts.

In the most basic case, RDF graphs are merged by forming the union of triples.
The result RDF graph contains every triple that exists in at least one of the input
graphs. The same query principle is also used for obtaining the inherited RDF
triples. Figure [§ illustrates the merging of the competitor analyses of the sales
departments in Germany and France by forming the union of the RDF triples

x:Germany_Sales_Q2-2012 x:France_Sales_Q2-2012

rea:provide rea:stockflow rea:provide rea:stockflow

Cxwe XGermany_Q2-2012 XFrance_Q2-2012_
Sales_OurTruck Sales_OurSUV
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ea receive

x:Europe_Sales_Q2-2012

rea:receive rea:stockflow

x:Germany_Q2-2012_
Sales_OurTruck
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x:France_Q2-2012_
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{
GRAPH x:Germany Sales Q2-2012 {

rea:receive rea:stockflow
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GRAPH x:France_Sales_02-2012 { rea:provide
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}
}
}
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Sales_FunnySUVs
rea:stockflow

rea:receive

Fig. 8. Merging facts by forming the union of RDF triples
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Fig. 9. Incremental abstraction of a fact’s RDF data, starting from the merged RDF
graph x:Europe Sales Q2-2012 in Fig.

of the base facts. The result is an RDF graph which belongs to a derived fact at
a more abstract level of granularity than the input base facts.

We use the SPARQL update languageﬁ to specify abstraction patterns for
RDF graphs. A set of RDF triples that fulfil a certain graph pattern should be
deleted from the RDF graph. Instead of the deleted RDF triples, new triples
are inserted into the RDF graph. This approach corresponds to graph pattern
matching and replacement in common model transformation languages [TTJ12].
Figure [@illustrates the incremental application of abstraction patterns on RDF
data. As the first step, clients participating in sales events are moved to a coarser
granularity. All agents that participate in a sales event through the rea:receive
property are replaced by their group, if they are part of a group. This condition
applies to x:Families and x:Singles, which are replaced by x:Households.
This condition does not apply to x:Food Inc. As the second step, sales of
x:FunnyCar that involve a stock flow of x:SUVs are grouped together. The new,
compound sales event participates in all triples, be it as subject or object, that
either of the original sales events participated in.

® http://www.w3.org/TR/sparqlii-update/
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Fig. 10. Merging facts by forming the intersection of RDF triples

Facts may also be merged by forming the intersection of the contained RDF
triples. The result graph contains every triple that exists in all of the input
graphs. This variant of the merge operation is useful for obtaining knowledge that
is true regardless of the context. For example, merging facts with intersection
may retrieve knowledge which has been stable over a period of time. Likewise, it
may also retrieve knowledge which applies to several countries or departments
of the company.

In many cases, merging facts with intersection will require abstraction to be
performed on the input RDF graphs prior to forming the combination of the
RDF triples. With intersection, the more detailed the representation of eco-
nomic events, the fewer the triples that are in the result. Figure [I0, for example,
illustrates a roll-up over abstractions of the competitor analyses of the sales de-
partments in Germany and France. In this example, the abstractions are merged
by forming the intersection of triples. The original input RDF graphs, as seen in
previous examples, were too finely grained for obtaining results. Without prior
abstraction of the input RDF graphs, in this case, the result RDF graph would
not contain any RDF triples. Similarly, some queries will require RDF'S reasoning
to be performed before execution.

In traditional OLAP, slice and dice correspond to the selection of facts based
on some user-defined criteria. When applied to ontologies, slice and dice are
special cases of abstraction. Slice and dice reduce the number of RDF triples.
Thus, slice and dice correspond to an abstraction with only a delete part but no
insertions.
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4 Implementation

We provide a proof-of-concept prototypeﬁ with basic management and analysis
capabilities for OLAP cubes with ontology-valued measures. Ontology-valued
measures are stored in the Jend] RDF framework’s native tuple store (TDB)
which supports the SPARQL query and update language as well as RDF'S reason-
ing. The multidimensional organization is stored in an object-relational database
whereas TDB contains only a set of RDF graphs.

In the object-relational database, each OLAP cube has a table with one col-
umn for each ontology-valued measure and each row corresponds to a base fact.
The columns store names of RDF graphs. The order of the base facts is estab-
lished by a multilevel cube [10] which allows for the definition of facts at multiple
levels of granularity. Facts at higher levels of granularity serve as shared facts
with represent common knowledge shared by the finer-grained descendant base
facts. For each fact in this cube, the ancestor facts are calculated and stored
at the time of insertion, providing an index for the OLAP operations, which is
particularly important for the retrieval of inherited knowledge. The implemen-
tation is an extension of the prototype implementation for the management of
hetero-homogeneous data warehouses [13].

We provide methods in Java for the merging and abstraction of facts with
ontology-valued measures as well as the extension of facts with inherited knowl-
edge. Merging is implemented as a binary operation which merges two RDF
graphs at a time and returns the merged RDF graph as result. Abstraction
takes an RDF graph and an abstraction pattern, formalized as a SPARQL up-
date, as input and returns a modified RDF graph as result. Nesting of operations
is possible by applying the methods on results of methods. All methods also work
with the identifying dimensional attributes as parameters and, in this case, au-
tomatically retrieve from the object-relational database the names of the RDF
graphs associated with the facts. The extension of facts with inherited knowledge
works only for the identifying dimensional attributes as parameters and cannot
be applied on results.

5 Related Work

The application of semantic technologies to business intelligence promises to
bridge the gap between the technical specifications of the systems designer and
the knowledge of the business analyst [I4/15]. Multidimensional ontologies from
the Semantic Cockpit project [14] describe the semantics of dimensions and
measures in order to facilitate the formulation of OLAP queries and the in-
terpretation of results. Similarly, the Business Intelligence Model (BIM) [I5/16]
ailms at presenting the data in terms familiar to the business analyst. Nebot
et al. [I7] investigate the multidimensional organization of ontologies and the
semi-automated extraction of OLAP cubes with numeric measures from these

5 The prototype is available on http://hh-dw.dke.uni-1linz.ac.at/
" http://jena.apache.org/
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ontologies. Other work [I8] deals with the use of domain ontologies as semantic
dimensions in OLAP cubes. These approaches are complementary to the use of
ontology-valued measures or could be useful as the basis for modeling ontology-
valued measures.

There are approaches which use the REA ontology for the development of a
traditional OLAP system. These approaches, however, differ significantly from
the use of REA as the basis for modeling ontology-valued measures. On the con-
trary, these approaches emulate the structure of traditional OLAP systems in
REA. REAL-D [I9] uses a variant of the REA ontology extended with concepts
for time and location. Numeric measures are stored in a snowflake schema. Eco-
nomic events are facts and the numeric properties of the events are measures.
Resources, agents, time, and location are the dimensions. Likewise, the posting
and account business patterns [7] keep track of transactions and allow for the
aggregation of attributes associated with these transactions.

InfoNetOLAP [20] extends traditional OLAP to graph data. Graphs are
associated with dimensional attributes. The edges of the graphs are weighted.
Typical applications of InfoNetOLAP are co-author graphs, social graphs, spatio-
temporal applications, et cetera, over different time periods, geographic loca-
tions, et cetera. A distinction between informational roll-up and topological
roll-up is made, which is similar to the basic idea of merge and abstract for
ontology-valued measures. InfoNetOLAP, however, is not intended for the rep-
resentation of complex knowledge. Rather, InfoNetOLAP is another means of
structuring numeric measures. Business model ontologies as a data model for
measures are much more expressive, powerful, and versatile than simple graphs.
Also, the graphs in InfoNetOLAP are much more structured and uniform. In
this regard, by using business model ontologies in OLAP cubes, we go beyond
the InfoNetOLAP approach.

6 Summary and Future Work

Numeric measures alone fail to adequately represent many complex real-world
facts. Business model ontologies can fill the gap but their analysis eludes tra-
ditional OLAP systems. By extending OLAP cubes with ontology-valued mea-
sures, the analyst can leverage the expressivity of business model ontologies
without losing the analysis capabilities of OLAP systems. The REA business
model ontology may serve as the basis for modeling such ontology-valued mea-
sures.

Future work will explore the use of other business model ontologies, depending
on the context of the analysis, as the basis for the representation of ontology-
valued measures. Among these business model ontologies are e3value [21] and its
domain-specific extensions, for example, e3*forces [22] for modeling Porter’s five
forces for industry analysis. Likewise, the use of composite indicators [23] could
prove beneficial. Of particular interest is the use of a variety of different business
model ontologies within the same OLAP cube and the analysis across different
ontologies.
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Future work will also integrate ontology-valued measures into the Semantic
Cockpit [14] which leverages semantic technologies for business intelligence in
order to support business analysts with the retrieval and interpretation of data.
Whereas semantic dimensions [I§] allow for the use of knowledge from existing
domain ontologies in OLAP queries, ontology-valued measures employ business
model ontologies in order to represent complex real-world facts.
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