
C. Salinesi, M.C. Norrie, and O. Pastor (Eds.): CAiSE 2013, LNCS 7908, pp. 338–352, 2013.
© Springer-Verlag Berlin Heidelberg 2013

ROAD4SaaS: Scalable Business Service-Based
SaaS Applications

Malinda Kapuruge, Jun Han, Alan Colman, and Indika Kumara

Faculty of Information and Communication Technologies
Swinburne University of Technology, Melbourne, Australia

{mkapuruge,jhan,acolman,iweerasinghadewage}@swin.edu.au

Abstract. Software-as-a-Service (SaaS) is a software delivery model gaining
popularity. Service Oriented Architecture (SOA) is widely used to construct
SaaS applications due to the complementary characteristics in the two para-
digms. Scalability has always been one of the major requirements in designing
SaaS applications to meet the fluctuating demand. However, constructing SaaS
applications using third-party business services raises additional challenges for
the scalability of the application due to the partner services’ variability and au-
tonomy. Any approach used to develop scalable service-based SaaS applica-
tions that compose business services needs to consider these characteristics. In
this paper we present an approach to deploy scalable business service composi-
tions based on the concept of an extensible hierarchy of virtual organisations.
The explicit representation of relationships in the organisation allows capturing
commonalities and variations of relationships between business services while
its extensibility allows scale-out/in the SaaS application instance.

Keywords: SOA, SaaS, Scalability, Service Variability.

1 Introduction

Software-as-a-Service (SaaS) is a software delivery model that allows software users
(SaaS tenants) to use the software provided by a software vendor (SaaS vendor) on a
pay-as-you-go basis over the Internet [1, 2]. The SaaS vendor owns and maintains the
software system and its infrastructure, whilst the SaaS tenant pays a subscription fee
to use the software system. The SaaS vendor exploits the economies-of-scale availa-
ble from sharing resources and services between multiple tenants, whilst the SaaS
tenant benefits from low start-up-cost and quick return-on-investment [1, 3].

SaaS is not a software construction model but a software delivery model [2]. Ser-
vice Oriented Architecture (SOA) provides a suitable software construction model for
SaaS. As such, a SaaS application can be exposed as a service and delivered to a va-
riety of tenants. In addition, a SaaS vendor can outsource certain functionalities of its
SaaS application to third party services (partner services) and can bind/unbind them
depending on fluctuating demand, making it a dynamic service composition.

The fluctuating demand may be practically impossible to predict at the system de-
sign time. Contracting and binding a large number of services in the composition,

 ROAD4SaaS: Scalable Business Service-Based SaaS Applications 339

may give the SaaS vendor the capability to deal with the increasing demand but may
not be an economical solution when the demand is low given expenses associated
with keeping them contracted. The cost-per-unit can increase, making tenants look for
alternatives. On the other hand, failure to meet the increased demand may potentially
damage the SaaS vendor’s business reputation. Hence, a SaaS vendor has to strategi-
cally scale-out or scale-in its service composition depending on the demand. The
scalability of the system plays an important role in achieving this objective.

The scalability is a desirable property of a system, which indicates its ability to
handle growing amount of work in a graceful manner [4]. As such it should be possi-
ble to cater for the increased demand with minimal interruptions to ongoing opera-
tions of the system. There is a substantial amount of work addressing such issues in
terms of data and computational resources. For example, multiple data storages [4] or
computational service/server instances [5] are bound and released depending on the
demand. However, such solutions fall short when applied to SaaS applications that
compose business services for two main reasons. Firstly, the business services are not
homogenous. As such, it is not practical to assume all the available business services
to perform outsourced functionality are alike. Unlike storage or computational service
instances, there is variability even between functionally similar business services and
consequently between the business relationships among the partner services in a SaaS
application. Such variability needs to be captured in the SaaS application design. Se-
condly, business services are autonomous and managed by third party business orga-
nisations. The business relationships between its partner service providers may
change over time. The up-to-date business relationships need to be explicitly reflected
in the IT design. The inability to sufficiently and timely address these requirements
can be problematic for a SaaS vendor.

To address the above limitations, in this paper we propose a novel methodology
and middleware platform, ROAD4SaaS, to support the design and deployment of
SaaS applications that compose business services. ROAD4SaaS provides a scalable
and adaptable design that can be used to scale-out/in the SaaS application economi-
cally by binding/unbinding partner services to meet the fluctuations in demand while
preserving the heterogeneity in service relationships. The entire SaaS application is
modelled as a hierarchy of organisations. For the purposes of this approach we define
an organisation as a service composition consisting of roles played by other
clients/services with respect to the organisation. A structure over these roles defines
and regulates the relationships between role players. The key benefit of such a design
is its ability to explicitly capture the commonalities and variations of business rela-
tionships among partner services in the scalable organisation hierarchy.
Sub-organisations can be created that handle and hide the complexity of particular
business functions. In addition, an organisation (node) in the organisation hierarchy is
adaptable to accommodate the changes in business relationships.

The rest of the paper is organised as follows. In Section 2, we analyse the problem
by presenting a motivational business scenario. The approach and its prototype im-
plementation are presented in Sections 3 and 4 respectively. The evaluation results for
our approach are given in Section 5. In Section 6, we discuss the related work and
provide a comparative analysis of our work before the paper concludes in Section 7.

340 M. Kapuruge et al.

2 Problem Analysis

In this section we analyse the problem by presenting a motivational business scenario
and a set of challenges in designing SaaS applications as business service composites.

2.1 Motivation Example

RoSAS (Roadside assistance as a service) is a business organisation that expects to
provide roadside assistance as a service on demand. Other companies such as car
vendors and travel agents wish to attract customers by offering roadside assistance as
a value added service but do not possess the desire, capacity or expertise to own and
operate such a system on their own. These companies may use RoSAS’s roadside
assistance service (exposed through a software service) on subscription basis [3]. As
SaaS tenants, they benefit from the intrinsic properties of SaaS such as lower start-up
cost and quicker return-on-investment compared to creating and operating their own
roadside assistance service systems.

On the other hand, RoSAS creates business value by contracting and integrating a
number of third party business service providers such as Tow-Truck, Garage and Call
Centre services to tow stranded cars, repair damaged cars and handle claims respec-
tively. These third party service providers expose their offerings through software
services, which we refer to as business services, e.g., a tow request accepting service
is exposed by a Tow-Truck company. In this context, the RoSAS business model can
be fittingly modelled and enacted as a service composition (IT model) following SOA
principles. However, RoSAS faces a number of challenges in designing its SaaS ap-
plication in terms of how the application should scale-out/in as the demand fluctuates.

2.2 Scalability Challenges for Business Service Compositions

During the runtime, the demand for roadside assistance may fluctuate. Many tenants,
who themselves may have thousands of customers, are expected to subscribe to RoSAS.
In addition, during peak periods, such as holiday seasons or bad weather, the demand
for roadside assistance may increase compared to rest of the year. While it is convenient
to assume that bound partner services, e.g., Garage chains/Tow-trucks chains are re-
sponsible to scale-out/in their operations to cater for peaks and troughs in demand, it
should not be overlooked that partner services too have limitations of real-world re-
sources [6], e.g., number of repair stations of a Garage chain. The failure of its partner
services to meet tenants’ demand risks putting the reputation of the SaaS vendor at stake
[3]. In practical circumstances it could be difficult to find a single partner service, which
is capable of meeting the overall increase of demand. On the other hand, contracting
with a redundant number of partner services might not be an economical solution when
the demand is low, making it more economical for RoSAS to contract partner services
depending on the demand fluctuations during runtime.

With the increased adoption of the cloud computing paradigm, the need for such
scalable design is well-understood [4, 5]. For example, multiple data storage [4] or
computational service instances [5] are bound and released as warranted by the

 ROAD4SaaS: Scalable Business Service-Based SaaS Applications 341

demand. However, the situation is different when it comes to business services such
as Tow-truck chains and Garage chains due to the following reasons.

1. In practice, business services are not homogenous as data storages or computa-
tional service instances in terms of business aspects. There are varying busi-
ness requirements and relationships. For example, one garage chain might
need a bonus payment for every 10th repair request whilst another might be in-
stead satisfied by an advance payment with each repair request.

2. Typically, business services are autonomous and managed by third party busi-
ness organisations. The ever-changing business services and relationships may
demand changes to composites that bind such services such as RoSAS. For
example, the bonus payment will be paid every 5th request instead of every
10th. Therefore the service composites that bind business services need to be
highly adaptable to continue functioning upon such changes.

These differences in composing business services raise challenges to the SaaS vendor
who integrates business services compared to an IaaS/PaaS vendor who integrate
storage or computational service instances. In the light of above differences, the solu-
tions [3-5, 7, 8] used at the IaaS/PaaS level are not sufficient to scale-out/in SaaS ap-
plications built by composing business services. The variations in business services
and relationships need to be accounted for in designing a scalable SaaS application.
Therefore the design methodology used to compose business services play an impor-
tant role. As such, we identify the following requirements that should be satisfied by a
business service composition methodology (Req1, Req2) and supporting middleware
(Req2, Req3) in order to be effective in modelling and enacting SaaS applications.

─ (Req1): The design of a SaaS application needs to be extensible, so that number of
services accommodated can be increased or decreased.

─ (Req2): The commonalities and variations of business services and their relation-
ships need to be clearly represented in the design and managed at runtime.

─ (Req3): The middleware needs to ensure that adaptations to a SaaS application are
carried out with minimal disruption to the ongoing operation of the composition.

3 The Approach

In this section we present our approach to achieving scalable service-based SaaS ap-
plications. After giving an overview, we describe how a SaaS composition can be
designed following an organisational paradigm. Then we present how scalability and
variability requirements are supported.

3.1 Overview

To address the aforementioned challenges, we design a SaaS application as a hie-
rarchy of organisations, where the partner business services and their relationships
are explicitly captured and represented in the organisation design. The organisation
hierarchy can scale-out/in to accommodate more/less partner services (Section 3.3),
while capturing the commonalities and variations (Section 3.4).

342 M. Kapuruge et al.

Each organisation (a node) in the hierarchy consists of a set of well-defined roles
and relationships between them. The roles represent the participants and their capabil-
ities needed by the organisation, and can be fulfilled or played by atomic players (i.e.,
both service providers and consumers) or other organisations of the hierarchy. The
relationships are represented as contracts to capture and enforce the business relation-
ships among two roles. A contract captures the allowed interactions between two
roles via a set of Interaction Terms and its current state via a set of Facts (key-value
pairs). A contract also defines a number of Rules to enforce the relationship. Both
roles and contracts of an organisation are adaptable to guarantee that the organisation
structure in the IT model reflects the up-to-date services and their relationships in the
business model/environment. Summarising the above concepts ROAD4SaaS meta-
model is presented in Fig. 1.

Fig. 1. ROAD4SaaS meta-model

Note that forming an organisation hierarchy is possible, because a player of a role
could also be an organisation (Fig. 1). In such an organisation hierarchy there is al-
ways a root organisation which is also considered to be the initial design. In addition,
there can be a number of sub-organisations as intermediary nodes of the hierarchy
introduced to scale-out the application. The leaf nodes are always the specific atomic
players, whom composition is unknown or extraneous.

3.2 The Initial Design (Root Organisation)

The initial design of SaaS composite (root organisation) provides the abstraction over
the business environment. The required functionalities that need to be fulfilled by
services are identified and decomposed into a set of roles. Also, the relationships
among these roles are identified and represented as a set of contracts. Such organisa-
tional structure provides a virtualisation layer over the available concrete services.

Fig. 2, shows the root organization in the service composition for our motivating
example. As shown, the root organisation captures four roles, Member (MM), Call-
Centre (CC), Tow-Truck (TT) and Garage (GR), which represent the required func-
tionalities that are expected of and outsourced to third party business services. For
example, FastRepairs, which is a garage chain business, may bind to role GR. Once
bound, the repair requests are forwarded to the provided service endpoint for FastRe-
pairs. The organisation defines contracts MM-CC, CC-TT, GR-TT, CC-GR between
these roles based on the requirements of supporting interactions and maintaining rela-
tionships, e.g., CC and GR need to interact and maintain their relationships, and hence

 ROAD4SaaS: Scalable Business Service-Based SaaS Applications 343

the CC-GR contract is defined in the context of RoSAS. However there are no such
interactions required between MM and TT and hence no contract is defined.

Fig. 2. The initial design

It should be noted that third party business services are autonomous and may
change their behaviour during runtime. Similar issues have been identified in compo-
nent-based software design and the use of contracts [9] is equally applicable in the
context of composing business services too. Also, the service relationships that exist
in the business model need to be explicitly represented in the composition or the IT
model [10]. Therefore, to describe the objectives of SaaS vendor, we capture a con-
tract between two roles of a composition as Interaction Terms, Facts and Rules. Here,

Interaction Terms: A set of allowed interactions between two roles.
Facts: A set of parameters that describe state of the contract.
Rules: A set of rules that evaluate the interactions of the contract.

An example contract between CC and GR is shown in Fig. 3. The contract has two
facts, i.e., TotalRepairCount and AllowedRepairTypes which collectively represent
the state of contract CC-GR. The three interaction terms (ITerm) defines all the possi-
ble interactions between the CC and GR. For example, the iOrderRepair defines the
parameters (repairInfo, caseId) and directions of the interaction, i.e., from CC to GR.
The rules (RuleFile) define how the interactions/messages should be evaluated against
the current state of a contract. We use Drools [11] to define such business rules.

Fig. 3. A sample contract description

3.3 Supporting Scalability

The scalability is required to handle a growing amount of work in a graceful manner
[4]. Note that there are two types of scalability, i.e., vertical (scale-up) and horizontal

344 M. Kapuruge et al.

(scale-out). The vertical scalability is achieved by adding more resources to a node,
whereas horizontal scalability is achieved by adding more nodes [4].

This work focuses on horizontal scalability in order to resolve the bottleneck of li-
mited partner services (nodes) from a service aggregator (SaaS vendor) perspective
rather than increasing the capability of a single node, e.g., the computing power of a
computing node / repair capacity of bound Garage, which is a separate matter of
concern. Support for scalability in system design improves its elasticity, which pri-
marily is a resource provisioning concern [4, 6]. In this work, the scalability of SaaS
composite is supported by scaling-out or scaling-in the organisation hierarchy so that
more/less partner services can be accommodated for the SaaS application. Provided
that SaaS vendor has finalised the business level negotiations with suitable partner
services, we explain the scale-out and scale-in operations in IT support as follows.

Scale-Out. The scale-out operation is carried out on an identified role called expan-
sion role (ER) by creating a new expansion organisation (ER_ExpOrg). We introduce
an scale-out process, described in Fig. 4, which scale-out a recognised expansion role
(ER) for a given set of players/partner services (P[]) and for a given Routing Strategy
(S). The routing strategy specifies how the incoming jobs are distributed, e.g., round-
robin, content-based routing. The scale-out process starts by creating a new expan-
sion organisation (ER_ExpOrg) and creating a new router role (ERr) provided
ER_ExpOrg does not already exist. The purpose of the ERr is to route the incoming
jobs among other roles of the new organisation using the provided routing strategy S.
The URL of ERr is used as the player of ER making role ERr the delegate of
ER_ExpOrg. Then a set of functional roles (ERi,݅ א ܰ) and a set of contracts between
ERr and ERi are created to be bound by P[]. Here rIndex is the number of functional
roles (ERi) exists in ER_ExpOrg. Each created contract is populated with the Role
Interaction Description (RID) of ER (explained below). Note that, in the case of
creating new ER_ExpOrg, the currently bound player of ER could be included in P[]
to retain in the composite.

Fig. 4. The scale-out process

 ROAD4SaaS: Scalable Business Service-Based SaaS Applications 345

For example, suppose the role GR needs to be expanded to assign another two new
garage chain services, e.g., BestRepairs and AceRepairs in addition to existing Fa-
stRepairs. In this case the scale-out function is called as follows.

scale-out(GR, routing.drl, <FastRepairs, BestRepairs, AceRepairs>);

The resulting hierarchical organisation structure is shown in Fig. 5. The new compo-
site GR_ExpOrg is created with new contracts GRr-GR[1-3]. As shown the existing
player FastRepairs is now bound to role GR1, whilst new players, i.e., BestRepairs
and AceRepairs are bound to GR2 and GR3 respectively. The role GR of parent orga-
nisation is now bound by GRr representing GR_ExpOrg.

Fig. 5. Expansion organisation

Role Interaction Description (RID). The newly created contracts ERr-ERi need to
conform to the parent composition. In this sense, messages flow across the contracts
of parent organisation to a role needs to flow across its expansion organisation too.
Therefore we populate new contracts with RID. For a given ER, having m number of
contracts with Adjoining Roles ARj (݆ א ாோܦܫܴ ,(ߋ ൌ ራൣܫҧ. ሺܣ ௝ܴ‐ ሻ൧௠ܴܧ

௝ୀ଴ ڮ ڮ ڮ ڮ ڮ ሺ1ሻ

Here, ܫ ҧ.(ARj-ER) is the set of interaction defined in contract between ARj and ER.
ARj is a role that has a contract with ER.

For the given example (Fig. 5) expansion role GR, has two Adjoining Roles CC
and TT. Therefore, the RID of GR is all the interaction terms defined in CC-GR and
TT-GR. Suppose that CC-GR has three interaction terms {iOrderRepair, iRepairNoti-
fy, iRepairPay} and TT-GR has two interaction terms, {iInformRepairStation, iIn-
formDelay}then the RID of GR is,

RIDGR = ܫ. ሺܥܥ െ ሻܴܩ ׫ .ܫ ሺܶܶ െ ሻܴܩ
= {iOrderRepair, iRepairNotify, iRepairPay, iInformRepairStation, iInformDelay}
Accordingly, each new contract GRr-GR1, GRr-GR2 and GRr-GR3 are populated

with RIDGR. This allows the messages flow across both CC-GR and TT-GR to be
routed to respective players bound to GR_ExpOrg.

It is also possible to expand a role of an expansion organisation creating another
level in the hierarchy as an alternative to adding new roles. However, such scale-out

346 M. Kapuruge et al.

is advised only if that helps to capture commonalities and variations (explained in
Section 3.4) to avoid complexity of having needlessly many levels.

Scale-in. SaaS providers may decide to remove some partner services from the com-
position in low-demand periods. Hence, we introduce the scale-in process, described
in Fig. 6, which removes a set of players P[] from a given expansion organisation
ExpOrg and updates the routing strategy with S. Scale-in is a reversing process of
scale-out that either removes a subset of roles and their players from an ExpOrg (if
the number of roles of ExpOrg, N >= P.size+2) or removes the complete ExpOrg
otherwise. In the case of subset of role (N>P.size+2), a new routing strategy S is as-
signed to ExpOrg. In the case of removing the ExpOrg(N=P.size+2), the endpoint of
only remaining player is bound to the ER of parent organisation. It is not possible to
remove more players than bound (N< P.size+2).

Fig. 6. The scale-in process

Overall, the scalability of SaaS application is supported by the hierarchical service
decomposition provided by the organisational approach. As shown in Fig. 7, the
scale-out/processes allow growing (t0→t1→t2) and shrinking (t2→t3) the organisa-
tion hierarchy to accommodate more services when the demand is high or remove
existing services when the demand is low.

Fig. 7. The snapshots of an organisation hierarchy that scale-out and scale-in

3.4 Capturing Commonalities and Variations

One of the important benefits of supporting scalability via the organisational approach
is the ability to capture commonalities and variations of business services and their
relationships (Req2). This allows binding services with slightly varying business
functionalities and relationships adding some flexibility in service selection. In an
organisation hierarchy, the contracts of higher organisations capture the commonali-
ties while the variations are captured in the lower organisations as shown in Fig. 8.

 ROAD4SaaS: Scalable Business Service-Based SaaS Applications 347

Fig. 8. Capturing commonalities and variations

It should be noted that we project Interaction Terms in an automated manner (as RID),
yet did not similarly project the Facts and Rules. The rationale behind this decision is the
major differences in corresponding usages. The Interaction Terms could be seen as the
channels for a message to be passed from one player to another. The identification and
propagation of RID to lower-level organisation ensures a smooth end-to-end passage. On
the other hand Facts and Rules represent the current contract state and how the interac-
tions are evaluated. There is no point of propagating the Facts and Rules of a contract of
a higher-level organisation to a contract of the lower-level organisation unless there is a
variation of Facts and Rules. An evaluation of one contract along the path of message is
sufficient unless there are variations in evaluations. If there are such variations, they
should be captured within the contracts of the lower-level organisations of the hierarchy.

To elaborate, consider the snapshot of the organisation hierarchy in Fig. 5. Suppose
a message being sent from the currently bound CC service, e.g., EasyCall, to one of
the repair services. First, the message passes from CC to GR via the contract CC-GR.
Then the message is delivered to the sub-organisation which plays the role GR. The
router role GRr routes the message according to defined Routing Strategy, e.g., to
GR2, (played by BestRepair) via the contract GRr-GR2. Throughout the passage from
player EasyCall to BestRepair, the message is evaluated against two contracts CC-GR
and GRr-GR2. The facts and rules that are common are captured in the CC-GR (in
higher level organisation) whilst the variations applicable only to BestRepair are
placed in the GRr-GR2 (in lower level organisation). For example, the fact Allowe-
dRepairTypes is a common fact and rule “assert the repair request conforms to al-
lowed repair types” is a common rule, hence placed in CC-GR (Fig. 3). On the other
hand, the fact, BonusPayPercentage is a specific fact and the rule “Add a bonus pay
amount” is a specific rule, hence placed in GRr-GR2 as shown in Fig. 9.

Fig. 9. The contract between GRr and GR2

348 M. Kapuruge et al.

Overall, the organisational approach provides the required modularity to capture
commonalities and variations of business service relationships. During runtime con-
tracts of an organisation can be modified to update the relationships.

4 Middleware Support

To provide the middleware support for our approach to designing and deploying scal-
able SaaS applications, we have extended the Role Oriented Adaptive Design
(ROAD) framework [12]. ROAD supports the design of adaptable software systems.
Its runtime platform (ROAD4WS [13]) extends Axis2 [14], allowing the deployment
of adaptive service compositions in a Web service environment. ROAD4WS enables
the addition, modification and removal of service composites at runtime. It also pro-
vides message mediation and routing capabilities among partner services. Integration
with Axis2 allows use of standardised message parsing and delivery protocols, e.g.,
XML/SOAP and seamless access to other standardised middleware implementations,
e.g., WS-Security, WS-Addressing.

The scale-out/in functions have been implemented as high-level operations using
the low-level operations of the ROAD framework, e.g., addRole, removeRole, add-
Contract, removeContract [15]. The ROAD framework ensures state consistency in
applying these operations e.g., safe completion of transactions [15]. The adaptation
scripts containing such operations can be executed immediately or scheduled to be
executed upon specific events. For example, the scale-out() operation for GR can be
scheduled to be executed upon an event “more than 50 request per day”.

The contracts are instantiated and maintained as StatefulKnowledgeSessions of
Drools 5.0 Expert Engine [11]. Such sessions can be dynamically inserted with facts
(Java objects) and rules (Drools rules) to update the reasoning capabilities.

The interfaces to the roles of the organisations are exposed as WSDL interfaces via
Axis2 [14]. These interfaces are automatically created based on the RID (Section 3.3)
of a corresponding role [15]. Two types of interfaces generated depending on the di-
rection of Interactions (AtoB or BtoA in Fig. 3). The Provided Interface is provided
by the SaaS application so that external third party services/clients can send messages.
On the other hand the Required Interface should be implemented by the third party
services so that SaaS application can send messages to them. Tools are provided to
model the initial design (Fig. 3), to write the adaptation scripts (Fig. 10-a) as eclipse-
based plugins, and to monitor the organisations (Fig. 10-b) through a web interface.

Fig. 10. Tool support

 ROAD4SaaS: Scalable Business Service-Based SaaS Applications 349

5 Evaluation

To illustrate the technical feasibility of our approach we have setup a simulation envi-
ronment based on the motivation example introduced in Section 2.

First we deployed the RoSAS composite and then simulated partner services. We se-
tup the garage (partner) service to have 10s delay to serve requests sequentially (for
simplicity only 10s delay is allocated to a repair car). Then we send assistance requests
to the RoSAS composite in two different phases, Low-Frequency (LF) and High-
Frequency (HF), where the intervals between two requests in two phases are 15s and 5s
respectively. As shown in Fig. 11, the response time kept increasing at the HF phase;
(after 20th request) because the rate of requests is higher than the serving capacity of the
only available garage service and requests are buffered at the SaaS application.

Then we issue the scale-out command (after the 30th request) to expand the role
GR to accommodate two other services (i.e., move the application configuration from
Fig. 2 to Fig. 5). Consequently, the response time decreased as now the requests are
shared among multiple garage services (here, S = round-robin routing). The decrease
is gradual as the requests accumulated in the composite need to be cleared first. The
experiment was setup on a closed environment to avoid network delays. We designed
the partner services as Web services. The machine had 2.52 GHz Intel Core i-5 CPU
with 4 GB RAM. The operating system was 32-bit Windows 7 Home Premium. The
servlet container was Apache Tomcat 7.0.8 with Axis2 1.6.2.

Fig. 11. Evaluation results

We also quantify the average time taken by the middleware to respond to the scale-
out and scale-in commands. The Table 1 reports the average time taken to accommo-
date/remove N number of services. It reveals that even for a large scale-out/in with
N=100, it takes approximately 14.3s to complete the scale-out and 0.629s to scale-in.
The scale-out is slower compared to scale-in mainly due to rule deployment and in-
stantiation for each new contract. This quantification also ran on the same configura-
tion given earlier. We believe the reported times are reasonable, especially compared
with manual reconfiguration, which could have taken much more time to complete.

Table 1. Time to scale-out/in and resume operations

By Number of Roles, N= 1 2 3 4 5 10 100
Average time to Scale-out (ms) 4080 4081 4082 4087 4097 5023 14300
Average time to Scale-in (ms) 21 23 26 29 33 50 629

0

10000

20000

30000

40000

50000

60000

70000

80000

0 10 20 30 40 50 60 70

Re
sp

on
se

 T
im

e
(m

s)

Request ID

350 M. Kapuruge et al.

6 Related Work and Analysis

In this section we compare and analyse our approach against a number of approaches
proposed in the past to model SaaS applications in service-oriented environments.

Service Template Markup Language (STML) [16] is a markup language proposed
by Zhu et al. to customise and deploy a SaaS application using Model-driven Archi-
tecture (MDA). In addition, Sharma et al. [17] too combine the benefits of MDA and
SOA to build SaaS applications. While both these approaches provide a technology
agnostic methodology to build SaaS applications, there is little attention paid to
achieving the scalability and variability requirements of the generated SaaS applica-
tion instance. For example, there is neither special support for scalability of the gener-
ated SaaS service in [16] nor for the transformed PSM in [17]. A new variation re-
quires a re-generation.

Le et al. [6] proposes to model the business objectives and constraints and relate
them to the problem of elasticity of business services. While the approach provides a
methodology to correlate the non-functional properties to provide elasticity, it does
not provide a specific architectural support to scale-out/in the SaaS application.

One of the obvious solutions to SaaS scalability is to use Grid technologies to build
SaaS applications because of its ability to provide computing power on demand. For
example, GridSaaS [8] is a grid-enabled and SOA-based SaaS application platform
that supports the creation of SaaS applications by harnessing existing shared founda-
tional services, e.g., data integration services, authorisation services. While this ap-
proach allows sharing of the services, it lacks support for scale-out/in a SaaS applica-
tion by integrating services with varying capabilities as supported by ROAD4SaaS.

Service Component Architecture (SCA) provides an assembly model to compose
heterogeneous applications [18]. In addition, there is an explicit representation of
components providing the required abstraction. However, the component-references
[18] in SCA lack the support to explicitly capture the complex and heterogeneous
business service relationships compared to the rich support provided by the contracts
in our approach.

Another solution is to use an ESB-based (Enterprise Service Bus) approach to
model SaaS applications. For example, Cloud Service Bus [19] is an ESB-based ap-
proach proposed to integrate different software services into a SaaS platform. While
the approach benefits from the inherent advantages of ESB such as dealing with the
heterogeneity among services and consumers, again little attention is paid to capturing
the commonalities and variations of business services and their relationships.

Hennig et al. [7] propose a scalable service composition approach using the Binary
Tree Parallelisation technique. While the approach is capable of harnessing the in-
creased performance of multi-core architecture, the approach does not capture the
business relationships among the partner services. Similarly, the proxy based ap-
proaches such as TRAP/BPEL [20] helps to scale-out an application instance. Howev-
er, it does not capture commonalities and variations among business services.

In our previous work we have proposed a multi-tenant architecture to model SaaS
applications [21] that allows defining multiple business processes upon a single applica-
tion instance designed as a business service composition. While that work allows a
single application instance being shared among multiple tenants with varying require-
ments, it lacked the support to scale-out/in the application operations as the demand

 ROAD4SaaS: Scalable Business Service-Based SaaS Applications 351

fluctuates. In this work we overcome this limitation by adopting and further extending
the organisational approach. In comparison to the existing approach, ROAD4SaaS pro-
vides a novel design methodology that supports scale-out/in while explicitly capturing
the commonalities and variations of partner services and their relationships, which is
very important in composing business services to design SaaS applications.

A summary of the comparative analysis of the related works is given in Table 2.
Overall, compared to the existing approaches the ROAD4SaaS approach provides a
system designer/engineer with the capability to closely capture its heterogeneous
business environment in a way that it is possible to scale-out/in the SaaS application
that compose business (partner) services. The key characteristics behind this advan-
tage are the extensibility as well as the explicit representation of service relationships
supported by the organisational design.

Table 2. A summary of the comparative analysis of the related works

Approach [16] [17] [6] [8] [18] [19] [7] [20] [21] ROAD4SaaS

Req1 - - ~ + + + + + - +

Req2 - - - - - - - - ~ +

Req3 - - ~ + + ~ - + + +

+ Supported, - Not Supported, ~ Limited Support

7 Conclusion and Future Work

In this paper we have presented a novel methodology and middleware platform,
ROAD4SaaS, to design and deploy scalable SaaS applications that integrate business
services. We have analysed the differences in addressing the scalability issue related
to composing business services and importance of supporting their commonalities and
variations as part of the solution. A service composition is treated as having a hie-
rarchy of organisations that explicitly captures the partner business services and their
relationships. The organisation hierarchy can grow/shrink to accommodate
more/fewer partner services as the demand for the application changes. It also sup-
ports the representation and management of commonalities in business relationships
at the higher levels of the hierarchy while allowing variations to be captured at the
lower levels. This provides a better modularity as well as a clear separation of con-
cerns in the application design. The middleware and tool support is provided to
achieve the scalability in a manual or automated manner.

We are currently developing a graphical programming tool that will allow the
developer/organiser to adapt a visual runtime representation of an organisation and
organisational hierarchy, rather than using the current script-based approach to dy-
namically change roles, contracts and bindings.

Acknowledgments. This research was partly supported by the Smart Services Coop-
erative Research Centre (CRC) through the Australian Government’s CRC
Programme (Department of Industry, Innovation, Science, Research & Tertiary
Education).

352 M. Kapuruge et al.

References

1. Campbell-Kelly, M.: The rise, fall, and resurrection of software as a service. Communica-
tions ACM 52, 28–30 (2009)

2. Laplante, P.A., Jia, Z., Voas, J.: What’s in a Name? Distinguishing between SaaS and
SOA. IT Professional 10, 46–50 (2008)

3. Suleiman, B., Sakr, S., Jeffery, R., Liu, A.: On understanding the economics and elasticity
challenges of deploying business applications on public cloud infrastructure. Journal of In-
ternet Services and Applications 3, 173–193 (2012)

4. Agrawal, D., El Abbadi, A., Das, S., Elmore, A.J.: Database Scalability, Elasticity, and
Autonomy in the Cloud. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part I.
LNCS, vol. 6587, pp. 2–15. Springer, Heidelberg (2011)

5. Amazon Auto Scaling, http://aws.amazon.com/autoscaling/
6. Lê, L.S., Truong, H.L., Ghose, A., Dustdar, S.: On Elasticity and Constrainedness of Busi-

ness Services Provisioning. In: Proceedings of the 2012 IEEE Ninth International Confe-
rence on Services Computing, pp. 384–391. IEEE Computer Society (2012)

7. Hennig, P., Balke, W.T.: Highly Scalable Web Service Composition Using Binary Tree-
Based Parallelization. In: 2010 IEEE International Conference on Web Services (ICWS),
pp. 123–130 (2010)

8. Yong, Z., Shijun, L., Xiangxu, M.: GridSaaS: A Grid-Enabled and SOA-Based SaaS Ap-
plication Platform. In: IEEE International Conference on Services Computing, SCC 2009.,
pp. 521–523 (2009)

9. Beugnard, A., Jean-Marc, J., Plouzeau, N., Watkins, D.: Making Components Contract
Aware. Computer 32, 38–45 (1999)

10. Kapuruge, M., Han, J., Colman, A.: Representing Service-Relationships as First Class Ent-
ities in Service Orchestrations. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE
2012. LNCS, vol. 7651, pp. 257–270. Springer, Heidelberg (2012)

11. Amador, L.: Drools Developer’s Cookbook. Packt Publishing (2012)
12. Colman, A.: Role-Oriented Adaptive Design. PhD Thesis, Swinburne University of Tech-

nology, Melbourne (2007)
13. Kapuruge, M., Colman, A., King, J.: ROAD4WS – Extending Apache Axis2 for Adaptive

Service Compositions. In: IEEE International Conference on Enterprise Distributed Object
Computing (EDOC), pp. 183–192. IEEE Press (2011)

14. Jayasinghe, D.: Quickstart Apache Axis2. Packt Publishing (2008)
15. Kapuruge, M.: Orchestration as Organisation. PhD Thesis, Swinburne University of Tech-

nology, Melbourne (2012), http://is.gd/z9fgzQ
16. Xiyong, Z., Shixiong, W.: Software Customization Based on Model-Driven Architecture

Over SaaS Platforms. In: International Conference on Management and Service Science,
MASS 2009, pp. 1–4 (2009)

17. Sharma, R., Sood, M.: Modeling Cloud Software-As-A-Service: A Perspective. Interna-
tional Journal of Information and Electronics Engineering 2, 238–242 (2010)

18. Chappell, D.: Introducing SCA (2007), http://is.gd/Cj3Mab
19. Aobing, S., Jialin, Z., Tongkai, J., Qiang, Y.: CSB: Cloud service bus based public SaaS

platform for small and median enterprises. In: 2011 International Conference on Cloud and
Service Computing (CSC), pp. 309–314 (2011)

20. Ezenwoye, O., Sadjadi, S.M.: TRAP/BPEL: A Framework for Dynamic Adaptation of
Composite Services. In: WEBIST 2007, Barcelona, Spain (2007)

21. Kapuruge, M., Colman, A., Han, J.: Achieving Multi-tenanted Business Processes in SaaS
Applications. In: Bouguettaya, A., Hauswirth, M., Liu, L. (eds.) WISE 2011. LNCS,
vol. 6997, pp. 143–157. Springer, Heidelberg (2011)

	ROAD4SaaS: Scalable Business Service-Based
SaaS Applications

	1 Introduction
	2 Problem Analysis
	2.1 Motivation Example
	2.2 Scalability Challenges for Business Service Compositions

	3 The Approach
	3.1 Overview
	3.2 The Initial Design (Root Organisation)
	3.3 Supporting Scalability
	3.4 Capturing Commonalities and Variations

	4 Middleware Support
	5 Evaluation
	6 Related Work and Analysis
	7 Conclusion and Future Work
	References

