
Ambient Clouds:

Reactive Asynchronous Collections
for Mobile Ad Hoc Network Applications

Kevin Pinte, Andoni Lombide Carreton,
Elisa Gonzalez Boix, and Wolfgang De Meuter

Software Languages Lab., Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussel, Belgium

{kpinte,alombide,egonzale,wdmeuter}@vub.ac.be
http://soft.vub.ac.be

Abstract. In MANET applications, a common pattern is to maintain
and query time-varying collections of remote objects. Traditional ap-
proaches require programmers to manually track the connectivity state
of these remote objects and adding or removing them from local col-
lections on a per-object basis. Queries over these collections have to be
manually recomputed whenever the collection or its elements change.

The code for maintaining these ad-hoc collections is scattered across
the application code and leads to bugs hindering the application devel-
opment process. In this paper, we propose an object-oriented abstraction
called ambient clouds: a collection of objects whose contents are implic-
itly updated when changes occur. Ambient clouds can be queried and
composed using reactive standard query operators. We show how ambi-
ent clouds ease the development of a collaborative peer-to-peer drawing
application.

Keywords: collection, mobile ad hoc network, peer-to-peer application,
language abstraction.

1 Introduction

The steep increase in popularity of mobile devices has yielded a market for appli-
cations running on mobile ad hoc networks (MANETs). MANET applications
assume no fixed infrastructure and spontaneously engage in interaction when
the devices they run on are in communication range. These applications com-
municate over wireless networks, for example Wi-Fi Direct or Bluetooth. Using
mainstream programming languages such applications are usually conceived as
distributed object-oriented applications, coordinating their actions by exchang-
ing objects.

In MANETs, the number of devices participating in an interaction is not
known a priori, but it varies as devices join and leave the network as they move
about. Typically, applications are interested in communicating only with a spe-
cific group of those remote objects which are discovered at runtime. For example,

J. Dowling and F. Täıani (Eds.): DAIS 2013, LNCS 7891, pp. 85–98, 2013.
c© IFIP International Federation for Information Processing 2013

http://soft.vub.ac.be

86 K. Pinte et al.

in a chat application, users can join or leave a chat room at any moment in time.
In order to reflect the communication state of the users in the chat room and
to allow communication with them, the programmer has to manually maintain
a collection of remote objects. In MANETs, the nature of the connection to the
devices hosting these objects is volatile. Such a collection of remote objects is
continuously fluctuating because of the volatile nature of the connections to the
devices hosting these objects.

At the software level, we can identify two ad hoc ways commonly used to
implement such collections. A first approach when using a distributed object-
oriented programming language is to discover and store the remote objects in
a local collection. Once discovered, the programmer must manually iterate over
the collection’s content and communicate with the stored remote objects by
means of remote method invocations or asynchronous message passing. It is the
programmer’s responsibility to make sure that these objects are still connected
by making use of try-catch blocks or other failure handling mechanisms.

A second strategy is to employ an event-based distributed model such as a
publish/subscribe architecture. In this case, the collections become groups of ob-
jects classified under a topic and potentially filtered on their content using pred-
icates [1]. However, publish/subscribe middlewares abstract the network connec-
tivity between the publisher and subscriber. This obliges programmers to bypass
the middleware periodically to detect whether the publishers are still connected
and verify that their published objects are still “alive” (i.e., in case of a crash).
Additionally, the events signalled by the publish/subscribe middleware must still
be manually converted to additions and removals on local collections. This hinders
straightforward and efficient querying and composition of such collections.

None of both solutions provides adequate means to create, maintain and query
collections of remote objects. This leads the programmer to write boilerplate
code that is scattered throughout the actual application code. In this paper,
we propose ambient clouds : a reactive asynchronous collection abstraction to
maintain and query collections of remote objects in MANET applications. Ad-
ditionally, ambient clouds provide reactive standard query operators. Querying
or composing ambient clouds using these operators constructs a chain of depen-
dent result collections. The operators observe the collections they were applied
to. Changes in either the composition of the constituent elements are implicitly
and incrementally reflected throughout the chain of dependent result collections.

In the remainder of this paper, we show the problems that led us to ex-
plore ambient clouds (section 2), how ambient clouds tackle these problems
at a high level, and how programmers can use ambient clouds to quickly de-
velop mobile applications (section 3). We explain how ambient clouds are imple-
mented (section 4) and how they are used in the collaborative drawing
application, called weScribble (section 5). Subsequently, we discuss related work
(section 6) and, finally, conclude this paper and suggest how we intend to
improve ambient clouds in the future (section 7).

Ambient Clouds 87

2 Problem Statement

In what follows, we detail the issues that can be identified when developing appli-
cations that deal with collections of remote objects. We illustrate the problems
using a chat application as a running example.

The chat application presents the user with the option to create a chatroom
or join an existing one. When the user enters a chatroom, he or she is presented
with a list of users that joined this room and are currently in communication
range. The application also shows the messages that belong to the chatroom and
users can choose to ignore messages from certain other users.

P1. Volatile Collections. MANET applications discover other applications
and services running in the environment to interact with them. The applications
typically maintain a collection of “currently available” objects in which the ap-
plication is interested. Since devices hosting MANET applications can appear
and disappear at any moment in time, we regard these collections of remote
objects as highly volatile. Therefore, specifying the contents of the collection
extensionally (i.e., on a per-element basis) is problematic as the contents of the
collections can change at any point in time. With current techniques, the pro-
grammer is left to manually synchronise the contents of these volatile collections
of remote objects.

To interact with these collections, the programmer typically uses constructs
such as indices and iterators. These constructs do not map well to volatile col-
lections of remote objects because the collection changes underneath them. For
example, the chat application maintains a list of currently co-located users. As
users move about, the composition of this list changes dynamically.

P2. Querying and Composing Collections. A natural operation on collec-
tions of objects is to apply operators to compose them with other collections or
query them. For example, the chat application applies a filter operation on the
list of users to display only those that reside in the chosen chatroom.

Querying and composing volatile collections is not an atomic action: collec-
tions can grow or shrink several times while a composition or query is being
computed. Furthermore, when employing asynchronous method invocation to
communicate with remote objects, the results of a query over the elements of a
collection may not be available instantaneously.

As the composition of a collection evolves, the initial result of applying an
operator diverges from the current state. This means that programmers have to
write additional code to ensure results from applying operators remain synchro-
nised with the collection they were applied to. It also implies that compositions
of collections resulting from queries over such volatile collections are themselves
volatile. This requirement is a serious deviation from the traditional notion of
querying collections, where the result of a query does not bear any relationship
to the target collection.

88 K. Pinte et al.

P3. Propagating State Changes. When employing a distributed object-
oriented model objects are either exchanged “by copy” or “by reference”. This
results in a collection of respectively local copies of the objects published by a re-
mote device, or remote references to these objects. In the former case, whenever
the owner changes an object, the changes should be propagated to all the copies
spread across the network. In the latter case, whenever an object is changed, col-
lections containing a reference to this object should be notified of this change.
For example, when a user changes his nickname in the chat application, this
should be reflected in the buddy list on the applications of other users.

This propagation of state changes can be accomplished through, for example,
a publish/subscribe framework. However, changes made to an object can result
in it being removed from or added to the result of a certain operation on the
collection. In the chat application, a user that decides to move to another chat
room changes the “current chat room” property. This change causes some collec-
tions to remove this user object from the old chat room, while other collections
add the user to the new chat room. Thus, collections containing remote objects
should have a means to subscribe to changes on properties of their constituent
objects.

3 Ambient Clouds

In this section, we introduce a novel abstraction representing collections of
remote objects named ambient clouds. Ambient clouds are an object-oriented
abstraction that tackles the issues outlined above by combining event-driven
interaction, based on a publish/subscribe model, and reactive programming.

We solve problem P1 by allowing developers to specify an ambient cloud of
a certain type of objects they want to interact with. The type of the objects
acts as an initial filter in order to collect objects of interest. An event-driven
API signals events whenever an object is added to or removed from the ambient
cloud. To address problem P2 we provide reactive standard query operators to
query and compose ambient clouds. Any computation performed using such an
operator is re-executed as the collection changes. The operators automatically
handle asynchronous operations. This does not require breaking the abstraction
of the collections by looking at their contents at a certain moment in time. To
tackle P3 we model object pass-by-copy and pass-by-reference semantics using
reactive objects and reactive isolates. These are object-oriented reactive values
of which the state changes over time. These changes are observed and the event-
driven API signals state modification events to the collections in which they are
contained.

3.1 AmbientClouds at Work

We have prototyped ambient clouds in the distributed programming language
AmbientTalk [2]. AmbientTalk is an experimental programming language tai-
lored towards developing peer-to-peer applications that operate in MANETs.

Ambient Clouds 89

We now describe the language constructs provided to create and interact with
ambient clouds in the context of the chat application.

Ambient clouds coarsely collect objects related to the application using a type
tag. Type tags are a lightweight classification mechanism to categorise remote
objects explicitly by means of a nominal type. They can best be compared to a
topic in publish/subscribe terminology or marker interfaces in Java. Below we
create the ambient cloud of all co-located users using the cloudOf: construct
and passing it the ChatUser type tag as argument.

deftype ChatUser;
def users := cloudOf: ChatUser

We define an object representing a user of the chat application by means of
the object: construct. A user has an identifier, a nickname and an attribute
containing the name of the selected chatroom. To publish this object in the
network as a ChatUser we use the export:as: construct of AmbientTalk.

def me := object: {
def id := 123;
def nickname := "Kevin";
def currentChatroom := "purple" };

export: me as: ChatUser

Ambient clouds continuously synchronise their composition as devices move in
and out of range. Users that leave communication range are automatically re-
moved from the collection, users that appear in range are added automatically.

Note that users are represented as regular objects, they are published in the
network by reference. The ambient cloud of users thus contains remote objects
references that can be contacted by sending it asynchronous messages. Later we
will show an example of an ambient cloud of remote objects passed by copy.

We further refine the ambient cloud of users using the reactive standard query
operators we provide for ambient clouds:

def usersInRoom := users.where: { |user|
equals(user←currentChatroom(), me.currentChatroom) };

def nicknames := usersInRoom.select: { |user| user←nickname() }

In this example we first filter the ambient cloud of users, selecting only users that
reside in the same chatroom. To this end we use the where: method that takes
a predicate as argument. After the filter operation we select the nicknames of
the users using the select: operator, for example to display them in the GUI.

In both query operations, we send an asynchronous message to the remote
user object (expressed by the ← operator in AmbientTalk). An asynchronous
message send immediately returns a future, which is a placeholder for the actual
return value of the message. In the above example the equals function waits

90 K. Pinte et al.

for the result of the message1 to be available before computing the equality and
in turn immediately returns a future. The where: and select: operators will
automatically wait for futures to resolve with their values and process the results
of asynchronous operations as they become available. If an element was removed
before an asynchronous operation on that element was completed, the operation
is cancelled and the result ignored.

The collections that result from applying operators to an ambient cloud trans-
parently maintain a dependency relation to that ambient cloud. Any time the
composition of the ambient cloud is changed or any time one of its constituents
is changed, the operation incrementally updates the result collection. The re-
sult collection is never totally recomputed, rather dependent elements are either
added to the result collection, removed from it or updated. Figure 1 shows the
dependency chain that corresponds to the above code snippet.

users

usersInRoom

nicknames
Kevin

Elisa

where: {…}

select: {…}

Kevin
Elisa

Kevin
Elisa

Kevin
Elisa Wolf

T0 T1 T2 T3
time

Fig. 1. Dependency tree of the ambient clouds in the chat application

Figure 1 shows the progression of events when the users ambient cloud
changes. First, in step T1, a new user is discovered and added to the users

ambient cloud. In step T2, the filter operation that generated the usersInRoom
ambient cloud is then applied to this user object. Since the user has also joined
the “purple” chatroom, the user is added to the resulting collection. In step T3,
the dependent nicknames ambient cloud is extended with the nickname of the
user by applying the select operator to the added user object.

Aside from addition, two more events cause the operators to update their
results. Figure 2 depicts the progression of events when a user is removed from
the users ambient cloud in step T4 to T6. The user and nickname are subse-
quently removed from the dependent result collections. Starting from step T7 a
user switches from the “purple” to the “orange” chatroom. The filter operation
is reapplied and causes the user and nickname to be automatically removed from
the resulting collections.

1 By annotating the message send with Due(t), a timeout t (in milliseconds) can be
specified for the resulting future.

Ambient Clouds 91

Elisa Elisa Wolf
Kevin

Elisa Elisa Elisa WolfWolfWolf
Kevin

WolfWolf

T4 T5 T6 T7 T8 T9

users

usersInRoom

nicknames

where: {…}

select: {…}

time

Fig. 2. Removing a user from the ambient cloud and changing the chatroom attribute
of a user

3.2 Reactive Standard Query Operators

Our ambient clouds support over 20 operators, including the operators defined
by the Standard Query Operation (SQO) [3] API of the Language Integrated
Query (LINQ) framework for .NET [4].

The reactive standard query operators are defined as methods on ambient
clouds. We also provide a language extension that provides syntactic sugar for
writing queries and turns them into first-class language constructs. In the exam-
ple below we illustrate how to group chat messages with their authors.

1 deftype ChatMessage;
2 def messages := cloudOf: ChatMessage
3 groupBy: { |msg| msg.userId }
4 join: usersInRoom
5 on: { |msg, user|
6 equals(msg.userId, user←id()) }

In the example above we define the ambient cloud of chat messages starting from
line 2. In line 3 we group the ambient cloud based on a userId attribute using
the groupBy: operator. This results in an ambient cloud of groups of messages
identified by the userId. These groups of messages are again ambient clouds
which in turn can be queried. Starting from line 4 we associate users with a
group of messages using the join:on: operator. The join is performed based on
matching the user’s identifier with the identifier attribute in the message. This
can be used to ignore the messages of a certain user in the chatroom.

4 Implementation

As mentioned before, ambient clouds are implemented in AmbientTalk and avail-
able to the programmer as a library. Ambient clouds are built on top of the Java
Collections Framework2 and combineAmbientTalk’s service discoverymechanism

2 AmbientTalk is entirely implemented in Java and runs on top of the JVM. Java classes
and objects can be accessed from within AmbientTalk and vice versa [5].

92 K. Pinte et al.

(based on IP multicasting) with reactive sets containing reactive values. Note that
AmbientTalk is an actor-based language. Execution (e.g., updating ambient
clouds) within an actor is sequential and actors communicate by sending asyn-
chronous messages that are processed in sequence by the receiving actor.

4.1 Reactive Asynchronous Collections

The implementation of ambient clouds is based on an reactive asynchronous col-
lection framework that employs local Java collections. Reactive asynchronous col-
lections are conceived as the combination of observable collections with reactive
asynchronous operators. Our model consists out of the following collection types:

– set: no ordering, no duplicates (similar to Java HashSet)
– list: ordering, duplicates allowed (similar to Java ArrayList)
– sorted set: sorting, no duplicates (similar to Java TreeSet)

The programmer uses an event-driven API to install event handlers in order to
observe a collection. These event handlers are executed when elements are either
added or removed from the collection.

1 def s := ObservableSet.new();
2 whenever: s extended: { |el| system.println("added " + el) };
3 whenever: s reduced: { |el| system.println("removed " + el) }

This example creates a new reactive set and registers two event handlers that
write a message to the standard output every time an element is added (line 2)
or removed (line 3) from the collection.

Additionally, the collections can be observed for changes to their constituents.
When a reactive value is added to a collection, the collection installs an event
handler to observe the state of the value. When the state of the reactive value
changes, the collection in turn notifies its own observers. The example below
shows an event handler that writes a message to the standard output whenever
the state of a constituent reactive value changes.

whenever: s changed: { |el| system.println("changed " + el) }

Ambient clouds are created by connecting the AmbientTalk discovery protocol
to reactive sets. Below we show the skeleton code to manually construct the
ambient cloud of users in the chat application.

1 def users := ReactiveSet.new();
2 whenever: ChatUser discovered: { |user|
3 users.add(user);
4 whenever: user disconnected: { users.remove(user) };
5 whenever: user changed: { users.notifyChangeObservers(user) }}

Ambient Clouds 93

In line 1 we first create an empty reactive set. In line 2 we install an event handler
to discover objects of type ChatUser, using the built-in whenever:discovered:

construct of AmbientTalk. When an object of this type is discovered, it is added
to the set in line 3. Two more event handlers are installed in lines 4 and 5. The
first event handler is installed using AmbientTalk’s built-in when:disconnected:
construct and removes the element from the set when a disconnection occurs.
The last event handler is executed when the state of the user object is altered
and notifies the set of this change.

4.2 Reactive Objects and Isolates

In the implementation of ambient clouds we modelled objects as reactive values.
A reactive value (also behavior) is a value that changes over time [6]. We regard
objects as composite values of which the state can be altered over time using
field assignment.

Programmers can publish objects in the network either by reference or by
copy, as reactive objects or as reactive isolates. Reactive objects are transferred
by reference, remote peers obtain an observable remote object reference. An ob-
servable remote object reference consists of a proxy object and a reference to
the remote object. Reactive collections can install observers on the proxy object
which are notified when the state of the object is modified locally. This causes
operations applied on the object to be recomputed. Reactive isolates are special
objects that have no surrounding lexical scope (i.e., similar to structs, but they
can have methods defined on them). This way, they can be easily copied over the
network and cached in the ambient clouds of remote peers. The underlying im-
plementation locally observes the state of an isolate and implicitly synchronises
state across the copies on different devices. Note that race conditions are pre-
vented by the actor system of AmbientTalk, as explained in section 4. Of course,
the programmer should bear in mind that the remote peer may be disconnected
and that the copy is temporary out of sync. Any time the state is synchronised,
the observers registered by reactive collections are notified.

In subsection 3.1 we showed an example of a user represented by a regular
object. The example below shows the creation of a chat message represented by
an isolate.

def aMessage := isolate: {
def text := "Hello!"
def userId := 123 }

Reactive objects and isolates are key in the design of ambient clouds since
changes to their state triggers re-computation of dependent results.

4.3 Reactive Standard Query Operators

The reactive standard query operators rely heavily on the observable features
of the collections to incrementally update their results. They update their re-
sults based on three kinds of events: the insertion and removal of elements in

94 K. Pinte et al.

a collection and state changes in the elements. When an operator is applied to
a collection, the necessary observers are installed and the operator is applied
on all elements already contained in the collection. For example, consider the
implementation of the where: operator below.

1 def where: predicate {
2 def result := self.new(); // self refers to the current object
3 self.each: { |e|
4 if: (predicate(e)) then: { result.add(e) } };
5 whenever: self extended: { |e|
6 if: (predicate(e)) then: { result.add(e) } };
7 whenever: self reduced: { |e| result.remove(e) };
8 whenever: self changed: { |e|
9 if: (!predicate(e)) then: { result.remove(e) } };

10 result.parent := self;
11 result };

The operator takes a predicate as argument. In line 2 we create a new collection
that contains the results of applying the operator. In lines 3 and 4 we first apply
the predicate to all elements already contained in the collection and add them
if that application succeeds. In lines 5 and 6 we install a handler that applies
the predicate to elements added to the collection and add them to the result
collection if necessary. In line 7 we install a handler that removes elements from
the result as they are removed from the collection. The handler in lines 8 and 9
reapplies the predicate to an element if its state was changed, possibly removing
the element from the result if applying the predicate no longer succeeds.

This code clearly shows that the automatic updates of the result are incremen-
tal. The execution of the event handlers in lines 5, 7 and 8 concern the addition,
removal or update of a single element in the result. In line 10 we register the
parent of the result to be the collection over which we applied the operator. In
line 11 we finally return the resulting collection.

Note that this code was was simplified for demonstration purposes. It does
not deal with the possibility that an asynchronous operation is performed in the
predicate application.

5 The weScribble Application

In this section, we validate ambient clouds in the implementation of a collabo-
rative drawing application for the Android platform, called weScribble3. The
application allows users to dynamically participate in drawing sessions with
other people co-located. Aside from mobile Android devices and wireless ad hoc
connections between these devices, no other infrastructure is assumed.

At startup, weScribble presents the user with a list of drawing sessions avail-
able in the environment with an indication of the amount of people drawing
in each session. The user can either join a session or choose to create a new

3 WeScribble is available from Google Play at http://bit.ly/eOxpLg.

http://bit.ly/eOxpLg

Ambient Clouds 95

one. A drawing session consists of a number of participants and a shared canvas
on which they can draw. When a user joins a drawing session, the application
synchronises the canvas with the existing participants to fetch the shapes that
were already drawn and displays them on the screen. The user can then draw on
the canvas of that session and the changes to the canvas are propagated to the
other participants of the session whose canvas is updated accordingly. If a user
temporarily disconnects from the network, he or she can keep drawing. Upon
reconnection, those changes are synchronised with the other users in the session.

Fig. 3. The weScribble Android application

5.1 Ambient Clouds in weScribble

In this section, we illustrate the use of ambient clouds in the implementation of
weScribble. weScribble uses ambient clouds for two different purposes: A drawing
session consists of an ambient cloud that contains the shapes drawn by users.
The users themselves are also contained in an ambient cloud.

First we collect the users that participate in our drawing session and extract
their user names:

deftype Painter;
def painters := cloudOf: Painter

where: {|p| equals(p←session, currentSession)};
names := painters.select: { |p| p←name }

We display the names of all discovered users in the GUI. Using the event-driven
API we install two event handlers to show and hide names as they are added to
or removed from the ambient cloud.

names.each: { |n| GUI.showInList(n) };
whenever: names extended: { |n| GUI.showInList(n) };
whenever: names reduced: { |n| GUI.removeFromList(n) }

96 K. Pinte et al.

Users can choose to ignore shapes from other users by enabling a toggle in the
GUI. We continue by defining an observable set containing the users that we
choose to ignore.

def ignoredPainters := ObservableSet.new();
def ignore(painter) { ignoredPainters.add(painter) }

We now obtain the ambient cloud of shapes (represented by isolates) to display
by joining the ambient cloud of all shapes with the difference of the ambient
cloud of users and the users to ignore.

deftype Shapes;
def shapes := cloudOf: Shapes

join: (painters.except: ignoredPainters)
on: { |shape, painter| s.painterId == p.id }

Note here that adding users to the ignoredPainters set causes its shapes to
disappear from the shapes ambient cloud. Finally we draw the relevant shapes
and install event handlers to draw and hide shapes as the ambient cloud is
updated.

shapes.each: { |s| GUI.draw(s) };
whenever: shapes extended: { |s| GUI.drawShape(s) };
whenever: shapes reduced: { |s| GUI.removeShape(s) };
whenever: shapes changed: { |s| GUI.redrawShape(s) };

5.2 Discussion

In the implementation of weScribble ambient clouds tackle the issues outlined
in section 2 as follows.

– P1: Ambient clouds automatically maintain collections of co-located users
and the shapes they created. The programmer is relieved from manually
synchronising the contents of these collections with the network situation.

– P2: We used reactive standard query operators over ambient clouds to filter
users based on the drawing session. We also associate users with their shapes,
filtering out shapes of users we wish to ignore without having to manually
update these results when users appear or disappear.

– P3: When users change the colour of their shapes, these changes are auto-
matically propagated to the applications of other users by means of reactive
isolates. If users change their nickname this is automatically reflected in the
user lists of the other users using reactive objects.

6 Related Work

The problems around group abstractions for mobile applications is well estab-
lished. However, most of the research focuses on group communication which is

Ambient Clouds 97

not the focus of this work. In this section, we discuss related work that focuses on
organising remote objects in intermittently connected peer-to-peer applications.

Distributed Asynchronous Collections (DACs) [7] were originally devised as
a way to marry publish/subscribe systems to traditional collection frameworks.
They allow developers to subscribe to additions and removals that occur in
the collections. However, DACs offer no support for tracking the connectivity
of publishers that publish objects, so the programmer still has to track this
manually.

Tuple spaces [8] allow distributed parties to publish tuples to a conceptually
shared memory. LIME [9] even allows distinct tuple spaces to merge if users are
close to each other and allows programmers to define reactions on the appearance
or disappearance of tuples. Tuple spaces do not support the direct modification
of tuples: tuples have to be removed first and new versions reinserted later.
This requires application developers to write additional code to watch these
remove/insert event pairs individually. Additionally, there is no support for cre-
ating a data structure from a tuple space, which forces programmers to update
the derived collections manually.

Ambient references [10] allow discovering and communicating with homoge-
nous groups of references to objects in the environment that change over time.
This abstraction takes care of monitoring any disconnections and reconnections
in the environment and even allows developers to take a snapshot of the current
state. Ambient references do not allow programmers to react on objects, joining,
leaving or being modified in the group. Additionally, they can not be composed,
nor queried.

M2MI [11] introduces handles that denote a dynamic group of remote Java
objects of the same interface and omnihandles that refer to all proximate objects
of a certain interface. However, is not possible to react to state changes in the
objects referred to by an omnihandle, nor is there support for querying.

Microsoft’s Reactive Extensions for .NET [12] allows processing events by
modelling them as streams of values on which standard query operators are
defined. The difference with our work is that we define these standard query
operators on object-oriented collections instead of event streams.

Reactive programming [6] is a paradigm that represents a program as a data
flow graph based on the notion of time-varying values, which form nodes in the
graph. If an operation is applied to a time-varying value, the operation is inserted
as a node in the graph with a dependency edge to the time-varying value. When
a time-varying value changes, dependent computations are automatically re-
executed by propagating the change through the graph. We discuss the relation
between reactive programming and our work in section 7.

7 Conclusion and Future Work

In this paper, we introduced ambient clouds: an object-oriented abstraction that
automatically maintains collections of remote objects. These ambient clouds
support reactive standard query operators that implicitly update their results

98 K. Pinte et al.

as changes in the underlying ambient clouds occur. Together they relieve the
programmer from re-implementing the common patterns when dealing with
(1) volatile collections of remote objects, (2) querying and composing these
collections and (3) propagating state changes to derived collections.

We have implemented a MANET application called weScribble using ambient
clouds to illustrate how ambient clouds circumvent these problems in a fully
functional collaborative drawing application.

As possible avenues for future work, we wish to further extend our reactive
collection framework with other collection types such as a hash map or tree
structures. Additionally, unlike our model, in reactive programming languages,
there are no special reactive operations. Every operation that depends on a
reactive value is implicitly lifted to the reactive level. Currently, on our reactive
asynchronous collections, special query operators are used to process changes.We
are integrating our collections into a reactive programming language to reduce
manual lifting.

References

1. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.: The many faces of pub-
lish/subscribe. ACM Computing Survey 35, 114–131 (2003)

2. Van Cutsem, T., Mostinckx, S., Gonzalez Boix, E., Dedecker, J., De Meuter, W.:
AmbientTalk: object-oriented event-driven programming in mobile ad hoc net-
works. In: SCCC 2007, pp. 3–12. IEEE Computer Society (2007)

3. Microsoft Corporation: The .NET standard query operators. Technical Specifica-
tion (2006)

4. Meijer, E., Beckman, B., Bierman, G.: LINQ: reconciling object, relations and
XML in the .NET framework, 706–706 (2006)

5. Cutsem, T.V., Mostinckx, S., Meuter, W.D.: Linguistic symbiosis between event
loop actors and threads. Computer Languages, Systems & Structures 35, 80–98
(2009)

6. Bainomugisha, E., Lombide Carreton, A., Van Cutsem, T., Mostinckx, S., De
Meuter, W.: A survey on reactive programming. ACM Computing Surveys (2012)
(to appear)

7. Eugster, P.T., Guerraoui, R., Sventek, J.: Distributed Asynchronous Collections:
Abstractions for Publish/Subscribe Interaction. In: Bertino, E. (ed.) ECOOP 2000.
LNCS, vol. 1850, pp. 252–276. Springer, Heidelberg (2000)

8. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7, 80–112 (1985)

9. Murphy, A., Picco, G., Roman, G.C.: LIME: A middleware for physical and logi-
cal mobility. In: Proceedings of the 21st International Conference on Distributed
Computing Systems, pp. 524–536. IEEE Computer Society (2001)

10. Van Cutsem, T., Dedecker, J., Mostinckx, S., Gonzalez Boix, E., D’Hondt, T.,
De Meuter, W.: Ambient references: addressing objects in mobile networks. In:
OOPSLA 2006, pp. 986–997. ACM Press (2006)

11. Kaminsky, A., Bischof, H.P.: Many-to-many invocation: a new object oriented
paradigm for ad hoc collaborative systems. In: OOPSLA 2002, pp. 72–73. ACM
Press (2002)

12. Microsoft Corporation: The reactive extensions for .NET (2013),
http://msdn.microsoft.com/en-us/data/gg577609

http://msdn.microsoft.com/en-us/data/gg577609

	Ambient Clouds:
Reactive Asynchronous Collections for Mobile Ad Hoc Network Applications
	1 Introduction
	2 Problem Statement
	3 Ambient Clouds
	3.1 AmbientClouds at Work
	3.2 Reactive Standard Query Operators

	4 Implementation
	4.1 Reactive Asynchronous Collections
	4.2 Reactive Objects and Isolates
	4.3 Reactive Standard Query Operators

	5 The weScribble Application
	5.1 Ambient Clouds in weScribble
	5.2 Discussion

	6 Related Work
	7 Conclusion and Future Work
	References

