
X. Franch and P. Soffer (Eds.): CAiSE 2013 Workshops, LNBIP 148, pp. 447–454, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Model Driven Software Product Line Process
for Developing Applications

Sami Ouali1, Naoufel Kraïem1, Zuhoor Al-Khanjari2, and Youcef Baghdadi2

1 RIADI Lab, ENSI, Compus of Manouba, Tunisia
samiouali@gmail.com, naoufel.kraiem@ensi.rnu.tn

2 Department of CS, Sultan Qaboos University, Oman
{zuhoor,ybaghdadi}@squ.edu.om

Abstract. Software Product Line Engineering (SPLE) is an approach for soft-
ware reuse. It concerns to produce customized software products as atomic or
composite services to be reused in SOA-based applications. A common set of
artifacts is used to build these services in a planned and managed way. The
main purpose of SPLE is to explore commonalities and variabilities. The SPLE
approach provides a strategic software reuse that can produce quality Software
as a Service (SaaS) while cutting cost and reducing time-to-market. This paper
proposes a process to construct services as Software Product Lines by using
Model Driven techniques. The process combines the use of maps, visual tech-
niques for SPL modeling, especially features diagrams and MD techniques. In
addition to the process, we have developed a tool to support map, feature, and
class diagrams modeling.

Keywords: Model Driven, Software Product Line, Variability, Process, Tool.

1 Introduction

(SPLE) is an approach for software reuse. It is recognized as a successful approach to
reuse in software development [1, 2]. It concerns with producing customized software
products as atomic or composite services to be reused in SOA-based applications [23,
24]. SPLE allows companies to realize significant improvements on productivity. The
purpose of this approach exploits the commonalities between products while preserv-
ing the ability to vary the functionality between these products. The difference be-
tween products is their variability, a key success in product lines [3]. SPLE distin-
guishes two layered levels of engineering [4]: Domain Engineering (DE) and Applica-
tion Engineering (AE). DE deals with the identification of commonalities and varia-
bilities among products. AE is used to develop a new product from a PL and the re-
sults from DE level are used to derive a specific product.

In the proposed process, we focus on both levels of engineering. First, we build the
SPL at DE level. Then, we derive a specific product. The problem that we try to
tackle in this paper is the discordance goal between the developed products and the
real needs of its users.

448 S. Ouali et al.

This paper presents a meta-model and a prototyping tool for requirement and fea-
ture modeling. The tool implements various models to assist stakeholders in the
process of product configuration for SPLs. This paper describes an Eclipse plug-in for
map, feature, and class modeling to model SPL, which assists SPL designer in the
construction of SPL and the derivation of particular product. Providing tool as an
Eclipse plug-in would facilitate the integration of these kinds of modeling with a de-
velopment environment. The tool, itself, is built by using two Eclipse plugins: EMF,
and GMF which provide many possibilities through extensions points.

The remainder of this paper is organized as follows. Section 2 summarizes a meta-
model for intention and feature modeling in the context of SPLs. The proposed Model
Driven for SPL process is described in section 3. The supporting tool is presented in
section 4. Section 5 presents some related work. Finally, a conclusion section high-
lights our contribution and presents some research perspectives.

2 A Meta-model for SPL

This section describes a meta-model that synthesizes the interesting points such as
SPL, intention, features, etc. We choose to transform this meta-model into a UML
profile to (i) facilitate the integration with UML models, and (ii) use it in our MD
approach. We try throw this meta-model to facilitate the relation between require-
ments model (MAP), features model and classes diagram. This meta-model is used in
our process and in the generation of our tool support.

Fig. 1. Modification applied on map meta-model

A MAP [5] involves two or more sections. Each section is composed of two inten-
tions and one strategy (these concepts are presented in section 3.1). A relationship
between sections can be a cluster, multi-path or multi segment. To further use the
meta-model in our process, we make a modification, as shown in Figure 1, by adding
two types of sections: ‘OptionalSection’ and ‘MandatorySection’. These new sections
are added for the mapping between map and features model.

A PL contains features, as shown in Figure 2. A product belongs to one PL. It is al-
so composed of features that check some constraints (an exclusion and required rela-
tion) through the conflict and require relationships. Figure 2 presents the different
concepts of feature Model. The possible relationships between features are presented

 A Model Driven Software Product Line Process for Developing Applications 449

by FeatureGroup. There are three relationships between features: ‘And’, ‘Xor’, and
‘Or’. The relationships between a parent feature and its child features are categorized
as: ‘Mandatory’ or ‘Optional’.

Fig. 2. Relationship between product line and features

Figure 3 presents the relation between the features elaborated in the analysis do-
main and the components constructed in implementation domain; the goal of imple-
mentation domain is to develop the components participating in the architecture of the
SPL). A feature is associated to a component. There are two kinds of components:
composite or leaf, i.e. simple component. A leaf is a non decomposable component. It
has one or more possible implementation. A composite component is decomposed
into subcomponents.

Fig. 3. Relationship between feature and component

Another alternative to the implementation of assets with components is the use of
services as shown in Figure 4. There are two kinds of services: atomic service and
composite service. An atomic service cannot further be decomposed. A composite
service is composed of other services. A feature can be associated to a service.

Fig. 4. Relationship between feature and service

3 Model-Driven SPL Process

This section presents the notations used in the model-driven SPL process. These are
map model and features model. It also presents some rules and patterns for mapping
between map, features, and class model. Both DE and AE are covered in the proposed
as shown in Figure 5. The DE process deals with the creation of core assets. These core

450 S. Ouali et al.

assets are PL requirements, analysis models, PL architecture, reusable components and
services. This process concerns with the elicitation of intentions and strategies using the
map for the design of user’s requirements. In the modeling of the requirements, SPL
features intentionality is represented as maps [22]. Then, features models derive class
diagrams in the design view that used further used to obtain a component architecture or
service architecture throw through components or services repository. The component
architecture view deals with the creation of the interface type and a component. The
interfaces contain the signature of operations. The generated component implements the
required and provided interfaces. Service architecture view is also realized by genera-
tion of services from design view. The AE process deals with product derivation from
the composition of existing artifacts created in the DE (existing components or services
present in the components repository or services repository). It exploits the variability of
the PL, which allows the satisfaction of users needs.

Fig. 5. Approach for SPL construction

3.1 MAP Model

A MAP [5] is a process model expressed in a goal-driven perspective that can pro-
vides a representation of a multi-facetted purpose based on a non-deterministic inten-
tions and strategies. The directed nature of the graph shows which goals can follow
which one. MAP is considered as intention-oriented process modeling that follows the
human intention of achieving a goal [12]. A map is a directed graph from ‘Start’ to
‘Stop’, as the strategy shows the flow from the source to the target intention. It is
composed of several sections. Intentions are represented as nodes of the graph. Strat-
egies are the relationships between intentions. The key concepts of map are intention,
strategy and section. An intention is a goal [6] that expresses a state that is expected to
be reached or maintained. A strategy is a way or a means to achieve an intention. A
section is a combination of two intentions linked by a strategy.

3.2 Feature Model

Feature modeling is a domain analysis technique, part of the Feature Oriented Domain
Analysis (FODA) method [7], for developing software for reuse. This method has
been applied in many domains such as telecom systems [8, 9], network protocols [10],
and embedded systems [11]. Using feature modeling can help in generating domain

 A Model Driven Software Product Line Process for Developing Applications 451

design in SPL. Feature Models allow a representation of all possible products in a
SPL, in terms of features. It represents the description of the mandatory features that
are present in all the products of the PL along with variant features or optional fea-
tures that do not appear in all the products.

In a feature model, we can find hierarchical relationships between features. The re-
lationships between a parent feature and its sub features are categorized as mandatory
features that are required in all the products, or optional features. A child feature can
only appear in the products where its parent feature appears. Relationships between
features are mandatory, optional, Xor, and-relationship and or. A features model de-
fines constraints which are compatibility rules. These rules refer to some restrictions
in features combinations. They are two types of constraints: requires and excludes.

3.3 Patterns to Automate Transformations

Our process focuses on DE and AE, using goals and features model to establish archi-
tecture model. In this architectural model, we deal only with structural view (class
diagram). We define some rules to try to automatically derive class diagram from
requirement model. However, we recognize that the transformations that we propose
cannot be univocal. We distinguish different kinds of transformations: (i) SPL re-
quirements are mapped into feature models, and (ii) the structural information of the
feature models is mapped into class diagrams. These transformations are implemented
using QVT. We begin with the mapping between requirement model and analysis
model, i.e. from MAP model to feature model, by using some transformations rules:

• A thread relationship in a map model representing a AND/OR relation between
two strategies is equivalent to an Or-features-group

• A bundle relationship representing a XOR relation between two strategies is equiv-
alent to an Alternative-features-group

• For mandatory and optional features, we have defined new concepts in the MAP
meta-model: mandatory and optional section. The same graphical representation in
the feature model is used for representing mandatory and optional sections.

Feature model are mapped into classes and attributes as shown in Table 1:

• A feature in the model tree can be simple or complex feature.
• The leaves of the tree can be simple features, in this cases a simple feature is

mapped into an attribute of a parent class.
• A non-atomic feature is mapped into a class representing this feature.
• Mandatory features imply a unidirectional association with the right cardinality.
• The optional features are mapped as associations with 0..1 as cardinality.

For alternative and OR groups of features, generalization concept is applied, where an
alternative group of features is represented by a generalization of classes with exclu-
sive as constraint between the subclasses, whereas Or group is represented by a gene-
ralization of classes with overlap as constraint between subclasses.

452 S. Ouali et al.

Table 1. Rules to automate transformations

4 Supporting Tool

Based on the meta-model presented in section 2, we developed an interactive, visual,
tool for requirement modeling, feature capture, and architecture modeling. The tool
will be extended to Feature Configuration. Our plug-in implements map modeling,
cardinality-based feature modeling through transformations and architectures of SPL
construction. This tool is based on eclipse plug-ins. The tool uses the multiple exten-
sion possibilities of offered by eclipse platform through two plug-ins: Eclipse Model-
ing Framework (EMF), and Graphical Modeling Framework (GMF).

These plugins provide many possibilities through extensions points, which can re-
duce the development effort. These plugins helps in constructing our model-driven
approach. The proposed tool is built by re-using these two Eclipse plugins. Providing
a supporting tool for map, feature, and class modeling as an Eclipse plug-in is of pa-
ramount importance for with the integration of these kinds of modeling as part of a
development environment. Object Constraint Language is used to describe con-
straints, rules and specifications. OCL statements can be specified as part of EMF
Model or invoked directly from programming language (java).

 A Model Driven Software Product Line Process for Developing Applications 453

5 Related Work

Several authors have proposed approaches relating to feature models and product
architectures. The mapping between requirements and design is a complex task be-
cause of the flexibility and adaptability of the SPL, the different technology possibili-
ties, etc. Van Lamsweerde [13] derives software architectures from the formal speci-
fications of a system goal model. Bragança et al. [20] propose to obtain features from
use case models. Laguna et al. [21] proposes some patterns to obtain design view and
use case models from features models.

Many proposals express variability with UML models. [18] propose the extension
of UML Meta model by the adding of new relationships "option" and "alternative".
Clauß proposes the use of stereotypes to express variability [19].

Many propositions are concerned with the construction of editor for features mod-
eling. AmiEddi [14] supports feature modeling notation [4] and didn’t support feature
and group cardinalities. CaptainFeature [15] implements a cardinality-based notation.
Some other works try to integrate feature-based configuration like ConfigEditor [11].

We also found some commercial tools (Pure::Variants [16] or GEARS [17]).
Pure::Variants support feature modeling and configuration by using a tree-view rend-
er without feature cardinalities. It allows modeling of constraints between features
and uses Prolog-based constraint solver for the configuration. GEAR allows the
modeling and configuration of software variants.

6 Conclusion and Future Work

There is growing interest on the topic of SPL construction to derive particular prod-
uct. We have aimed at fulfilling stakeholder’s requirement of the SPL and the particu-
lar requirements. We have focused on the mapping of goal-oriented requirements into
software architectures. First, we have defined a Meta model to represent the different
concepts related to the construction of SPL. Then, we have defined a process to (i)
construct SPL, (ii) derive particular product throw configuration and model deriva-
tion. We have emphasized the construction of services for SOA-based applications.
The process generates design views by using class diagram derived from a require-
ment model. The process is supported by rules and mapping patterns and realized by a
tool using EMF and GMF plugins to facilitate the construction of SPL.

Our future works includes (i) the formal validation of the proposed mapping pat-
terns and (ii) the generation of assets of the SPL. These assets will be PL require-
ments, analysis models, PL architecture, reusable components, and services.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Boston (2001)

2. Bosch, J.: Design & Use of Software Architectures, Adopting and Evolving a product-line
approach. Addison-Wesley (2000)

454 S. Ouali et al.

3. Van Grup, J.: Variability in Software Systems, the key to software reuse (Thesis). Univer-
sity of Groningem, Sweden (2000)

4. Czarnecki, K., Eisenecker, W.: Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley (2000)

5. Rolland, C., Prakash, N., Benjamen, A.: A Multi-Model View of Process Modeling. Re-
quirements Engineering Journal 4(4), 169–187 (1999)

6. Jackson, M.: Software Requirements & Specifications – a Lexicon of Practice, Principles
and Prejudices. ACM Press, Addison-Wesley (1995)

7. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented domain analysis
(FODA) feasibility study. Technical Report CMU/SEI-90TR -21, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA (1990)

8. Griss, M., Favaro, J., Alessandro, M.: Integrating feature modeling with the RSEB. In:
Proceedings of the Fifth International Conference on Software Reuse (1998)

9. Lee, K., Kang, K.C., Lee, J.J.: Concepts and guidelines of feature modeling for product
line software engineering. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 62–77.
Springer, Heidelberg (2002)

10. Barbeau, M., Bordeleau, F.: A protocol stack development tool using generative program-
ming. In: Batory, D., Blum, A., Taha, W. (eds.) GPCE 2002. LNCS, vol. 2487, p. 93.
Springer, Heidelberg (2002)

11. Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U.: Generative programming for em-
bedded software: An industrial experience report. In: Batory, D., Consel, C., Taha, W.
(eds.) GPCE 2002. LNCS, vol. 2487, pp. 156–172. Springer, Heidelberg (2002)

12. Soffer, P., Rolland, C.: Combining Intention-Oriented and State-Based Process Modeling.
In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005.
LNCS, vol. 3716, pp. 47–62. Springer, Heidelberg (2005)

13. van Lamsweerde, A.: From system goals to software architecture. In: Bernardo, M., Inve-
rardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 25–43. Springer, Heidelberg (2003)

14. Selbig, M.: A feature diagram editor: analysis, design, and implementation of its core func-
tionality. Kaiserslautern, Germany (2000)

15. Bednasch, T., Endler, C., Lang, M.: Captain Feature (2002-2004) Tool available on Source
Forge at, https://sourceforge.net/projects/captainfeature/

16. Pure-systems GmbH. Variant Management with Pure:Consul. Technical White Paper
(2003), http://web.pure-systems.com

17. Krueger, C.W.: Software mass customization. White paper,
http://www.biglever.com/papers/BigLeverMassCustomization.pdf

18. Von der Massen, T., Lichter, H.: RequiLine: A Requirements Engineering Tool for Soft-
ware product lines. In: Software Product-Family Engineering, Siena, Italy (2003)

19. Clauß, M.: Generic modeling using Uml extensions for variability. In: Workshop on Do-
main Specific Visual Languages at OOPSLA (2001)

20. Bragança, A., Machado, R.J.: Automating Mappings between Use Case Diagrams and Fea-
ture Models for Software Product Lines. In: Proceedings of SPLC, Kyoto, Japan (2007)

21. Laguna, M.A., González, B.: Product Line Requirements: Multi-Paradigm Variability Mod-
els. In: Proceedings of the 11th Workshop on Requirements Engineering, Spain (2008)

22. Ouali, S., Kraiem, N.: From Intentions to Software Design using an Intentional Software
Product Line Meta-Model. In: The Proceeding of the 8th International Conference on In-
novations In Information Technology. Al Ain, UAE (2012)

23. Al Rawahi, N., Baghdadi, Y.: Approaches to Identify and Develop Web Services as In-
stance of SOA Architecture. In: Proc. of the IEEE-ICSSSM 2005, China (2005)

24. Baghdadi, Y.: A Methodology for Web services-based SOA realization. International
Journal of Business Information Systems 10(3), 264–297 (2012)

	A Model Driven Software Product Line Process for Developing Applications
	1 Introduction
	2 A Meta-model for SPL
	3 Model-Driven SPL Process
	3.1 MAP Model
	3.2 Feature Model
	3.3 Patterns to Automate Transformations

	4 Supporting Tool
	5 Related Work
	6 Conclusion and Future Work
	References

