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Abstract. Software adaptation is becoming increasingly important as more and 
more applications need to dynamically adapt their structure and behavior to 
cope with changing contexts, available resources and user requirements. Maude 
is a high-performance reflective language and system, supporting both equa-
tional and rewriting logic specification and programming for a wide range of 
applications. In this paper we describe our experience in using Maude for proto-
typing and verifying self-adaptive systems. In order to illustrate the benefits of 
adopting a formal approach based on Maude to develop self-adaptive systems 
we present a case study in the robotics domain. 
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1 Introduction 

Nowadays, significant research efforts are focused on advancing the development of 
(self-) adaptive systems. In spite of that, some major issues remain still open in this 
field [1][2]. One of the main challenges is how to formally specify, design, verify, and 
implement applications that need to adapt themselves at runtime to cope with chang-
ing contexts, available resources and user requirements. 

Adaptation in itself is nothing new, but it has been generally implemented in an ad-
hoc way, that is, developers try to predict future execution conditions and embed the 
adaptation decisions needed to deal with them in their application code. This usually 
leads to increased complexity (business logic polluted with adaptation concerns) and 
poor reuse of adaptation mechanisms among applications [1]. The use of formal me-
thods can help alleviating the limitations of current approaches to self-adaptive sys-
tem development. In particular, they can provide developers with rigorous tools for 
testing and assuring the correctness of the adaptive behavior of their systems. This is a 
remarkable open issue, since only a few research efforts seem to be focused on the 
formal analysis and verification of self-adaptive systems. 
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Maude [3] is a high-performance reflective language and system supporting both 
equational and rewriting logic specification and programming for a wide range of 
applications. Maude and its supporting tools can be used in three, mutually reinforc-
ing ways: as a declarative programming language, as an executable formal specifica-
tion language, and as a formal verification framework. A Maude program can be seen 
as an executable mathematical model of a system. Thus, using Maude for prototyping 
self-adaptive systems enables their simulation, formal analysis (e.g., reachabili-
ty/likelihood of certain system configurations), and verification (e.g., testing that the 
system reaches a consistent configuration for all given contexts). Furthermore, Maude 
can help designers to assure, among other properties, the consistency and correctness 
of self-adaptive system specifications. 

This paper presents our experience in using Maude for prototyping and verifying 
component-based self-adaptive systems. The main contribution derives from the im-
plementation of a robotic case study, in which we model the variability of the system 
and manually translate this logic into Maude. This experience has allowed us to wit-
ness some of the benefits of adopting a formal approach when developing self-
adaptive systems. This research continues our previous works on self-adaptive system 
design [4] and implementation [5] using the DiVA framework [6], and on modeling 
self-adaptive system variability using the Variability Modeling Language (VML) [7]. 

2 Robotic Example 

In this section, we introduce the robotic example designed to illustrate the versatility 
of Maude for prototyping self-adaptive systems. It is worth noting that, although the 
example presented here belongs to the robotics domain, in which the need for self-
adaptation (to changing contexts and available resources) is quite obvious, we believe 
that our proposal is general enough to be adopted in other application domains in 
which modeling, simulating and formally verifying self-adaptation is an issue. 

2.1 Adaptation Scenario 

The proposed case study takes place in a room, where a small robot moves around 
randomly avoiding obstacles. In order to improve this basic functionality in terms of 
safety, power consumption and performance, the robot follows an adaptation strategy 
that decides on the following variation points: (1) the signaling type; (2) the signaling 
intensity; and (3) the robot velocity. There are two possible variants for the signaling 
type (light or acoustic), while the signaling intensity and the robot velocity may take 
any integer value in the range 0-100. The adaptation strategy decides the best possible 
configuration (selection of variants for each variation point) according to the current 
context. The context variables considered in the case study are the ambient light, the 
ambient noise and the robot battery level, all of them integers ranging from 0 to 100. 

The goodness of each configuration is calculated based on the impact of each va-
riant on the three properties being considered, that is: safety, power consumption and 
performance. The following considerations are made concerning safety (making  
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others aware of the presence of the robot in the surroundings): (1) light signaling is 
more convenient than acoustic signaling when the ambient light is low; and (2) the 
higher the ambient noise (might indicate a crowded environment), the higher must be 
the signaling intensity and the lower the robot velocity. Regarding power consump-
tion, the greater the signaling intensity and the robot velocity the greater the power 
consumption. Thus, if the battery level is low, both the velocity and the signaling 
intensity need to be limited. Finally, concerning performance, the higher the velocity 
the shorter the time it takes to the robot to reach its goal position. Obviously, max-
imizing safety and performance, while simultaneously minimizing power consump-
tion, imposes conflicting requirements. Thus, the adaptation strategy will need to find 
the right balance among these requirements to achieve the best possible configuration 
for a given context, even if some (or none) of them are optimized individually. 

2.2 Component-Based Software Architecture 

The component-based software architecture developed for the case study is sketched 
in Figure 1. As other self-adaptive systems [2], the proposed design includes: (1) a 
reconfigurable part, comprising the optional and/or parameterized components; (2) a 
set of monitoring components; and (3) an adaptation control unit.  

 

Fig. 1. Component-based software architecture for the example 

The Reconfigurable Component gathers the elements of the system that are sus-
ceptible to change at runtime. Among them, the Control Component implements the 
core robot functionality, that is, the motion control and the obstacle avoidance. This 
component includes a parameter called velocity that regulates the robot motion speed, 
and is responsible for activating or deactivating the robot signaling through the iSig-
naling interface. The Reconfigurable Component also contains two optional compo-
nents, each one implementing one of the alternative ways for signaling the robot posi-
tion: Light Signaling and Acoustic Signaling. Both these components contain an in-
tensity parameter that regulates the frequency of the light and the acoustic signals, 
respectively. The three variation points available at the Reconfigurable Component 
(i.e., selecting one of the two alternative signaling components and setting the  
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velocity and the intensity parameters) will need to be fixed at runtime by the  
adaptation strategy, implemented by the Adaptation Control, as detailed later. 

The monitoring part of the architecture provides the context-aware support for the 
adaptation. It comprises (1) a set of sensors (Noise Sensor, Light Sensor and Battery 
Sensor) and monitors (Control, Light Signaling and Acoustic Signaling) for acquiring 
information both from the environment (external context) and from the system itself 
(internal context); and (2) the Event Service component that receives the context in-
formation from the former components via the iMon interface, and notifies the 
changes in the context to the Adaptation Control component through the iNotify  
interface.  

Finally, the Adaptation Control component implements the adaptation strategy 
which, on the basis of the context changes notified by the Event Service component, 
decides which is the best possible configuration (variant selection) for the Reconfi-
gurable Component and applies the required changes via the iReconf interface. 

We have selected the E-puck robot [8] as our target platform. E-pucks are low-cost 
mobile robots with a large range of sensors and actuators that make them appropriate 
for testing self-adaptive applications. However, this robot presents limitations that 
prevent executing Maude on it. For this reason, we use a distributed architecture 
where some components are deployed in an external PC, which communicates with 
the robot via Bluetooth (e.g., this is the case of the Adaptation Control, which relies 
on Maude for executing the adaptation strategy). As our intention is to use Maude for 
prototyping the system (as a support for its design, simulation, and verification) and 
not for its final implementation, this seems to be a valid approach. 

3 Modeling Variability with VML 

This section introduces the Variability Modeling Language (VML). VML provides a 
mechanism to express how a system should adapt at run-time to improve its perfor-
mance under changing conditions. The current version of VML has been developed 
using a Model-Driven Engineering (MDE) approach. We have created a textual editor 
for VML using the Xtext framework [9], including some advanced features such as 
syntax checking and coloring facilities, and a completion assistant. As the focus of 
this paper is not VML, we will only present the essentials needed for modeling the 
case study. Then, the resulting VML model will be used as the starting point for ob-
taining the Maude specification included in Section 4.  

In a VML model, we first need to define the variation points. Aligned with Dy-
namic Software Product Lines (DSPL) [10], VML variation points represent points in 
the software where different variants might be chosen to derive the system configura-
tion at run-time. Therefore, variation points determine the decision space of VML, 
i.e., the answer to what can change. As shown in Listing 1, variation points (var-
point), as all the other VML variables, belong to a certain data type. VML includes 
three basic data types: enumerators, ranges of numbers, and booleans. For instance, 
the velocity variation point is an enumerator that set the robot speed using three possi-
ble variants: SLOW, NORMAL or FAST. After defining the variation points, we need 
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to specify the context variables (context), which identify the situations in which 
variation points need to be adapted. Listing 1 shows three context variables: (1) the 
ambient lighting, (2) the ambient noise, and (3) the battery level. Note that contexts 
and variation points have been modeled to abstract the original parameters presented 
in Section 2, most of them defined as integers ranging from 0 to 100. This abstraction 
reduces the complexity considering only the relevant values for each variable. 

At this point, we need to define how variation points are set according to the con-
texts. This is achieved through properties (property) and ECA (event-condition-
action) rules (rule). Properties specify the features of the system that need to be 
optimized, i.e., minimized or maximized. Properties are defined using two functions: 
priorities and definitions. Definitions characterize the property in terms of variation 
points (i.e., definitions are the objective functions to be optimized). For instance, in 
Listing 1, we define the performance property as a linear function of the velocity 
variation point (the faster the robot accomplishes its task, the better its performance). 
It is worth noting that property definitions can be characterized using the technical 
specifications of the hardware (e.g., to know how much power each component con-
sumes), simulation or empirical data from experiments. On the other hand, priorities 
describe the importance of each property in terms of one or more context variables 
(i.e., priorities weight the objective functions). For instance, power consumption be-
comes more relevant whether the battery level decreases below 20%. Otherwise, pow-
er consumption is not considered an issue and, as a consequence, its impact on the 
adaptation process is very small. Opposite to definitions, priorities are characterized 
in a more subjective way, depending on the designer experience. Regarding the ECA 
rules, they define direct relationships between context variables and variation points. 
As shown in Listing 1, the left-hand side of a rule expresses a trigger condition (de-
pending on one or more context variables) and its right-hand side sets the variation 
point. For example, the decision of which signaling (acoustic or light) to select in 
each situation is modeled using rules. Basically, when there is ambient light (lightning 
= true) the first rule selects the acoustic signaling. Otherwise, the second rule selects 
the light signaling. 

Regarding the execution semantics, VML models specify a constrained optimiza-
tion problem, that is, they use syntactic sugar for describing the global weight func-
tion that optimizes the variation points and, as a result, allows improving the overall 
system quality. This global function is obtained by aggregating the property defini-
tions (terms to be optimized), weighted by their corresponding priorities. Besides, the 
ECA rules state constraints that need to be satisfied. At this point, it is worth noting 
that VML variation points and contexts are high-level variables that somehow abstract 
architectural elements (e.g., components or component parameters). For instance, the 
velocity is linked to the parameter velocity in Control component, and the battery 
level is obtained from the Battery Sensor component (see Figure 1). This abstraction 
allows VML to be independent of the underlying architecture, what, among other 
benefits, enables the reuse of the models in different platforms and scenarios. In the 
next section we start from the VML model, shown in Listing 1, to obtain an  
equivalent Maude specification.  
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type impact : enum {VERY_HIGH(5), HIGH(4), MEDIUM(3),  

                              LOW(1), VERY_LOW(2), NON_EFFECT(0)}; 
context lighting   : boolean; 
context noise : enum {LOW, MEDIUM, FULL}; 
context battery  : enum {NORMAL, NOISY, VERY_NOISY}; 

rule rule1 : lighting = true    => signalType = ACOUSTIC; 
rule rule2 : lighting = false  => signalType = LIGHT; 
rule rule2 : battery <> FULL => velocity <> FAST; 

property safety : impact maximized {  
        priorities: 
                case noise <> NORMAL : impact.MEDIUM 
    default: impact.NON_EFFECT; 
        definitions: 

f(signalIntensity) = signalIntensity/20; 
    f(velocity) = velocity/20 - 1; } 

property powerConsumption : impact minimized { 
         priorities: 
 case battery = LOW : impact.VERY_HIGH 
 default: impact.LOW; 
         definitions: 
     f(signalIntensity) = signalIntensity/40 + 1.5; 

f(velocity) =  velocity/40 + 1.5; } 

property performance : impact maximized { 
        priorities:  
 case noise <> NOISY and battery = LOW:  impact.VERY_LOW 
 default: impact.HIGH; 
        definitions:  

    f(velocity) = velocity/20;  
} 
varpoint signalType  : enum {ACOUSTIC, LIGHT}; 
varpoint signalIntensity  : enum {LOW(20), MEDIUM(60), HIGH(100)}; 
varpoint velocity  : enum {SLOW(20), NORMAL(60), FAST(100)}; 

Listing 1. Variability model described using VML for the robotic example 

4 Prototyping Self-Adaptation with Maude 

In order to learn about the convenience of using formal tools like Maude in the devel-
opment of self-adaptive systems, this section describes the Maude specification for 
the adaptation logic modeled in Section 3. Note that, for the lack of space, we do not 
provide the complete Maude specification, but only the essential concepts for model-
ing the self-adaptation logic. 

4.1 Overall Proposed Approach 

We have implemented our example with Core Maude using an object-based pro-
gramming approach. This allows us to model self-adaptive systems as configurations 
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(collections) of objects and messages that represent (a snapshot of) a possible system 
state. Each object has an identifier, a class, and a set of attributes. For instance, the 
expression < oid : cid | attr1, attr2 > represents an object with identifier oid, 
belonging to the class cid, and with two attributes attr1 and attr2. On the other 
hand, messages include an identifier and a list of arguments. For example, the expres-
sion mid (arg0, arg1) represents a message with identifier mid and arguments 
arg0 and arg1. The idea behind using a set of objects and messages to represent the 
system state is that we can specify the adaptation behavior as a set of rewrite rules 
that consume and produce objects and messages, i.e., that evolve the system state. 

As in most self-adaptive systems [2], the adaptation loop comprises three 
processes, namely: (1) gathering and assessing the current context, (2) reasoning on 
the best adaptation possible, and (3) performing the system reconfiguration. In our 
case, Maude carries out all these processes through the Adaptation Control compo-
nent, which simply allows Maude to interact with the component architecture. The 
interface between Maude and the Adaptation Control is summarized in Table 1.  
Figure 2 outlines the steps of the algorithm that implements this adaptation loop. Each 
of these steps is further detailed in the following subsections. 

Table 1. Interface between Maude and the Adaptation Control component 

Command Description 
Start Starts the adaptation loop 
synchArch <component : String> 
 <parameter : String> 
 <value : String> 

Synchronizes the Maude architecture representation with 
the actual architecture implementation. Example:  
synchArch “LightSignaling” “state” “running” → Maude 
is notified of the actual state of the LightSignaling comp. 

init ( <battery : INT>, 
 <noise : INT>, 
 <light : INT> ) 

Maude is notified of the initial low-level context variables 
Example: init ( 100, 55, 20 )  

battery <value : INT> Updates the battery (0-100). Example: battery 23 
noise <value : INT> Updates the ambient noise (0-100) Example: noise 67 
light <value : INT> Updates the ambient light (0-100) Example:  light 10 
notify <component : String> 
           <parameter : String> 
           <value : String> 

Maude is notified of a change in a component. 
Example: notify “control” “velocity” “23” → The control 
component notifies that the velocity has changed to 23 

command <component : String> 
 <parameter : String> 
 <value : String> 

Maude sends a reconfiguration command.  
Example: command “control” “velocity” “11” → The 
velocity of control component must be changed to 11 

4.2 Initialization 

At run-time, Maude needs to keep the dynamic state of the adaptation process through 
an internal representation (or model) of: (1) the current context, to know when a new 
situation (e.g., a new battery level) produces significant changes to require an adapta-
tion, and (2) the current component architecture, to trace what modifications are 
needed to obtain an adapted configuration of the system from the current one. Conse-
quently, prior to starting the adaptation loop, an initialization function needs to set up 
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the context and the architecture representations. This function is labeled in Figure 2 as 
“Init context and synchronize representation”.  

 

Fig. 2. Outline of the adaptation loop 

The Context Representation. It should be both detailed enough to gather all the 
contextual information relevant for the adaptation, and abstract enough to enable the 
system to efficiently reason on it. This representation considers the same description 
as the one given for the context variables in the VML model (see Listing 1). The func-
tion that computes the values from the components to obtain a more abstract represen-
tation (e.g., deciding when the integer provided from the Battery Sensor is LOW, 
MEDIUM or FULL) will be later detailed in section 4.3. A possible configuration of 
the context model in Maude could be as follows: 

< ctx : Context | batt  : FULL, noise : NORMAL, light : false > 

The Architecture Representation. Similarly to the context model, maintaining an 
explicit reflection model that abstracts the actual running system is essential to effi-
ciently decide on it and execute the required reconfigurations. This model needs to be 
synchronized with the actual component-based system architecture in order to provide 
the adaptation logic with up-to-date information. With regard to adaptation, the only 
relevant information contained in the system architecture for the example (see Fig-
ure 1) is the list of components gathered in the Reconfigurable Component (neither 
the component interfaces nor the connectors are modeled). Each component in this list 
is modeled in Maude with an object containing, at least, two attributes: name (String) 
and state ∈ {RUNNING, STOPPED}. An additional attribute will be added for each 
parameter defined in each component. A possible configuration of the architecture 
model could be as follows (please, note that the state of the AcousticSignaling com-
ponent is STOPPED, meaning that it is not present in the actual system architecture): 

  <c : Control | name : "control", state : RUNNING, velocity : 5 > 
  <l : LightSignaling | name : "lsig", state : RUNNING, intensity : 50 > 
  <a : AcousticSignaling | name : "asig", state :STOPPED, intensity:50> 
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The initialization process is addressed through two rewrite rules. On the one hand, the 
arch-synchronization rewrite rule is triggered each time the Adaptation Control 
component sends to Maude a synchArch message (see Table 1), which updates the 
state and attributes of the corresponding component in the architecture representation. 
This occurs when the components belonging to the Reconfigurable Component initial-
ly notify their state via iMon interface. On the other hand, the init-context rewrite 
rule updates the context representation after receiving the measurements of all sensors 
through an init message (see Table 1). 

4.3 Context Assessment 

The main functions of the Context Assessment process are: (1) to receive the context 
information from the sensors (see the battery, noise and light commands in 
Table 1), (2) to translate this raw data into consistent values for the more abstract 
context representation, and (3) to launch the reasoning process in case the changes in 
the context variables are significant enough. These three functions are represented in 
Figure 2 in the decision node D1, the operation “Abstract context” and the decision 
node D2, respectively. 

In order to address the context assessment, we have implemented three rewrite 
rules (one for each context variable). Thus, a new message from a sensor will trigger 
its corresponding rule (1) to apply an abstraction based on fixed thresholds (e.g., we 
consider the battery to be FULL when we receive a value greater than 80), and (2) to 
determine whether an adaptation is required according to how much the context has 
changed. In the current implementation, the adaptation process starts only if a variable 
in the context representation changes. In this case, a reasoner message is created to 
trigger the rules performing the reasoning process, as detailed next. 

4.4 Reasoning 

The Reasoning function (see Figure 2) implements the core self-adaptation logic as it 
computes the best configuration possible for a given context, that is, it selects the set 
of variants that jointly optimize the overall system performance. The Maude specifi-
cation does not only rely on the description of the properties and rules described in the 
VML model, but also on their semantics. Therefore, as we mentioned in Section 3, 
Maude will need to solve the underlying constrained optimization problem described 
in the VML model.   

The Variability Representation. It translates the variation points included in the 
VML model into Maude. As shown below, each variant is modeled in Maude with an 
object containing the following attributes: name, dimension (ID of the variation point 
the variant belongs to), safety, consumption and performance (impact of the variant in 
each property resulted from evaluating the definition function), score and state. Note 
that, as in the VML model, we abstract the architecture details. For instance, whereas 
signaling intensity is a component attribute in the range 0-100, both in VML and in 
Maude, we only consider three variants (LOW, MEDIUM, HIGH). This abstraction, 
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together with the one provided by the context and architecture representations, signif-
icantly simplifies the reasoning process. 

< v : Variant | name : "slow", dimension : "velocity", safety : 3,  
    consumption : 2, efficiency : 1, score : 0, state : AVAILABLE > 

The reasoning approach followed in this research is based on the method described in 
[11], which combines the use of adaptation rules and the optimization of property-
based adaptation goals. Our adaptation rules have been implemented as two Maude 
rewrite rules, non-available and required. Both these rules are executed once for 
each variant object, updating its state attribute according to the current context. The 
non-available rule sets the state of those variants that are inconsistent with the 
current context (i.e., cannot be selected during the subsequent optimization process) 
as NON-AVAILABLE. For example, if the battery is not FULL, then the variant 
FAST is marked as NON-AVAILABLE (see rule3 in the VML model). The re-
quired rule sets the state of those variants that, according to the current context, 
need to be compulsorily selected as REQUIRED. For example, if light is true, then 
the variant ACOUSTIC is marked as REQUIRED (see rule1 in the VML model). 

In order to cope with the optimization of property-based adaptation goals, we have 
implemented two additional rewrite rules: calculate-scores and search-
solution. The first of these rules is triggered once for each variant and calculates 
the attribute score of those marked as AVAILABLE. The calculation of the score is 
based on: (1) the impact of each variant on the three system properties (evaluation of 
the function for the property definition); and (2) the importance of each property in 
the current context (the evaluation of the function for the property priority). Finally, 
the search-solution rule finds the best possible system configuration for the cur-
rent context, i.e., the combination of variants that, together, obtain the highest score. 

4.5 System Reconfiguration 

The main functions of the System Reconfiguration process are: (1) to create a reconfi-
guration plan (sequence of reconfiguration commands) that adapts the architecture 
representation according to the decisions made by the Reasoning function, and (2) to 
synchronize the architecture representation with the run-time system architecture. To 
implement these functions, labeled in Figure 2 as “Reconfigure architecture” and 
“Update representation”, we have implemented two Maude rewrite rules:  
reconfigure and notification-when-pending.  

The reconfigure rule produces a set of reconfiguration commands (see com-
mand in Table 1) for those components that need to be modified (i.e., those for which 
the state or other attribute has changed). This is achieved by making the difference 
between the current architecture representation and the one that has just been derived 
from the selected variants. Moreover, the notification-when-pending rule is 
executed whenever a real component (belonging to the Reconfigurable Component) 
notifies that it has changed in response to a reconfiguration command (see notify in 
Table 1). These notifications cause the architecture representation to be updated to 
reflect the current situation. It is worth noting that Maude registers all the  
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reconfiguration commands sent and not acknowledged yet. Context messages are 
discarded as long as there are pending notifications. This prevents the execution of 
new adaptation loops while the architecture representation is not completely  
synchronized. 

5 Formal Verification of the Adaptation Strategy  

Maude can be used not only for simulating self-adaptation strategies, but also for 
formally checking that the specification satisfies some important properties under 
certain conditions, or for obtaining useful counterexamples showing that some prop-
erty is violated. As this kind of model-checking analysis can be a powerful tool for 
self-adaptive system designers, this section illustrates how Maude allows checking 
invariants using the search command.  

As previously mentioned, the Adaptation Control component (see Figure 1) relies 
on Maude for executing the adaptation strategy. Thus, sensor components interact 
(indirectly) with Maude to provide context information (e.g., the battery level or the 
ambient noise). Although this scheme is appropriate for simulating or running the 
system, it is not for exhaustively checking whether the model satisfies a given condi-
tion. Therefore, we need to automatically generate context configurations to enable 
the Maude search command to explore the adaptation space. For instance, in the pro-
posed example, the robot should not run simultaneously the light signaling and the 
acoustic signaling components. We can verify that this property holds in all situations 
using the search command as shown below.  

search in SIMULATOR :  
  start  
=>+  
  contextModel(<ctxObj : Context| light:LIGHT,noise:NOISE,batt:BATT>) 
  archModel(  
   < ctrlObj : Control | ATTS-CFG > 
   < lSigObj : LightSignaling | state : LSIG-ST, ATTS-CFG’ > 
   < aSigObj : AcousticSignaling | state : ASIG-ST, ATTS-CFG” > ) 
  CONF:Configuration 
such that (LSIG-ST == RUNNING) and (ASIG-ST == RUNNING) . 

Given an initial configuration (declared before the arrow), this command explores the 
adaptation space looking for the pattern that has to be reached (declared after the ar-
row). Firstly, the starting configuration is the message start that activates the context 
generator and the adaptation loop (see Figure 2). Then, Maude searches for the con-
text (i.e., the value for the variables LIGHT, NOISE and BATT) and the architecture 
that are set when the state of both the LightSignaling and the AcousticSignalig is 
RUNNING. If the search command returns no solution it means that on the initial 
state, and on all states reachable from it, the predicate is an invariant. Similarly, the 
command could also be used to analyze the reachability of a valid configuration, for 
example, to find out under which contexts the adaptation selects a velocity greater 
than 80. 
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6 Related Work 

Significant research efforts are being invested to try overcoming the limitations of 
current ad-hoc approaches to (self-) adaptive system development. These efforts have 
given rise to new adaptation-enabling frameworks and middlewares, and new lan-
guages supporting adaptation primitives [2]. However, most current approaches do 
not offer either a formal specification of the adaptation processes, nor a formal rea-
soning support for testing, assessing and verifying the adaptation logic. This issue has 
been highlighted as a major challenge in several works [1][2].  

Some of the existing frameworks provide some kind of support for self-adaptive 
system simulation and verification. For instance, as part of the DiaSuite Project [12], 
the DiaSpec Domain Specific Language (DSL) enables the specification of 
Sense/Compute/Control (SCC) applications, where the interaction with the physical 
environment is essential. Basically, DiaSpec allows designing applications indepen-
dently of the platform, describing entities (e.g., components or devices) and control-
lers, which execute actions on entities when a context situation is reached. DiaSpec 
models can be simulated to test the SCC applications before their deployment. These 
models can be simulated using DiaSim without requiring any coding effort. DiaSim 
provides a graphical editor to define simulation scenarios and a 2D-renderer to moni-
tor simulated applications. The main benefit of this approach is the graphical repre-
sentation of the environment, where the user can easily see the interactions between 
entities. However, this approach is quite limited as it does not enable to extensively 
explore the possible states of the system to verify invariants, find out erroneous recon-
figurations, or prove the correctness of the rules. 

MUSIC [13] is a framework that supports self-adaptation in mobile applications 
based on component-based architectures. MUSIC proposes a methodology where the 
contextual information is modeled extending an ontology, and the architecture recon-
figurations are expressed via goal policies, through utility functions in the architectur-
al elements. MUSIC provides a tool for static validation aimed to detect errors and 
omissions in the specification (e.g., for type checking). On the other hand, MUSIC 
also offers a simulation tool that enables developers to observe and analyze the effects 
of context changes and adaptations. In contrast to our approach, where we model 
separately the application logic and the variability involved in the adaptation process, 
this approach is too coupled to the underlying architecture.  

In the field of Dynamic Software Product Lines (DSPL) [10], MOSKitt4SPL [14] 
enables designers to model dynamic variability by means of (1) feature models, de-
scribing the possible configurations to which the system can evolve, and 
(2) resolution models, defining the reconfigurations in terms of feature activa-
tion/deactivation associated with a context condition. These specifications are auto-
matically transformed into state machines representing the Adaptation Space, where 
the states are the possible system configurations and the transitions the migration 
paths. This approach enables to analyze the Adaptation Space and automatically re-
fine the model specifications to ensure the following behavioral issues: 
(1) determinism, (2) reversibility, (3) absence of redundancy, and (4) nonexistence of 
cycles. The main advantage of this approach is the possibility of using the  
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well-established Finite State Machine (FSM) theory to analyze the system specifica-
tion. However, it does not rely on a formal framework like Maude to implement spe-
cific verification algorithms or the simulator.  

Also in this line, the DiVA [6] Project provides a tool-supported methodology with 
an integrated framework for managing dynamic variability. DiVA proposes an early 
validation at design-time to discover faults in the adaptation specification using simu-
lation, i.e., the user manually selects relevant contexts and then analyzes the results 
from the adaptation logic. Although DiVA has multiple solvers available both for 
simulating and running the system, this approach seems to be insufficient to check 
invariants in large models with many context variables or to prove the consistency 
and correctness of the specification. 

7 Lessons Learned and Future Research Plans 

To this point, we have presented our experience in using Maude for prototyping and 
verifying component-based self-adaptive systems. Next, we draw some conclusions 
and lessons learned from this experience, and outline our future research plans. 

Roles of Formal Tools in the Development of Self-Adaptive Systems 

At design-time, formal tools, like Maude, can support self-adaptive system modeling, 
at least, in two ways. On the one hand, they can be used to check the semantic cor-
rectness of the variability models. For instance, considering the VML language pre-
sented in section 3, Maude can help checking data types (e.g., we cannot assign a 
Boolean value to an enumerated variable), detecting unused elements (e.g., a variation 
point that is never used), avoiding recursive assignments (e.g., x=x+1), or preventing 
contradictory statements (e.g., two incompatible rules). On the other hand, formal 
tools allow verification and simulation of the adaptation logic. For example, Maude 
provides the search command, which explores the reachable state space looking for 
a given configuration. This command is a simple, yet powerful method for checking 
invariants, as introduced in section 5. Furthermore, Maude enables the simulation of 
the system specification starting from any given state. This can be very useful for 
adjusting some parameters of the adaptation logic. 

At run-time, we can apply formal tools to validate the system reconfigurations be-
fore they are actually performed, as it is not reasonable to make the system migrate to 
an invalid configuration. For example, DiVA [6] applies an online validation with 
Kermeta [15] at run-time to check that all the invariants hold. Apart from that, formal 
tools can also be considered as a means to operate with models in the adaptation 
process. The main benefit of this approach is that the implementation of the opera-
tions can be verified. For instance, as mentioned in section 4, we could firstly adapt 
an architecture model, and then, reflect the changes on the real system according to 
the difference operation between the adapted model and the current one. Therefore, it 
seems to be possible to deal with similar techniques in the field of models@run-
time [16] combining model transformations with formal tools like Maude [17]. Final-
ly, if the performance is satisfactory, we could consider formal tools as the final  
adaptation engine. 
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Maude for Prototyping Self-Adaptation 

The first benefit of using Maude for prototyping self-adaptive systems stems from its 
capability to provide designers with executable mathematical models of these sys-
tems. This capability becomes essential for adjusting and validating their adaptation 
behavior. Specifically, Maude can assist designers in (1) adjusting the abstraction 
level of context variables and variation points in the VML model with regards to the 
architecture details (e.g., the integers provided by the light sensor are translated into a 
boolean context variable to indicate whether there is or not light enough). The design-
er needs to decide how many values are enough to characterize a context variable or a 
variation point; (2) adjusting the design-time functions that specify the VML proper-
ties to be optimized; and (3) establishing the right links between the architectural 
elements and the VML variables (e.g., selecting thresholds to establish what means 
false or true in a boolean context variable). Regarding the abstraction level of va-
riables in VML, it is worth noting that the number of considered alternatives has an 
impact on the adaptation stability (e.g., the more context values, the more potential 
situations to manage and, consequently, it may cause continuous and inefficient sys-
tem reconfigurations), the computational cost (e.g., the more variants to handle the 
higher the cost) and the effectiveness of the process (e.g., an insufficient number of 
alternatives makes adaptation useless). 

Concerning the main limitations we found when implementing the robotic exam-
ple, Maude seems not to offer a simple method for solving constrained optimization 
problems. The current approach relies on exploring all the possible combination of 
variants to finally decide the best one in terms of the adaptation properties. Thus, the 
practical feasibility of this problem critically depends on the number of variants. 
Another barrier for the developers is the difficulty for debugging Maude programs, 
due to the concurrent nature of its rules and the scarcely legible traces it returns dur-
ing the execution. We figured out that this difficulty increases exponentially as the 
number of rules grows, since it becomes more and more complex to follow the  
interactions between the Maude rules, causing undesired states in the system.  

Automatic Code Generation from VML 

We have identified some common Maude structures (partly described in section 4) 
that could be easily generated from a VML model (e.g., the context and the variability 
representation). However, part of the Maude specification cannot be generated from 
the VML model, as it also depends on the component-based architecture model, in 
particular of its reconfigurable and monitoring parts (related with the VML variation 
points and context variables, respectively).  

For the future, we plan to continue exploring the potentials of Maude, in particular, 
for verifying the completeness and correctness of the self-adaptive behavior specifica-
tions. We also plan to link this work with our previous experience with VML [7] and 
with the MDE approach proposed by DiVA [6].  
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