
X. Franch and P. Soffer (Eds.): CAiSE 2013 Workshops, LNBIP 148, pp. 432–446, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Towards a Formal Approach for Prototyping
and Verifying Self-Adaptive Systems

Juan F. Inglés-Romero1 and Cristina Vicente-Chicote2

1 Dpto. Tecnologías de la Información y Comunicaciones,
Universidad Politécnica de Cartagena, Edificio Antigones, 30202 Cartagena, Spain

juanfran.ingles@upct.es
2 Quercus Software Engineering Group (QSEG),

Universidad de Extremadura, Avda. de la Universidad S/N, 10003 Cáceres, Spain
cristinav@unex.es

Abstract. Software adaptation is becoming increasingly important as more and
more applications need to dynamically adapt their structure and behavior to
cope with changing contexts, available resources and user requirements. Maude
is a high-performance reflective language and system, supporting both equa-
tional and rewriting logic specification and programming for a wide range of
applications. In this paper we describe our experience in using Maude for proto-
typing and verifying self-adaptive systems. In order to illustrate the benefits of
adopting a formal approach based on Maude to develop self-adaptive systems
we present a case study in the robotics domain.

Keywords: Self-Adaptive Systems, Prototyping, Maude, VML.

1 Introduction

Nowadays, significant research efforts are focused on advancing the development of
(self-) adaptive systems. In spite of that, some major issues remain still open in this
field [1][2]. One of the main challenges is how to formally specify, design, verify, and
implement applications that need to adapt themselves at runtime to cope with chang-
ing contexts, available resources and user requirements.

Adaptation in itself is nothing new, but it has been generally implemented in an ad-
hoc way, that is, developers try to predict future execution conditions and embed the
adaptation decisions needed to deal with them in their application code. This usually
leads to increased complexity (business logic polluted with adaptation concerns) and
poor reuse of adaptation mechanisms among applications [1]. The use of formal me-
thods can help alleviating the limitations of current approaches to self-adaptive sys-
tem development. In particular, they can provide developers with rigorous tools for
testing and assuring the correctness of the adaptive behavior of their systems. This is a
remarkable open issue, since only a few research efforts seem to be focused on the
formal analysis and verification of self-adaptive systems.

 Towards a Formal Approach for Prototyping and Verifying Self-Adaptive Systems 433

Maude [3] is a high-performance reflective language and system supporting both
equational and rewriting logic specification and programming for a wide range of
applications. Maude and its supporting tools can be used in three, mutually reinforc-
ing ways: as a declarative programming language, as an executable formal specifica-
tion language, and as a formal verification framework. A Maude program can be seen
as an executable mathematical model of a system. Thus, using Maude for prototyping
self-adaptive systems enables their simulation, formal analysis (e.g., reachabili-
ty/likelihood of certain system configurations), and verification (e.g., testing that the
system reaches a consistent configuration for all given contexts). Furthermore, Maude
can help designers to assure, among other properties, the consistency and correctness
of self-adaptive system specifications.

This paper presents our experience in using Maude for prototyping and verifying
component-based self-adaptive systems. The main contribution derives from the im-
plementation of a robotic case study, in which we model the variability of the system
and manually translate this logic into Maude. This experience has allowed us to wit-
ness some of the benefits of adopting a formal approach when developing self-
adaptive systems. This research continues our previous works on self-adaptive system
design [4] and implementation [5] using the DiVA framework [6], and on modeling
self-adaptive system variability using the Variability Modeling Language (VML) [7].

2 Robotic Example

In this section, we introduce the robotic example designed to illustrate the versatility
of Maude for prototyping self-adaptive systems. It is worth noting that, although the
example presented here belongs to the robotics domain, in which the need for self-
adaptation (to changing contexts and available resources) is quite obvious, we believe
that our proposal is general enough to be adopted in other application domains in
which modeling, simulating and formally verifying self-adaptation is an issue.

2.1 Adaptation Scenario

The proposed case study takes place in a room, where a small robot moves around
randomly avoiding obstacles. In order to improve this basic functionality in terms of
safety, power consumption and performance, the robot follows an adaptation strategy
that decides on the following variation points: (1) the signaling type; (2) the signaling
intensity; and (3) the robot velocity. There are two possible variants for the signaling
type (light or acoustic), while the signaling intensity and the robot velocity may take
any integer value in the range 0-100. The adaptation strategy decides the best possible
configuration (selection of variants for each variation point) according to the current
context. The context variables considered in the case study are the ambient light, the
ambient noise and the robot battery level, all of them integers ranging from 0 to 100.

The goodness of each configuration is calculated based on the impact of each va-
riant on the three properties being considered, that is: safety, power consumption and
performance. The following considerations are made concerning safety (making

434 J.F. Inglés-Romero and C. Vicente-Chicote

others aware of the presence of the robot in the surroundings): (1) light signaling is
more convenient than acoustic signaling when the ambient light is low; and (2) the
higher the ambient noise (might indicate a crowded environment), the higher must be
the signaling intensity and the lower the robot velocity. Regarding power consump-
tion, the greater the signaling intensity and the robot velocity the greater the power
consumption. Thus, if the battery level is low, both the velocity and the signaling
intensity need to be limited. Finally, concerning performance, the higher the velocity
the shorter the time it takes to the robot to reach its goal position. Obviously, max-
imizing safety and performance, while simultaneously minimizing power consump-
tion, imposes conflicting requirements. Thus, the adaptation strategy will need to find
the right balance among these requirements to achieve the best possible configuration
for a given context, even if some (or none) of them are optimized individually.

2.2 Component-Based Software Architecture

The component-based software architecture developed for the case study is sketched
in Figure 1. As other self-adaptive systems [2], the proposed design includes: (1) a
reconfigurable part, comprising the optional and/or parameterized components; (2) a
set of monitoring components; and (3) an adaptation control unit.

Fig. 1. Component-based software architecture for the example

The Reconfigurable Component gathers the elements of the system that are sus-
ceptible to change at runtime. Among them, the Control Component implements the
core robot functionality, that is, the motion control and the obstacle avoidance. This
component includes a parameter called velocity that regulates the robot motion speed,
and is responsible for activating or deactivating the robot signaling through the iSig-
naling interface. The Reconfigurable Component also contains two optional compo-
nents, each one implementing one of the alternative ways for signaling the robot posi-
tion: Light Signaling and Acoustic Signaling. Both these components contain an in-
tensity parameter that regulates the frequency of the light and the acoustic signals,
respectively. The three variation points available at the Reconfigurable Component
(i.e., selecting one of the two alternative signaling components and setting the

iSignaling

Battery
Sensor

Attribute velocity: INT

Adaptation
Control

iReconfReconfigurable Component

Noise
Sensor

Light
Sensor

Event
Service

iMon

iMon

iNotify

iMon

iMon

iMon iMon

Control

iMon
Attribute intensity: INT Attribute intensity: INT

Light Signaling Acoustic Signaling

 Towards a Formal Approach for Prototyping and Verifying Self-Adaptive Systems 435

velocity and the intensity parameters) will need to be fixed at runtime by the
adaptation strategy, implemented by the Adaptation Control, as detailed later.

The monitoring part of the architecture provides the context-aware support for the
adaptation. It comprises (1) a set of sensors (Noise Sensor, Light Sensor and Battery
Sensor) and monitors (Control, Light Signaling and Acoustic Signaling) for acquiring
information both from the environment (external context) and from the system itself
(internal context); and (2) the Event Service component that receives the context in-
formation from the former components via the iMon interface, and notifies the
changes in the context to the Adaptation Control component through the iNotify
interface.

Finally, the Adaptation Control component implements the adaptation strategy
which, on the basis of the context changes notified by the Event Service component,
decides which is the best possible configuration (variant selection) for the Reconfi-
gurable Component and applies the required changes via the iReconf interface.

We have selected the E-puck robot [8] as our target platform. E-pucks are low-cost
mobile robots with a large range of sensors and actuators that make them appropriate
for testing self-adaptive applications. However, this robot presents limitations that
prevent executing Maude on it. For this reason, we use a distributed architecture
where some components are deployed in an external PC, which communicates with
the robot via Bluetooth (e.g., this is the case of the Adaptation Control, which relies
on Maude for executing the adaptation strategy). As our intention is to use Maude for
prototyping the system (as a support for its design, simulation, and verification) and
not for its final implementation, this seems to be a valid approach.

3 Modeling Variability with VML

This section introduces the Variability Modeling Language (VML). VML provides a
mechanism to express how a system should adapt at run-time to improve its perfor-
mance under changing conditions. The current version of VML has been developed
using a Model-Driven Engineering (MDE) approach. We have created a textual editor
for VML using the Xtext framework [9], including some advanced features such as
syntax checking and coloring facilities, and a completion assistant. As the focus of
this paper is not VML, we will only present the essentials needed for modeling the
case study. Then, the resulting VML model will be used as the starting point for ob-
taining the Maude specification included in Section 4.

In a VML model, we first need to define the variation points. Aligned with Dy-
namic Software Product Lines (DSPL) [10], VML variation points represent points in
the software where different variants might be chosen to derive the system configura-
tion at run-time. Therefore, variation points determine the decision space of VML,
i.e., the answer to what can change. As shown in Listing 1, variation points (var-
point), as all the other VML variables, belong to a certain data type. VML includes
three basic data types: enumerators, ranges of numbers, and booleans. For instance,
the velocity variation point is an enumerator that set the robot speed using three possi-
ble variants: SLOW, NORMAL or FAST. After defining the variation points, we need

436 J.F. Inglés-Romero and C. Vicente-Chicote

to specify the context variables (context), which identify the situations in which
variation points need to be adapted. Listing 1 shows three context variables: (1) the
ambient lighting, (2) the ambient noise, and (3) the battery level. Note that contexts
and variation points have been modeled to abstract the original parameters presented
in Section 2, most of them defined as integers ranging from 0 to 100. This abstraction
reduces the complexity considering only the relevant values for each variable.

At this point, we need to define how variation points are set according to the con-
texts. This is achieved through properties (property) and ECA (event-condition-
action) rules (rule). Properties specify the features of the system that need to be
optimized, i.e., minimized or maximized. Properties are defined using two functions:
priorities and definitions. Definitions characterize the property in terms of variation
points (i.e., definitions are the objective functions to be optimized). For instance, in
Listing 1, we define the performance property as a linear function of the velocity
variation point (the faster the robot accomplishes its task, the better its performance).
It is worth noting that property definitions can be characterized using the technical
specifications of the hardware (e.g., to know how much power each component con-
sumes), simulation or empirical data from experiments. On the other hand, priorities
describe the importance of each property in terms of one or more context variables
(i.e., priorities weight the objective functions). For instance, power consumption be-
comes more relevant whether the battery level decreases below 20%. Otherwise, pow-
er consumption is not considered an issue and, as a consequence, its impact on the
adaptation process is very small. Opposite to definitions, priorities are characterized
in a more subjective way, depending on the designer experience. Regarding the ECA
rules, they define direct relationships between context variables and variation points.
As shown in Listing 1, the left-hand side of a rule expresses a trigger condition (de-
pending on one or more context variables) and its right-hand side sets the variation
point. For example, the decision of which signaling (acoustic or light) to select in
each situation is modeled using rules. Basically, when there is ambient light (lightning
= true) the first rule selects the acoustic signaling. Otherwise, the second rule selects
the light signaling.

Regarding the execution semantics, VML models specify a constrained optimiza-
tion problem, that is, they use syntactic sugar for describing the global weight func-
tion that optimizes the variation points and, as a result, allows improving the overall
system quality. This global function is obtained by aggregating the property defini-
tions (terms to be optimized), weighted by their corresponding priorities. Besides, the
ECA rules state constraints that need to be satisfied. At this point, it is worth noting
that VML variation points and contexts are high-level variables that somehow abstract
architectural elements (e.g., components or component parameters). For instance, the
velocity is linked to the parameter velocity in Control component, and the battery
level is obtained from the Battery Sensor component (see Figure 1). This abstraction
allows VML to be independent of the underlying architecture, what, among other
benefits, enables the reuse of the models in different platforms and scenarios. In the
next section we start from the VML model, shown in Listing 1, to obtain an
equivalent Maude specification.

 Towards a Formal Approach for Prototyping and Verifying Self-Adaptive Systems 437

type impact : enum {VERY_HIGH(5), HIGH(4), MEDIUM(3),

 LOW(1), VERY_LOW(2), NON_EFFECT(0)};
context lighting : boolean;
context noise : enum {LOW, MEDIUM, FULL};
context battery : enum {NORMAL, NOISY, VERY_NOISY};

rule rule1 : lighting = true => signalType = ACOUSTIC;
rule rule2 : lighting = false => signalType = LIGHT;
rule rule2 : battery <> FULL => velocity <> FAST;

property safety : impact maximized {
 priorities:
 case noise <> NORMAL : impact.MEDIUM
 default: impact.NON_EFFECT;
 definitions:

f(signalIntensity) = signalIntensity/20;
 f(velocity) = velocity/20 - 1; }

property powerConsumption : impact minimized {
 priorities:
 case battery = LOW : impact.VERY_HIGH
 default: impact.LOW;
 definitions:
 f(signalIntensity) = signalIntensity/40 + 1.5;

f(velocity) = velocity/40 + 1.5; }

property performance : impact maximized {
 priorities:
 case noise <> NOISY and battery = LOW: impact.VERY_LOW
 default: impact.HIGH;
 definitions:

 f(velocity) = velocity/20;
}
varpoint signalType : enum {ACOUSTIC, LIGHT};
varpoint signalIntensity : enum {LOW(20), MEDIUM(60), HIGH(100)};
varpoint velocity : enum {SLOW(20), NORMAL(60), FAST(100)};

Listing 1. Variability model described using VML for the robotic example

4 Prototyping Self-Adaptation with Maude

In order to learn about the convenience of using formal tools like Maude in the devel-
opment of self-adaptive systems, this section describes the Maude specification for
the adaptation logic modeled in Section 3. Note that, for the lack of space, we do not
provide the complete Maude specification, but only the essential concepts for model-
ing the self-adaptation logic.

4.1 Overall Proposed Approach

We have implemented our example with Core Maude using an object-based pro-
gramming approach. This allows us to model self-adaptive systems as configurations

438 J.F. Inglés-Romero and C. Vicente-Chicote

(collections) of objects and messages that represent (a snapshot of) a possible system
state. Each object has an identifier, a class, and a set of attributes. For instance, the
expression < oid : cid | attr1, attr2 > represents an object with identifier oid,
belonging to the class cid, and with two attributes attr1 and attr2. On the other
hand, messages include an identifier and a list of arguments. For example, the expres-
sion mid (arg0, arg1) represents a message with identifier mid and arguments
arg0 and arg1. The idea behind using a set of objects and messages to represent the
system state is that we can specify the adaptation behavior as a set of rewrite rules
that consume and produce objects and messages, i.e., that evolve the system state.

As in most self-adaptive systems [2], the adaptation loop comprises three
processes, namely: (1) gathering and assessing the current context, (2) reasoning on
the best adaptation possible, and (3) performing the system reconfiguration. In our
case, Maude carries out all these processes through the Adaptation Control compo-
nent, which simply allows Maude to interact with the component architecture. The
interface between Maude and the Adaptation Control is summarized in Table 1.
Figure 2 outlines the steps of the algorithm that implements this adaptation loop. Each
of these steps is further detailed in the following subsections.

Table 1. Interface between Maude and the Adaptation Control component

Command Description
Start Starts the adaptation loop
synchArch <component : String>
 <parameter : String>
 <value : String>

Synchronizes the Maude architecture representation with
the actual architecture implementation. Example:
synchArch “LightSignaling” “state” “running” → Maude
is notified of the actual state of the LightSignaling comp.

init (<battery : INT>,
 <noise : INT>,
 <light : INT>)

Maude is notified of the initial low-level context variables
Example: init (100, 55, 20)

battery <value : INT> Updates the battery (0-100). Example: battery 23
noise <value : INT> Updates the ambient noise (0-100) Example: noise 67
light <value : INT> Updates the ambient light (0-100) Example: light 10
notify <component : String>
 <parameter : String>
 <value : String>

Maude is notified of a change in a component.
Example: notify “control” “velocity” “23” → The control
component notifies that the velocity has changed to 23

command <component : String>
 <parameter : String>
 <value : String>

Maude sends a reconfiguration command.
Example: command “control” “velocity” “11” → The
velocity of control component must be changed to 11

4.2 Initialization

At run-time, Maude needs to keep the dynamic state of the adaptation process through
an internal representation (or model) of: (1) the current context, to know when a new
situation (e.g., a new battery level) produces significant changes to require an adapta-
tion, and (2) the current component architecture, to trace what modifications are
needed to obtain an adapted configuration of the system from the current one. Conse-
quently, prior to starting the adaptation loop, an initialization function needs to set up

 Towards a Formal Approach for Prototyping and Verifying Self-Adaptive Systems 439

the context and the architecture representations. This function is labeled in Figure 2 as
“Init context and synchronize representation”.

Fig. 2. Outline of the adaptation loop

The Context Representation. It should be both detailed enough to gather all the
contextual information relevant for the adaptation, and abstract enough to enable the
system to efficiently reason on it. This representation considers the same description
as the one given for the context variables in the VML model (see Listing 1). The func-
tion that computes the values from the components to obtain a more abstract represen-
tation (e.g., deciding when the integer provided from the Battery Sensor is LOW,
MEDIUM or FULL) will be later detailed in section 4.3. A possible configuration of
the context model in Maude could be as follows:

< ctx : Context | batt : FULL, noise : NORMAL, light : false >

The Architecture Representation. Similarly to the context model, maintaining an
explicit reflection model that abstracts the actual running system is essential to effi-
ciently decide on it and execute the required reconfigurations. This model needs to be
synchronized with the actual component-based system architecture in order to provide
the adaptation logic with up-to-date information. With regard to adaptation, the only
relevant information contained in the system architecture for the example (see Fig-
ure 1) is the list of components gathered in the Reconfigurable Component (neither
the component interfaces nor the connectors are modeled). Each component in this list
is modeled in Maude with an object containing, at least, two attributes: name (String)
and state ∈ {RUNNING, STOPPED}. An additional attribute will be added for each
parameter defined in each component. A possible configuration of the architecture
model could be as follows (please, note that the state of the AcousticSignaling com-
ponent is STOPPED, meaning that it is not present in the actual system architecture):

 <c : Control | name : "control", state : RUNNING, velocity : 5 >
 <l : LightSignaling | name : "lsig", state : RUNNING, intensity : 50 >
 <a : AcousticSignaling | name : "asig", state :STOPPED, intensity:50>

Init context
and synchronize
representation

Abstract
context

Reason
Reconfigure
architecture

Update
representation

no

no

new sensor data?

adapt?

D1

D2
yes

yes

Co
nt

ex
t a

ss
es

sm
en

t
Re

as
on

in
g

System
 reconfiguration

440 J.F. Inglés-Romero and C. Vicente-Chicote

The initialization process is addressed through two rewrite rules. On the one hand, the
arch-synchronization rewrite rule is triggered each time the Adaptation Control
component sends to Maude a synchArch message (see Table 1), which updates the
state and attributes of the corresponding component in the architecture representation.
This occurs when the components belonging to the Reconfigurable Component initial-
ly notify their state via iMon interface. On the other hand, the init-context rewrite
rule updates the context representation after receiving the measurements of all sensors
through an init message (see Table 1).

4.3 Context Assessment

The main functions of the Context Assessment process are: (1) to receive the context
information from the sensors (see the battery, noise and light commands in
Table 1), (2) to translate this raw data into consistent values for the more abstract
context representation, and (3) to launch the reasoning process in case the changes in
the context variables are significant enough. These three functions are represented in
Figure 2 in the decision node D1, the operation “Abstract context” and the decision
node D2, respectively.

In order to address the context assessment, we have implemented three rewrite
rules (one for each context variable). Thus, a new message from a sensor will trigger
its corresponding rule (1) to apply an abstraction based on fixed thresholds (e.g., we
consider the battery to be FULL when we receive a value greater than 80), and (2) to
determine whether an adaptation is required according to how much the context has
changed. In the current implementation, the adaptation process starts only if a variable
in the context representation changes. In this case, a reasoner message is created to
trigger the rules performing the reasoning process, as detailed next.

4.4 Reasoning

The Reasoning function (see Figure 2) implements the core self-adaptation logic as it
computes the best configuration possible for a given context, that is, it selects the set
of variants that jointly optimize the overall system performance. The Maude specifi-
cation does not only rely on the description of the properties and rules described in the
VML model, but also on their semantics. Therefore, as we mentioned in Section 3,
Maude will need to solve the underlying constrained optimization problem described
in the VML model.

The Variability Representation. It translates the variation points included in the
VML model into Maude. As shown below, each variant is modeled in Maude with an
object containing the following attributes: name, dimension (ID of the variation point
the variant belongs to), safety, consumption and performance (impact of the variant in
each property resulted from evaluating the definition function), score and state. Note
that, as in the VML model, we abstract the architecture details. For instance, whereas
signaling intensity is a component attribute in the range 0-100, both in VML and in
Maude, we only consider three variants (LOW, MEDIUM, HIGH). This abstraction,

 Towards a Formal Approach for Prototyping and Verifying Self-Adaptive Systems 441

together with the one provided by the context and architecture representations, signif-
icantly simplifies the reasoning process.

< v : Variant | name : "slow", dimension : "velocity", safety : 3,
 consumption : 2, efficiency : 1, score : 0, state : AVAILABLE >

The reasoning approach followed in this research is based on the method described in
[11], which combines the use of adaptation rules and the optimization of property-
based adaptation goals. Our adaptation rules have been implemented as two Maude
rewrite rules, non-available and required. Both these rules are executed once for
each variant object, updating its state attribute according to the current context. The
non-available rule sets the state of those variants that are inconsistent with the
current context (i.e., cannot be selected during the subsequent optimization process)
as NON-AVAILABLE. For example, if the battery is not FULL, then the variant
FAST is marked as NON-AVAILABLE (see rule3 in the VML model). The re-
quired rule sets the state of those variants that, according to the current context,
need to be compulsorily selected as REQUIRED. For example, if light is true, then
the variant ACOUSTIC is marked as REQUIRED (see rule1 in the VML model).

In order to cope with the optimization of property-based adaptation goals, we have
implemented two additional rewrite rules: calculate-scores and search-
solution. The first of these rules is triggered once for each variant and calculates
the attribute score of those marked as AVAILABLE. The calculation of the score is
based on: (1) the impact of each variant on the three system properties (evaluation of
the function for the property definition); and (2) the importance of each property in
the current context (the evaluation of the function for the property priority). Finally,
the search-solution rule finds the best possible system configuration for the cur-
rent context, i.e., the combination of variants that, together, obtain the highest score.

4.5 System Reconfiguration

The main functions of the System Reconfiguration process are: (1) to create a reconfi-
guration plan (sequence of reconfiguration commands) that adapts the architecture
representation according to the decisions made by the Reasoning function, and (2) to
synchronize the architecture representation with the run-time system architecture. To
implement these functions, labeled in Figure 2 as “Reconfigure architecture” and
“Update representation”, we have implemented two Maude rewrite rules:
reconfigure and notification-when-pending.

The reconfigure rule produces a set of reconfiguration commands (see com-
mand in Table 1) for those components that need to be modified (i.e., those for which
the state or other attribute has changed). This is achieved by making the difference
between the current architecture representation and the one that has just been derived
from the selected variants. Moreover, the notification-when-pending rule is
executed whenever a real component (belonging to the Reconfigurable Component)
notifies that it has changed in response to a reconfiguration command (see notify in
Table 1). These notifications cause the architecture representation to be updated to
reflect the current situation. It is worth noting that Maude registers all the

442 J.F. Inglés-Romero and C. Vicente-Chicote

reconfiguration commands sent and not acknowledged yet. Context messages are
discarded as long as there are pending notifications. This prevents the execution of
new adaptation loops while the architecture representation is not completely
synchronized.

5 Formal Verification of the Adaptation Strategy

Maude can be used not only for simulating self-adaptation strategies, but also for
formally checking that the specification satisfies some important properties under
certain conditions, or for obtaining useful counterexamples showing that some prop-
erty is violated. As this kind of model-checking analysis can be a powerful tool for
self-adaptive system designers, this section illustrates how Maude allows checking
invariants using the search command.

As previously mentioned, the Adaptation Control component (see Figure 1) relies
on Maude for executing the adaptation strategy. Thus, sensor components interact
(indirectly) with Maude to provide context information (e.g., the battery level or the
ambient noise). Although this scheme is appropriate for simulating or running the
system, it is not for exhaustively checking whether the model satisfies a given condi-
tion. Therefore, we need to automatically generate context configurations to enable
the Maude search command to explore the adaptation space. For instance, in the pro-
posed example, the robot should not run simultaneously the light signaling and the
acoustic signaling components. We can verify that this property holds in all situations
using the search command as shown below.

search in SIMULATOR :
 start
=>+
 contextModel(<ctxObj : Context| light:LIGHT,noise:NOISE,batt:BATT>)
 archModel(
 < ctrlObj : Control | ATTS-CFG >
 < lSigObj : LightSignaling | state : LSIG-ST, ATTS-CFG’ >
 < aSigObj : AcousticSignaling | state : ASIG-ST, ATTS-CFG” >)
 CONF:Configuration
such that (LSIG-ST == RUNNING) and (ASIG-ST == RUNNING) .

Given an initial configuration (declared before the arrow), this command explores the
adaptation space looking for the pattern that has to be reached (declared after the ar-
row). Firstly, the starting configuration is the message start that activates the context
generator and the adaptation loop (see Figure 2). Then, Maude searches for the con-
text (i.e., the value for the variables LIGHT, NOISE and BATT) and the architecture
that are set when the state of both the LightSignaling and the AcousticSignalig is
RUNNING. If the search command returns no solution it means that on the initial
state, and on all states reachable from it, the predicate is an invariant. Similarly, the
command could also be used to analyze the reachability of a valid configuration, for
example, to find out under which contexts the adaptation selects a velocity greater
than 80.

 Towards a Formal Approach for Prototyping and Verifying Self-Adaptive Systems 443

6 Related Work

Significant research efforts are being invested to try overcoming the limitations of
current ad-hoc approaches to (self-) adaptive system development. These efforts have
given rise to new adaptation-enabling frameworks and middlewares, and new lan-
guages supporting adaptation primitives [2]. However, most current approaches do
not offer either a formal specification of the adaptation processes, nor a formal rea-
soning support for testing, assessing and verifying the adaptation logic. This issue has
been highlighted as a major challenge in several works [1][2].

Some of the existing frameworks provide some kind of support for self-adaptive
system simulation and verification. For instance, as part of the DiaSuite Project [12],
the DiaSpec Domain Specific Language (DSL) enables the specification of
Sense/Compute/Control (SCC) applications, where the interaction with the physical
environment is essential. Basically, DiaSpec allows designing applications indepen-
dently of the platform, describing entities (e.g., components or devices) and control-
lers, which execute actions on entities when a context situation is reached. DiaSpec
models can be simulated to test the SCC applications before their deployment. These
models can be simulated using DiaSim without requiring any coding effort. DiaSim
provides a graphical editor to define simulation scenarios and a 2D-renderer to moni-
tor simulated applications. The main benefit of this approach is the graphical repre-
sentation of the environment, where the user can easily see the interactions between
entities. However, this approach is quite limited as it does not enable to extensively
explore the possible states of the system to verify invariants, find out erroneous recon-
figurations, or prove the correctness of the rules.

MUSIC [13] is a framework that supports self-adaptation in mobile applications
based on component-based architectures. MUSIC proposes a methodology where the
contextual information is modeled extending an ontology, and the architecture recon-
figurations are expressed via goal policies, through utility functions in the architectur-
al elements. MUSIC provides a tool for static validation aimed to detect errors and
omissions in the specification (e.g., for type checking). On the other hand, MUSIC
also offers a simulation tool that enables developers to observe and analyze the effects
of context changes and adaptations. In contrast to our approach, where we model
separately the application logic and the variability involved in the adaptation process,
this approach is too coupled to the underlying architecture.

In the field of Dynamic Software Product Lines (DSPL) [10], MOSKitt4SPL [14]
enables designers to model dynamic variability by means of (1) feature models, de-
scribing the possible configurations to which the system can evolve, and
(2) resolution models, defining the reconfigurations in terms of feature activa-
tion/deactivation associated with a context condition. These specifications are auto-
matically transformed into state machines representing the Adaptation Space, where
the states are the possible system configurations and the transitions the migration
paths. This approach enables to analyze the Adaptation Space and automatically re-
fine the model specifications to ensure the following behavioral issues:
(1) determinism, (2) reversibility, (3) absence of redundancy, and (4) nonexistence of
cycles. The main advantage of this approach is the possibility of using the

444 J.F. Inglés-Romero and C. Vicente-Chicote

well-established Finite State Machine (FSM) theory to analyze the system specifica-
tion. However, it does not rely on a formal framework like Maude to implement spe-
cific verification algorithms or the simulator.

Also in this line, the DiVA [6] Project provides a tool-supported methodology with
an integrated framework for managing dynamic variability. DiVA proposes an early
validation at design-time to discover faults in the adaptation specification using simu-
lation, i.e., the user manually selects relevant contexts and then analyzes the results
from the adaptation logic. Although DiVA has multiple solvers available both for
simulating and running the system, this approach seems to be insufficient to check
invariants in large models with many context variables or to prove the consistency
and correctness of the specification.

7 Lessons Learned and Future Research Plans

To this point, we have presented our experience in using Maude for prototyping and
verifying component-based self-adaptive systems. Next, we draw some conclusions
and lessons learned from this experience, and outline our future research plans.

Roles of Formal Tools in the Development of Self-Adaptive Systems

At design-time, formal tools, like Maude, can support self-adaptive system modeling,
at least, in two ways. On the one hand, they can be used to check the semantic cor-
rectness of the variability models. For instance, considering the VML language pre-
sented in section 3, Maude can help checking data types (e.g., we cannot assign a
Boolean value to an enumerated variable), detecting unused elements (e.g., a variation
point that is never used), avoiding recursive assignments (e.g., x=x+1), or preventing
contradictory statements (e.g., two incompatible rules). On the other hand, formal
tools allow verification and simulation of the adaptation logic. For example, Maude
provides the search command, which explores the reachable state space looking for
a given configuration. This command is a simple, yet powerful method for checking
invariants, as introduced in section 5. Furthermore, Maude enables the simulation of
the system specification starting from any given state. This can be very useful for
adjusting some parameters of the adaptation logic.

At run-time, we can apply formal tools to validate the system reconfigurations be-
fore they are actually performed, as it is not reasonable to make the system migrate to
an invalid configuration. For example, DiVA [6] applies an online validation with
Kermeta [15] at run-time to check that all the invariants hold. Apart from that, formal
tools can also be considered as a means to operate with models in the adaptation
process. The main benefit of this approach is that the implementation of the opera-
tions can be verified. For instance, as mentioned in section 4, we could firstly adapt
an architecture model, and then, reflect the changes on the real system according to
the difference operation between the adapted model and the current one. Therefore, it
seems to be possible to deal with similar techniques in the field of models@run-
time [16] combining model transformations with formal tools like Maude [17]. Final-
ly, if the performance is satisfactory, we could consider formal tools as the final
adaptation engine.

 Towards a Formal Approach for Prototyping and Verifying Self-Adaptive Systems 445

Maude for Prototyping Self-Adaptation

The first benefit of using Maude for prototyping self-adaptive systems stems from its
capability to provide designers with executable mathematical models of these sys-
tems. This capability becomes essential for adjusting and validating their adaptation
behavior. Specifically, Maude can assist designers in (1) adjusting the abstraction
level of context variables and variation points in the VML model with regards to the
architecture details (e.g., the integers provided by the light sensor are translated into a
boolean context variable to indicate whether there is or not light enough). The design-
er needs to decide how many values are enough to characterize a context variable or a
variation point; (2) adjusting the design-time functions that specify the VML proper-
ties to be optimized; and (3) establishing the right links between the architectural
elements and the VML variables (e.g., selecting thresholds to establish what means
false or true in a boolean context variable). Regarding the abstraction level of va-
riables in VML, it is worth noting that the number of considered alternatives has an
impact on the adaptation stability (e.g., the more context values, the more potential
situations to manage and, consequently, it may cause continuous and inefficient sys-
tem reconfigurations), the computational cost (e.g., the more variants to handle the
higher the cost) and the effectiveness of the process (e.g., an insufficient number of
alternatives makes adaptation useless).

Concerning the main limitations we found when implementing the robotic exam-
ple, Maude seems not to offer a simple method for solving constrained optimization
problems. The current approach relies on exploring all the possible combination of
variants to finally decide the best one in terms of the adaptation properties. Thus, the
practical feasibility of this problem critically depends on the number of variants.
Another barrier for the developers is the difficulty for debugging Maude programs,
due to the concurrent nature of its rules and the scarcely legible traces it returns dur-
ing the execution. We figured out that this difficulty increases exponentially as the
number of rules grows, since it becomes more and more complex to follow the
interactions between the Maude rules, causing undesired states in the system.

Automatic Code Generation from VML

We have identified some common Maude structures (partly described in section 4)
that could be easily generated from a VML model (e.g., the context and the variability
representation). However, part of the Maude specification cannot be generated from
the VML model, as it also depends on the component-based architecture model, in
particular of its reconfigurable and monitoring parts (related with the VML variation
points and context variables, respectively).

For the future, we plan to continue exploring the potentials of Maude, in particular,
for verifying the completeness and correctness of the self-adaptive behavior specifica-
tions. We also plan to link this work with our previous experience with VML [7] and
with the MDE approach proposed by DiVA [6].

446 J.F. Inglés-Romero and C. Vicente-Chicote

Acknowledgements and Additional Material. Juan F. Inglés-Romero thanks
Fundación Séneca-CARM for a research grant (Exp. 15561/FPI/10). The authors
would like to thank Prof. Antonio Vallecillo and Mr. Javier Troya for their helpful
insights about modeling with Maude.

Additional material related to this work can be found in the following website:
https://sites.google.com/site/cvicentechicote/home/publications/varis2013

References

1. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: A research roadmap.
In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Self-Adaptive
Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

2. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges.
ACM Transactions on Autonomous and Adaptive Systems 4(2), 1–42 (2009)

3. Maude website, http://maude.cs.uiuc.edu/
4. Inglés-Romero, J.F., et al.: Using Models@Runtime for Designing Adaptive Robotics

Software: an Experience Report. In: 1st Int’l Workshop on Model-Based Engineering for
Robotics (RoSym), Oslo, Norway, October 3-8 (2010)

5. Inglés-Romero, J.F., et al.: Towards the Automatic Generation of Self-Adaptive Robotics
Software: An Experience Report. In: 20th IEEE Int’l Conf. on Collaboration Technologies
and Infrastructures (WETICE), Paris, France, June 27-29, pp. 79–86 (2011)

6. EU 7FP DiVA Project, http://www.ict-diva.eu
7. Inglés-Romero, J.F., et al.: Dealing with Run-Time Variability in Service Robotics: To-

wards a DSL for Non-Functional Properties. In: 3rd Int’l Workshop on Domain-Specific
Languages and Models for Robotic Systems (DSLRob 2012), held in conjunction with
(SIMPAR 2012), Tsukuba, Japan, November 5 (2012)

8. The E-puck website, http://www.e-puck.org
9. Xtext website, http://www.eclipse.org/Xtext/

10. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product lines.
Computer 41(4), 93–95 (2008)

11. Fleurey, F., Solberg, A.: A Domain Specific Modeling Language Supporting Specification,
Simulation and Execution of Dynamic Adaptive Systems. In: Schürr, A., Selic, B. (eds.)
MODELS 2009. LNCS, vol. 5795, pp. 606–621. Springer, Heidelberg (2009)

12. The DiaSuite Project website, https://diasuite.inria.fr/
13. The MUSIC Project website,

http://ist-music.berlios.de/site/index.html
14. MOSKitt4SPL website, http://www.pros.upv.es/m4spl/index.html
15. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving executability into object-oriented me-

ta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713,
pp. 264–278. Springer, Heidelberg (2005)

16. Blair, G.S., Bencomo, N., France, R.B.: Models@run.time. IEEE Computer 42(10), 22–27
(2009)

17. Romero, J.R., Rivera, J.E., Durán, F., Vallecillo, A.: Formal and tool support for model
driven engineering with Maude. Journal of Object Technology 6(9) (2007)

	Towards a Formal Approach for Prototyping and Verifying Self-Adaptive Systems
	1 Introduction
	2 Robotic Example
	2.1 Adaptation Scenario
	2.2 Component-Based Software Architecture

	3 Modeling Variability with VML
	4 Prototyping Self-Adaptation with Maude
	4.1 Overall Proposed Approach
	4.2 Initialization
	4.3 Context Assessment
	4.4 Reasoning
	4.5 System Reconfiguration

	5 Formal Verification of the Adaptation Strategy
	6 Related Work
	7 Lessons Learned and Future Research Plans
	References

