Skip to main content

Welche Prothesen für das Kniegelenk gibt es?

  • Chapter
  • First Online:
Knieendoprothetik

Zusammenfassung

Der Markt an Endoprothese ist vielfältig. Er beginnt mit den Knieteilprothesen (mit mobiler oder nicht mobiler Plattform), geht über den kompletten Oberflächenersatz und reicht dann bis zu den geführten Prothesen oder den modularen Systemen für die Revision oder die Tumorpatienten. Noch deutlich unterrepräsentiert sind die patellafemoralen Knieendoprothesen, die insbesondere bei einer Arthrose aufgrund einer Trochleadysplasie indiziert sind. Bikompartimentale Knieendoprothesen sind vom theoretischen Ansatz her eigentlich die richtige Richtung, um die mechanische und propriozeptive Kompetenz des vorderen Kreuzbandes zu erhalten. Die technische Umsetzung ist jedoch zur Zeit noch schwierig, so dass diese Prothesen im klinischen Alltag keine Rolle spielen. Das Standardimplantat ist die das hintere Kreuzband erhaltende Oberflächenprothese für das Kniegelenk. Die gekoppelten Endoprothesen werden bei instabilen Bändern oder starken Achsendeformitäten notwendig sein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Ackroyd CE, Newman JH (2001) The Avon patellofemoral arthroplasty-development development and early results. J Bone Joint Surg (Br) 83-B(Suppl II):146

    Google Scholar 

  • Ackroyd CE, Newman JH (2005) Patellofemoral Arthroplasty. Sixteen years experience with 436 cases. Proceedings of combined orthopaedic Associations Meeting, Sydney 2004. J Bone Joint Surg (Br) 87-B(Suppl):152

    Google Scholar 

  • Ackroyd CE, Smith EJ, Newman JH (2004) Trochlear resurfacing for extensor mechanism instability following patellectomy. The Knee 11:109–111

    CAS  PubMed  Google Scholar 

  • Ackroyd CE, Newman JH, Eldridge J (2005) Patellofemoral Arthroplasty height years experience with the Avon Design. EFORT, Lisabon

    Google Scholar 

  • Ackroyd CE, Newman JH, Evans R, Eldridge JD, Joslin CC (2007) The Avon patellofemoral arthroplasty: five-year survivorship and functional results. J Bone Joint Surg Br 89:310–315

    CAS  PubMed  Google Scholar 

  • Andriacchi TP, Galante JO, Fermier RW (1982) The influence of total knee replacement design on walking and stair-climbing. J Bone Joint Surg Am 64:1328–1335

    CAS  PubMed  Google Scholar 

  • Andriacchi TP, Stanwyck TS, Galante JO (1986) Knee biomechanics and total knee replacement. Arthroplasty 1:211–219

    CAS  Google Scholar 

  • Arbuthnot JE, Wainwright O, Stables G, Rathinam M, Rowley DI, McNicholas MJ (2011) Dysfunction of the posterior cruciate ligament in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19(6):893–8

    PubMed  Google Scholar 

  • Arciero RA, Toomey HE (1988) Patellofemoral arthroplasty. A three- to nine-year follow-up study. Clin Orthop Relat Res 236:60–71

    PubMed  Google Scholar 

  • Argenson JA (2008) Knee Society Meeting. AAOS, San Francisco

    Google Scholar 

  • Argenson JN, O’Connor JJ (1992) Polyethylene wear in meniscal knee replacement. A one to nine-year retrieval analysis of the Oxford knee. J Bone Joint Surg Br 74:228–232

    CAS  PubMed  Google Scholar 

  • Argenson J-N, Guillaume J-M, Aubaniac J-M (1995) Is there a place for patellofemoral arthroplasty? Clinical Orthopaedics and Related Research 321:162–167

    PubMed  Google Scholar 

  • Argenson JN et al (2002) In vivo determination of Knee kinematics for subjects implanted with a Unicompartmental arthroplasty. J Arthroplasty 17:1049–1054

    PubMed  Google Scholar 

  • Argenson J-N, Flecher X, Parratte S, Aubaniac J-M (2005) Patellofemoral arthroplasty: An update. Clinical Orthopaedics and Related Research 440:50–53

    PubMed  Google Scholar 

  • Asano T, Akagi M, Clarke IC, Masuda S, Ishii T, Nakamura T (2007) Dose effects of cross-linking polyethylene for total knee arthroplasty on wear performance and mechanical properties. J Biomed Mater Res B Appl Biomater 83(2):615–22

    PubMed  Google Scholar 

  • Attenborough CG (1978) The Attenborough total knee replacement. J Bone Joint Surg 60-B:320–326

    CAS  Google Scholar 

  • Bach ChM, Steingruber I, Nogler M, Orgon M, Wimmer C, Gobel G, Kristmer M (2002) Scoring systems in total knee arthroplasty. Clin Orthop 399:184–196

    Google Scholar 

  • Bagren JH, Day WH, Freeman MAR, Swanson SAV (1978) Mechanical tests on the tibial component in surface replacement of the knee. Arch Orthop Traumat Surg 92:31–34

    Google Scholar 

  • Banks SA, Markovich GD, Hodge WA (1997) In vivo kinematics of cruciate-retaining and -substituting knee arthroplasties. J Arthroplasty 12(3):297–304

    CAS  PubMed  Google Scholar 

  • Bankston AB, Keating EM, Ranawat C, Faris PM, Ritter MA (1995) Comparison of polyethylene wear in machined versus molded polytehylene. Clin Orthop 317:37–43

    PubMed  Google Scholar 

  • Barbos M, Benvenutti A (1983) Metallic debris arising from prosthetic abrasion: An investigation of biodegradation of the materials and physiology of bone. Ital J Orthop Traumatol 9:377 (Abstract)

    Google Scholar 

  • Bartel DL, Burstein AH, Santavilla EA (1982) Performance of the tibial component in total knee replacement. Convential and revision designs. J Bone Joint Surg 64 A:1026–1033

    Google Scholar 

  • Bartel DL, Wright TM, Edwards DL (1983) The effect of metal backing on stresses in polyethylene acetabular components. The Hip: Proceedings of the Hip Society. CV Mosby, St. Louis, S 229

    Google Scholar 

  • Bartel D-L, Burnstein A-H, Toda M-D, Edwards D-L (1985) The effect of conformity and plastic thickness on contact stresses in metal backed plastic implants. J Biomech Eng 107(3):193–199

    CAS  PubMed  Google Scholar 

  • Bartel DL, Bicknell VL, Wright TM (1986) The effect of conformity, thickness and material on stresses in ultra-high molecular weight components for total joint replacement. J Bone Joint Surg 68 A:1041–1051

    Google Scholar 

  • Bayley JC, Scott RD, Ewald EC, Holmes GB (1988) Failure of metal-backed patellar component after total knee replacement. J Bone Joint Surg 70 A:669–674

    Google Scholar 

  • Beaupre G, Vasu R, Carter C, Schurman D (1986) Epiphyseal-based desisgns for tibial plateau components. II. Stress analysis in the sagittal plane. J Biomech 19:663–673

    CAS  PubMed  Google Scholar 

  • Bergmann E-G, Süssenbach F (1997) The unicondylar knee replacement as a treatment of varus/valgus osteoarthritis of the knee. Middle and long term results in Ph. Cartier: Unicomparmental knee arthroplasty. Elsevier Science. 181–191

    Google Scholar 

  • Bistolfi A, Massazza G, Lee GC, Deledda D, Berchialla P, Crova M (2013) Comparison of Fixed and Mobile-Bearing Total Knee Arthroplasty at a Mean Follow-up of 116 Months. J Bone Joint Surg Am 95(12):e831–e837

    Google Scholar 

  • Black DL, Cannon SR, Hilton A, Bankes MJK, Briggs TWR (2001) The Kinemax total knee arthroplasty. J Bone Joint Surg (Br) 83-B:359–363

    Google Scholar 

  • Blaha J, Freeman MAR, Revell P, Todd R (1982) The fixation of a proximal tibial polyethylene prosthesis without cement. J Bone Joint Surg 64 B:326–335

    Google Scholar 

  • Blauth W (1986) Unsere Kniegelenkprothesen mit Patellaersatz. Z Orthop 124(125):Y–240

    Google Scholar 

  • Blauth W, Bontemps G, Skripitz W (1977) Zum gegenwärtigen Stand künstlicher Kniegelenke vom Typ des Scharniergelenks. Arch orthop Unfall-Chir 88:259–272

    CAS  Google Scholar 

  • Blauth W, Hiss E, Jäger R (1980) Die Kniegelenktotalprothese nach Blauth. Med Orth Tech 100:134–139

    Google Scholar 

  • Blazina ME, Fox JM et al. (1979) Patellofemoral replacement. Clin Orthop Relat Res. Oct;(144):98–102

    Google Scholar 

  • Blazina ME, Fox JM, Pizzo D, BroukhimB, Ivey FM (1979) Patellofemoral replacement. Clin Orthop 144:98–102

    PubMed  Google Scholar 

  • Blazina ME, Fox JM, Del Pizzo W, Broukhim B, Ivey FM (2005) The classic: Patellofemoral replacement. Clinical Orthopaedics and Related Research 436:3–6

    PubMed  Google Scholar 

  • Bobyn J, Cameron H, Abdulla D, Pilliar RC (1982) Weatherly biologic fixation and bone modeling with an unconstrained canine total knee prosthesis. Clin Orthop 166:301–312

    PubMed  Google Scholar 

  • Bourne RB (2001) Reevaluating the unicondylar knee arthroplasty. Orthopedics 24(9):885–886

    CAS  PubMed  Google Scholar 

  • Bourne RB, Finlay J, Cohn N (1981) Principal strain in the humantibia before and after total knee arthroplasty. Trans Orthop Res Soc 6:160

    Google Scholar 

  • Brockett CL, Jennings LM, Hardaker C, Fisher J (2012) Wear of moderately cross-linked polyethylene in fixed-bearing total knee replacements. Proc Inst Mech Eng H Jul 226(7):529–35

    Google Scholar 

  • Bryan RS, Rand JA (1982) Revision total knee arthroplasty. Clin Orthop 170:116–122

    PubMed  Google Scholar 

  • Buechel EE (1994) Cementless men is cal bearing knee arthroplasty: 7- to 12-year outcome analysis. Orthpedics 17(9):833–836

    CAS  Google Scholar 

  • Buechel EE, Pappas MJ (1984) New Jersey integrated total knee replacement system: biomechanical analysis and clinical evaluation of 918 cases FDA Panel Presentation, Silver Spring, Maryland, July 11.

    Google Scholar 

  • Buechel EE, Pappas MJ (1986) The New Jersey low contact stress knee replacement system: biomechanical rationale and review of the first 123 cemented cases. Arch Orthop Trauma Surg 105:197

    CAS  PubMed  Google Scholar 

  • Buechel EE, Pappas MJ (1989) New Jersey low contact stress knee replacement system: ten year evaluation of meniscal bearings. Orthop Clin North Am 20:147

    CAS  PubMed  Google Scholar 

  • Buechel EE, Pappas MJ (1990) Long-term-survivorship analysis of cruciate-sparing versus cruciate-sacrificing knee prostheses using meniscal bearings. Clin Orthop 260:162–169

    PubMed  Google Scholar 

  • Buechel EE, Rosa RA, Pappas MJ (1989) A metal backed, rotatingbearing patellar prosthesis to lower contact stress. An 11-year clinical study. Clin Orthop 248:34–49

    PubMed  Google Scholar 

  • Cartier P, Cheaib S (1987) Unicondylar knee arthroplasty. 2–10 years of follow-up evaluation. J Arthroplasty 2(2):157–62

    CAS  PubMed  Google Scholar 

  • Cartier PH et al. (1997) Unicompartmental knee arthroplasty. Expension Sientifique Francaise

    Google Scholar 

  • Cartier P, Sanouiller JL, Khefacha A (2005) Long-term results with the first patellofemoral prosthesis. Clin Orthop Relat Res 436:47–54

    PubMed  Google Scholar 

  • Cheal E, Hayes W, Lee C, Snyder B, Miller J (1985) Stress analysis of a condylar knee tibial component: Influence of metaphyseal shell properties and cement injection depth. J Orthop Res 3:424–434

    CAS  PubMed  Google Scholar 

  • Connelly G, Rimnac C, Wright T, Hertzberg R, Manson J (1984) Fatigue crack propagation behavior of ultra high molecular weight polyethylene. J Orthop Res 2:119–125

    CAS  PubMed  Google Scholar 

  • Coyte PC, Hawker G, Croxford R, Wright JG (1999) Rates of revision knee replacement in Ontario, Canada. J Bone Joint Surg Am 81(6):773–82

    CAS  PubMed  Google Scholar 

  • Crushner FD et al (2003) A quantitative histological comparison: ACL degeneration in the osteoarthritic knee. J Arthroplasty 18:687–692

    Google Scholar 

  • Cuckler JM (1996) Mechanisms of knee implant failure 12 th Ann Current Concepts in Joint Replacement, Orlando., S 163–164

    Google Scholar 

  • Davies AP, Vince AS et al. (2002) The radiologic prevalence of patellofemoral osteoarthritis. Clin Orthop Relat Res. 402:206–12

    Google Scholar 

  • Davis DK, Fithian DC (2002) Techniques of medial retinacular repair and reconstruction. Clin Orthop Relat Res 402:38–52

    PubMed  Google Scholar 

  • Dawson J, Fitzpatrick R, Murray D, Carr A (1998) Questionnaire on the perceptions of patients about total knee replacement. J Bone Joint Surg (Br) 80-B:63–69

    Google Scholar 

  • De Cloedt P, Lagaye J, Lokietek W (1999) Femoro-patella prosthesis. Acta Orthop Belg 65:170–175

    PubMed  Google Scholar 

  • De Winter WE, Feith R, van Loon CJ (2001) The Richards type II patellofemoral arthroplasty: 26 cases followed for 1-20 years. Acta Orthop Scand 72:487–490

    PubMed  Google Scholar 

  • Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests tests compared. J Bone Joint Surg 76:745–749

    CAS  Google Scholar 

  • Dejour D, Lecoultre B (1998) Douleurs et instabilité rotulienne. Essai de Classification. Med Hyg 56:1466–1471

    Google Scholar 

  • Dejour H, Walch G, Neyret P, Adeleine P (1990) Dysplasia of the femoral trochlea. Rev Chir Orthop Reparatrice Appar Mot 76:45–54

    CAS  PubMed  Google Scholar 

  • Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19–26

    CAS  PubMed  Google Scholar 

  • Dennis DA et al (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res 416:37–57

    PubMed  Google Scholar 

  • Dennis DA, Komistek RD, Mahfouz MR (2003) In vivo fluoroscopic analysis of fixed bearing total knee replacements. Clin Orthop Relat Res 410:114–130

    PubMed  Google Scholar 

  • Dorr LD et al (1988) Functional comparison of posterior cruciate retained versus sacrificed total Knee arthrplasty. Clin Orthop Relat Res 236:36–43

    PubMed  Google Scholar 

  • Dye SF (2005) The pathophysiology of patellofemoral pain: a tissue homeostasis perspective. Clin Orthop Relat Res 436:100–110

    PubMed  Google Scholar 

  • Engelbrecht E et al (1976) Statistics of total knee replacement: partial and total knee replacement, design St. Georg: a review of a 4-year observation. Clin Orthop 00(120):54–64

    CAS  Google Scholar 

  • Engh GA, Ammeen D (2004) Is an intact anterior cruciate ligament needed in order to have a well-functioning unicondylar knee replacement? Clin Orthop Relat Res. 428:170–3. Review

    Google Scholar 

  • Engh GA, Mc Auley JP (1999) Unicondylar arthroplasty: an option for high-demand patients with Gonarthrosis. Instr Course Lect 48:143–148

    CAS  PubMed  Google Scholar 

  • Engh G, Parks NL (1994) The classification and treatment options of bone defects in revision knee surgery. AAOS, 24.–28. Febr.

    Google Scholar 

  • Engh GA, Dwyer KA, Hanes CK (1992) Polyethylene wear of metal-backed tibial components in total and unicompartmental knee prostheses. J Bone Joint Surg Br 74:9–17

    CAS  PubMed  Google Scholar 

  • Ezzet KA, Garcia R, Barrack RL (1995) Effect of component fixation method on osteolysis in total knee arthroplasty. Clin Orthop 321:86–91

    PubMed  Google Scholar 

  • Feller JA, Bartlett RJ, Lang DM (1996) Patellar resurfacing versus retention in total knee arthroplasty. J Bone Joint Surg (Br) 78-B:226–228

    Google Scholar 

  • Fisher J, McEwen HM, Barnett PI, Bell C, Stone MH, Ingham E (2004a) Influences of sterilising techniques on polyethylene wear. Knee 11(3):173–176

    CAS  PubMed  Google Scholar 

  • Fisher J, McEwen HM, Tipper JL, Galvin AL, Ingram J, Kamali A, Stone MH, Ingham E (2004b) Wear, debris, and biologic activity of cross-linked polyethylene in the knee: benefits and potential concerns. Clin Orthop Relat Res 428:114–119

    PubMed  Google Scholar 

  • Forsythe ME, Englund RE, Leighton RK (2000) Unicondylar knee arthroplasty: a cementless perspective. Can J Surg 43(6):417–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Freeman MAR, Blaha JD, Brown G, Day WH, Insler HP, Revel PA (1981) Cementless fixation of a tibial component of the knee. Trans Orthop Res Soc 6:157

    Google Scholar 

  • Fuchs S et al (2002) Proprioceptive function, clinical results, and quality of life after Unicondylar sledge prosthesis. Am J Phys Med Rehabil 81:478–482

    CAS  PubMed  Google Scholar 

  • Fuchs S et al (2003) Proprioception with bicondylar sledge prostheses retaining cruciate ligaments. Clin Orthop Relat Res 406:148–154

    PubMed  Google Scholar 

  • Fuchs S et al (2005) Clinical and functional comparison of uni- and bicondylar sledge prostheses. Knee Surg Sports Traumatol Arthrsoc 13:197–202

    CAS  Google Scholar 

  • Fulkerson JP (1994) Patellofemoral pain disorders: evaluation and management. J Am Acad Orthop Surg 2:124–132

    PubMed  Google Scholar 

  • Gacon G, Travers V, Barba L, Lalain J-J, Laurencon M, Ray A (1993) Reprises pour échecs de prosthèses unicompartimentales du genou. Stratégie thérapeutique et résultats à propos de 40 cas. Rev Chir Orthop 79:635–642

    CAS  PubMed  Google Scholar 

  • Garg A, Walker P (1986) The effect of the interface on the bone stresses benath tibial components. J Biomech 19:957–967

    CAS  PubMed  Google Scholar 

  • Gluck T (1890) Autoplastik - Transplantation – Implantation von Fremdkörpern. Berl klin Wschr 27 4:421–427

    Google Scholar 

  • Gómez-Barrena E, Martinez-Moreno E, Munuera L (1996) Segmental sensory innervation of the anterior cruciate ligament and the patellar tendon of the cat’s knee. Acta Orthop Scand 67:545–552

    PubMed  Google Scholar 

  • Goodfellow J, Hungerford DS, Zindel M (1976) Patellofemoral joint mechanics and pathology. J Bone Joint Surg (Br) 58-B:287–290

    Google Scholar 

  • Goodfellow JW, O’Connor J (1978) The mechanics of the knee and prosthesis design. J Bone Joint Surg 60B:358–369

    Google Scholar 

  • Goodfellow JW, O’Connor J (1986) Clinical results of the Oxford knee: surface arthroplasty of tibiofemoral joint with a meniscal bearing prosthesis. Clin Orthop 205:21–42

    PubMed  Google Scholar 

  • Goodfellow J, O’Connor J, Murray DW (2002) The Oxford meniscal unicompartmental knee. J Knee Surg 15(4):240–246

    PubMed  Google Scholar 

  • Grelsamer RP, Dejour D, Gould J (2008) The pathophysiologiy of patellofemoral arthritis. Orthop Clin North Am 39:269–274

    PubMed  Google Scholar 

  • Gschwend N (1975a) GSB knee arthroplasty. Z Orthop 113:537–539

    CAS  PubMed  Google Scholar 

  • Gschwend N (1975bb) Indikation zur Verwendung von Teilprothesen, Schlittenprothesen und Scharnierprothesen am Beispiel des Kniegelenkes. Orth Prax 12:924

    Google Scholar 

  • Gschwend N (1978) GSB knee joint: a further possibility, principle, results. Clin Orthop 132:170–176

    PubMed  Google Scholar 

  • Gschwend N, Loehr J (1981) The Gschwend-Scheier-Bahler (GSB) replacement of the rheumatoid knee joint. Reconstr Surg Traumatol 18:174–194

    CAS  PubMed  Google Scholar 

  • Gschwend N, Scheier HI, Bahler A, Meyer RP (1980) The GSB knee arthroplasty. Int Orthop 3:281–284

    CAS  PubMed  Google Scholar 

  • Gunston FH (1971) Polycentric knee arthroplasty. Prosthetic simulation of normal knee movement. J Bone Joint Surg Br 53(2):272–277

    CAS  PubMed  Google Scholar 

  • Haider H, Weisenburger JN, Kurtz SM, Rimnac CM, Freedman J, Schroeder DW, Garvin KL (2012) Does vitamin E-stabilized ultrahigh-molecular-weight polyethylene address concerns of cross-linked polyethylene in total knee arthroplasty? J Arthroplasty 27(3):461–469

    PubMed  Google Scholar 

  • Halata Z, Wagner C, Baumann KI (1999) Sensory nerve endings in the anterior cruciate ligament (Lig. Cruciatum anterius) of sheep. Anat Rec 254:13–21

    CAS  PubMed  Google Scholar 

  • Harwin SF (1998) Patellofemoral complications in symmetrical total knee arthroplasty. J Arthroplasty 13:153–162

    Google Scholar 

  • Hassenpflug J (1992) Die Blauth-Knieendoprothese. Grundlagen, gegenwartiger Stand und Ausblick. Hans Huber, Bern Gottingen Toronto Seattle

    Google Scholar 

  • Hassenpflug J, Hiss E, Rauch G (1985) Untersuchungen zur Primärstabilität von Kniegelenksscharnierendoprothesen unterschiedlicher Schaftlänge. In: Lechner E, Ascherl R, Blümel G, Hungerford DS (Hrsg) Kniegelenksendoprothetik - eine aktuelle Bestandsaufnahme. Schattauer, Stuttgart New York, S 35–46

    Google Scholar 

  • Hassenpflug J, Harten K, Hahne HJ, Hobeck K, Holland C, Maronna U (1988) Ist die Implantation von Kniegelenkscharnierendoprothesen noch vertretbar? Z Orthop 126:398–407

    CAS  PubMed  Google Scholar 

  • Hau RCY, Newman JH (2008) Knee replacement for osteoarthritis secondary to chronic patella dislocation and trochlear dysplasia. The Knee 15:447–450

    PubMed  Google Scholar 

  • Hendrix M, Newman JH (2006) Trochlear dysplasia – an under recognised cause of patello femoral arthritis. J Bone Joint Surg 88B(SupII):251

    Google Scholar 

  • Hernigou P, Deschamps G (2002) Patellar impingement following unicompartmental arthroplasty. J Bone Joint Surg Am 84-A(7):1132–1137

    CAS  PubMed  Google Scholar 

  • Hodrick JT, Severson EP, McAlister DS, Dahl B, Hofmann AA (2008) Highly crosslinked polyethylene is safe for use in total knee arthroplasty. Clin Orthop Relat Res 466(11):2806–2812

    PubMed Central  PubMed  Google Scholar 

  • Hood RW, Wright TA (1983) Burstein Retrieval analysis total knee prostheses: A method and its application to 48 total condylar prostheses. J Biomed Mater Res 17:829–842

    CAS  PubMed  Google Scholar 

  • Huang CH, Lee YM, Liau JJ, Cheng CK (1998) Comparison of muscle strength of posterior cruciate-retained versus cruciate-sacrificed total knee arthroplasty. J Arthroplasty 13(7):779–83

    CAS  PubMed  Google Scholar 

  • Huch K (2005) Sport activities 5 years after total knee or hip arthroplasty: the Ulm osteoarthritis Study. Ann Rheum Dis 64:1715–1720 (Epub 2005 Apr 20)

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huot JC, Van Citters DW, Currier JH, Currier BH, Mayor MB, Collier JP (2010) Evaluating the suitability of highly cross-linked and remelted materials for use in posterior stabilized knees. J Biomed Mater Res B Appl Biomater 95(2):298–307. doi:10.1002/jbm.b.31714

    PubMed  Google Scholar 

  • Huson A, Spoor CW, Verbout AJ (1989) A model of the human knee derived from kinematic principles and its relevance for endoprosthesis design. Acta Morphal Neerl Scand 270:45

    Google Scholar 

  • Hyldahl HC, Regner L, Carlsson L, Karrholm J, Weidenhielm L (2001) Does metal backing improve fixation of tibial component in unicondylar knee arthroplasty? A randomized radiostereometric analysis. J Arthroplasty 16(2):174–179

    CAS  PubMed  Google Scholar 

  • Insall JN (1984a) Total knee replacement. In: Insall JN (Hrsg) Surgery of the knee. Churchill Livingstone, New York, S 587–695

    Google Scholar 

  • Insall JN (1984b) Surgical approaches to the knee. Insall JN (Hrsg.) Surgery of the knee. Churchill Livingstone, New York, S 41–54

    Google Scholar 

  • Insall JN, Lachiewicz PE, Burstein AH (1982) The posterior stabilized condylar prosthesis: a modification of the total condylar design. Two- to four-year clinical experience. J Bone Joint Surg 64 A:1317–1323

    Google Scholar 

  • Institute of Medical and Biological Engineering, University of Leeds, Leeds LS29JT, UK. j.fisher@leeds.ac.uk

    Google Scholar 

  • Iwano T (1990) Roentgengraphic and clinical findings of patellofemoral osteoarthritis. With special reference to its relationship to femorotibial osteoarthrosis and etiologic factors. Clin Orthop Relat Res 252:190–197

    PubMed  Google Scholar 

  • Jacobs W, Anderson P, Limbeek J, Wymenga A (2004) Mobile bearing vs fixed bearing prostheses for total knee arthroplasty for post-operative functional status in patients with osteoarthritis and rheumatoid arthritis. Cochrane Database Syst Rev 2(2):CD003130

    PubMed  Google Scholar 

  • Jacofsky DJ (2008) Highly cross-linked polyethylene in total knee arthroplasty: in the affirmative. J Arthroplasty 23(7 Suppl):28–30 (Epub 2008 Aug 12) doi:10.1016/j.arth.2008.06.017.

    PubMed  Google Scholar 

  • Jenny JY, Rapp E, Kehr P (1997) Proximal tibial meniscal slope: a comparison with the bone slope. Rev Chir Orthop Reparatrice Appar Mot 84(5):435–438

    Google Scholar 

  • Jerosch J, Heisel J (1998) Knieendoprothetik. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jerosch J, Fuchs S, Liljenqvist U, Haftka S (1995a) Auswirkungen unterschiedlicher Sterilisationsverfahren auf den Oxidationsgrad auf den Werkstoff ultrahochmolekulares Polyethylen (UHMWPE). Biomed Tech 40:296–303

    CAS  Google Scholar 

  • Jerosch J, Schroder J, Steinbeck J (1995bb) Arthroskopie bei KnieEndoprothesen. Arthroskopie 8:133–136

    Google Scholar 

  • Jerosch J, Schmidt K, Prymka M (1997a) Beeinflussung propriozeptiver Fähigkeiten von Kniegelenken mit einer primären Gonarthrose. Unfallchirurg 100:219–224

    CAS  PubMed  Google Scholar 

  • Jerosch J, Fuchs S, Reichelt R, Haftka S (1997b) Probleme des Implantatwerkstoffes ultrahochmolekurlares Polyethylen (UHMWPE. In: Puhl W (Hrsg) Performance of the wear couple Biolox forte in hip alloarthroplasty. Enke, Stuttgart, S 11–22

    Google Scholar 

  • Jerosch J, Heisel J, Fuchs S (1997cc) Postoperative Entlastung und Sportfähigkeit nach endoprothetischem Hüftgelenkersatz. Krankengymnastik 49:1135–1146

    Google Scholar 

  • Jerosch J, Fuchs S, Heisel J (1997d) Knieendoprothetik - eine Standortbestimmung. Deutsches Ärzteblatt 94:449–455

    Google Scholar 

  • Jerosch J, Schäffer C, Prymka M (1998) Proprioceptive abilities of surgically and conservatively treated knee joints with injuries of the cruciate ligament. Unfallchirug 101:26–31

    CAS  Google Scholar 

  • Jerosch J, Schunck J, Neuhäuser C (2009) Knorpel- und Kreuzbandstatus von Patienten, die eine Knieendoprothese erhalten. Orthopädische Praxis 45:22–26

    Google Scholar 

  • Johansson H (1991) Role of knee ligaments in proprioception and regulation of muscle stiffness. J Electromyogr Kinesiol 1(3):158–179

    CAS  PubMed  Google Scholar 

  • Johnson J, Krug W, Nahon D, Miller J, Ahmed A (1983) An evaluation of the load bearing capability of the cancellous proximal tibia with special interest to the design of knee implants. Trans Orthop Res Soc 8:403

    Google Scholar 

  • Jonsson GT (1981) Compartmental arthroplasty for gonarthrosis. Acta Orthop Scand 52(SUppI193):1–110

    Google Scholar 

  • Jung KA, Lee SC, Hwang SH, Kim SM (2008) Fracture of a second-generation highly cross-linked UHMWPE tibial post in a posterior-stabilized scorpio knee system. Orthopedics 31(11):1137

    PubMed  Google Scholar 

  • Kim W, Rand JA, Chao EYS (1993) Biomechanics of the knee. In: Rand JA (Hrsg) Total knee arthroplasty. Raven Press, New York, S 9–58

    Google Scholar 

  • Kim YH, Kim JS, Choe JW, Kim HJ (2012) Long-term comparison of fixed-bearing and mobile-bearing total knee replacements in patients younger than fifty-one years of age with osteoarthritis. J Bone Joint Surg Am 94(10):866–73. doi:10.2106/JBJS.K.00884

    PubMed  Google Scholar 

  • Klein M, Franz A (2008) Bicompartimental Knee arthroplasty in the living Knee studied by MRT International Knee Meeting Frankfurt.

    Google Scholar 

  • Knutson K, Jönson G, Langer Anderson J, Larustotti H, Lindgren L (1981) Deformation and loosening of the tibial component in knee arthroplasty with unicompartimental endoprosthesis. Acta Orthop Scand 52(6):667–673

    CAS  PubMed  Google Scholar 

  • Komistek R, Dennis D, Mahfouz M (2003) In vivo fluoroscopic analysis of the normal knee. Clin Orthop Rel Res 410:69–81

    Google Scholar 

  • Kooijman HJ, Driessen AP, van Horn JR (2003) Long-term results of patellofemoral arthrosplasty. A report of 56 arthroplasties with 17 years of follow-up. J Bone Joint Surg Br 85:836–840

    CAS  PubMed  Google Scholar 

  • Krajca-Radcliffe JB, Coker TP (1996) Patellofemoral arthroplasty. A 2- to 18-year follow-up study. Clin Orthop Relat Res 330:143–151

    PubMed  Google Scholar 

  • Kulkarni MM, Eldridge JD, Newman JH (2008) Clinical presentations of Trochlear dysplasia. J Bone Joint Surg 90B(Sup II):257

    Google Scholar 

  • Labey L et al (2010) Joint kinematic in Bicompartimental-replaced knees for seven motor tasks International Knee Meeting, Berlin.

    Google Scholar 

  • Lachiewicz PF, Geyer MR (2011) The use of highly cross-linked polyethylene in total knee arthroplasty. J Am Acad Orthop Surg 19(3):143–151

    PubMed  Google Scholar 

  • Landy M, Walker P (1985) Wear in condylar replacement knees: A ten years follow-up. Trans Orthop Res Soc 10:96

    Google Scholar 

  • Laskin RS (1988) Tricon-M uncemented total knee arthroplasty. A review of 96 knees followed for longer than 2 years. J Arthroplasty 3(1):27–38

    CAS  PubMed  Google Scholar 

  • Leadbetter WB, Ragland PS (2005) Mont m.A. the appropriate use of patellofemoral arthroplasty: an analysis of reported indications, contraindications and failures. Clin Orthop Relat Res 436:91–99

    PubMed  Google Scholar 

  • Leopold SS, Greidanus N, Paprosky WG et al (1999) High rate of failure of allograft reconstruction of the extensor mechanism after total knee arthroplasty. J Bone Joint Surg Am 81(11):1574–1579

    CAS  PubMed  Google Scholar 

  • Lewis JL, Jaycox D, Wang O (1977) Stress analysis of some features of knee prostheses by finite emements. Trans Orthop Res Soc 2:55

    Google Scholar 

  • Lewis JL, Askew MJ, Jaycox DP (1982) A comparative evaluation of tibial component designs of total kee prosthesis. J Bone Joint Surg 64 A:129–134

    Google Scholar 

  • Lewold S, Goodman S, Knutson K, Robertson O, Linsgren L (1995) Oxford meniscal bearing versus the Marmor knee in unicompartmental arthroplasty for arthrosis. J Arthroplasty 10:722–731

    CAS  PubMed  Google Scholar 

  • Lombardi AV, Engh GA, Volz RG, Albrigo JL, Brainard BJ (1988) Fracture/dissociation of the polyethylene in metal-backed patellar components total knee arthroplasty. J Bone Joint Surg 70 A(6):675–679

    Google Scholar 

  • Long WJ, Levi GS, Scuderi GR (2012) Highly cross-linked polyethylene in posterior stabilized total knee arthroplasty: early results. Orthop Clin North Am 43(5):e35–e38 (Epub 2012 Sep 27) doi:10.1016/j.ocl.2012.07.005.

    PubMed  Google Scholar 

  • Lonner JH (2007) Patellofemoral arthroplasty. J Am Acad Orthop Surg 15:495–506

    PubMed  Google Scholar 

  • Lubinus HH (1979) Patella glide bearing total replacement. Orthopaedics 2:119–127

    CAS  Google Scholar 

  • Luna JT, Sembrano JN, Gioe TJ (2010) Mobile and fixed-bearing (all-polyethylene tibial component) total knee arthroplasty designs: surgical technique. J Bone Joint Surg Am 92(Suppl 1 Pt 2):240–249

    PubMed  Google Scholar 

  • Ly S, Burnstein A-H (1994) Ultra high molecular weight polyethylene. J Bone Joint Surg 76:1080–1090

    Google Scholar 

  • Mac Ausland WR (1957) Total replacement of the knee joint by a prosthesis. Surg Gynec Obstet 104:579–583

    CAS  Google Scholar 

  • MacIntosh DL (1958) Hemiarthroplasty of the knee using a spaceoccupyingvprosthesis for painful varus and valgus deformities. J Bone Joint Surg 40 A:1431

    Google Scholar 

  • Mahoney OM, Noble PC, Rhoads DD, Alexander JW, Tullos HS (1994) Posterior cruciate function following total knee arthroplasty. A biomechanical study. J Arthroplasty 9(6):569–78

    CAS  PubMed  Google Scholar 

  • Manley M, Stulberg B, Stern L, Watson J, Stulberg S (1987) Direct oberservation of micromotion at the implant bone interface with cemented and noncemented tibial components. Trans Orthop Res Soc 12:436

    Google Scholar 

  • Marmor L (1973) The modular knee. Clin Orthop 94:242–248

    PubMed  Google Scholar 

  • Matziolis G, Mehlhorn S, Schattat N, Diederichs G, Hube R, Perka C, Matziolis D (2012) How much of the PCL is really preserved during the tibial cut? Knee Surg Sports Traumatol Arthrosc 20(6):1083–1086

    PubMed  Google Scholar 

  • Mazas FB (1973) Guepar: Guepar total knee prosthesis. Clin Orthop 94:211–221

    PubMed  Google Scholar 

  • McAlindon TE et al (1992) Radiographic patterns of osteoarthritis of the knee joint in the communitiy: the importance of the patellofemoral joint. Ann Rheum Dis 51:844–849

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKeever CC (1955) Patellar prothesis. J Bone Joint Surg Am 37:1074–1084

    PubMed  Google Scholar 

  • Mears D (1979) Mechanical behaviors of real materials. In: Materials in Orthopaedic surgery. Williams & Wilkins, Baltimore, S 92–106

    Google Scholar 

  • Medel FJ, Peña P, Cegoñino J, Gómez-Barrena E, Puértolas JA (2007) Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylenes. J Biomed Mater Res B Appl Biomater 83(2):380–90

    PubMed  Google Scholar 

  • Merchant AC (1988) Classification of patellofemoral disorders. Arthroscopy 4:235–240

    CAS  PubMed  Google Scholar 

  • Merchant AC (2004) Early results with a total patellofemoral joint replacement arthroplasty prosthesis. J Arthroplasty 19:829–836

    PubMed  Google Scholar 

  • Miegel R, Walker P, Nelson P (1986) A compliant interface for total knee arthroplasty. J Orthop Res 4:486–493

    CAS  PubMed  Google Scholar 

  • Miehlke RK, Klumpert R, Klever F (1982) Dehnungs- und Spannungsanalysen an der Verankerung von Scharnierprothesen und Gleitachsprothesen des Kniegelenks. Z Orthop 120:412

    Google Scholar 

  • Miller J (1989) Fixation in total knee arthroplasty. In: Insall JN (Hrsg) Surgery of the knee. Churchill Livingstone, New York, S 717–728

    Google Scholar 

  • Minoda Y, Aihara M, Sakawa A, Fukuoka S, Hayakawa K, Tomita M, Umeda N, Ohzono K (2009) Comparison between highly cross-linked and conventional polyethylene in total knee arthroplasty. Knee 16(5):348–351 (Epub 2009 Mar 5) doi:10.1016/j.knee.2009.01.005.

    PubMed  Google Scholar 

  • Winter de Mirjam WE, Feith R, van Loon CJ (2001) The Richards type II patellofemoral arthroplasty: 26 cases followed for 1-20 years. Acta Orthopaedica Scandanavia 72(5):487–490

    Google Scholar 

  • Mirra J, Amstutz H, Matos M, Gold R (1976) The pathology of the joint tissues and its clinical relavance in prosthesis failure. Clin Orthop 117:221–240

    PubMed  Google Scholar 

  • Mirra J, Marder R, Amstutz H (1982) The pathology of failed total joint arthorplasty. Clin Orthop 170:175–183

    PubMed  Google Scholar 

  • Miura H, Whitesides L, Easlley J, Amador D (1988) Effects of screws and sleeve on initial fixation in uncemented total knee tibial component. Pamphlet from the DePaul Biomechanics Laboratories. Self publishing, Bridgeton

    Google Scholar 

  • Miyatsu M, Atsuta Y, Watakabe M (1993) The physiology of mechanoreceptors in the anterior cruciate ligament. An experimental study in decerebrate-spinalised animals. J Bone Joint Surg Br 75(4):653–657

    CAS  PubMed  Google Scholar 

  • Moeys EJ (1954) Metal alloplasty of the knee joint. An experimental study. J Bone Joint Surg 71 A:704–713

    Google Scholar 

  • Moro-oka TA, Muenchinger M, Canciani JP, Banks SA (2007) Comparing in vivo kinematics of anterior cruciate-retaining and posterior cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 15(1):93–99

    PubMed  Google Scholar 

  • Mulford JS, Eldridge JD, Porteous AJ, Ackroyd CE, Newman JH (2009) Revision of isolated patellofemoral arthroplasty to total knee replacement. Current Orthopaedic Practice 20:437–441

    Google Scholar 

  • Murase K, Crowninshield RD, Petersen DR, Chang TS (1982) An analysis of tibial component design in total knee arthroplasty. J Biomech 16(1):13–22

    Google Scholar 

  • Muratoglu OK, Bragdon CR, O’Connor DO, Perinchief RS, Jasty M, Harris WH (2002) Aggressive wear testing of a cross-linked polyethylene in total knee arthroplasty. Clin Orthop Relat Res 404:89–95

    PubMed  Google Scholar 

  • Muratoglu OK, Ruberti J, Melotti S, Spiegelberg SH, Greenbaum ES, Harris WH (2003) Optical analysis of surface changes on early retrievals of highly cross-linked and conventional polyethylene tibial inserts. J Arthroplasty 18(7 Suppl 1):42–47

    PubMed  Google Scholar 

  • Muratoglu OK, Bragdon CR, Jasty M, O’Connor DO, Von Knoch RS, Harris WH (2004a) Knee-simulator testing of conventional and cross-linked polyethylene tibial inserts. J Arthroplasty 19(7):887–897

    PubMed  Google Scholar 

  • Muratoglu OK, Burroughs BR, Bragdon CR, Christensen S, Lozynsky A, Harris WH (2004b) Knee simulator wear of polyethylene tibias articulating against explanted rough femoral components. Clin Orthop Relat Res 428:108–113

    PubMed  Google Scholar 

  • Muratoglu OK, Greenbaum ES, Bragdon CR, Jasty M, Freiberg AA, Harris WH (2004) Surface analysis of early retrieved acetabular, polyethylene liners: a comparison of conventional and highly crosslinked polyethylenes. J Arthroplasty. 19(1):68–77

    Google Scholar 

  • Murray DW, Goodfellow JW, O’Connor JJ (1998) The Oxford medial unicompartmental arthroplasty: a ten-year survival study. J Bone Joint Surg Br 80(6):983–989

    CAS  PubMed  Google Scholar 

  • Nakagawa S et al (2000) Tibiofemoral movement 3: Full flexion in the living knee studied by MRI. J Bone Joint Surg Br 82:1199–1200

    CAS  PubMed  Google Scholar 

  • Nelissen RG, Hogendoorn PC (2001) Retain or sacrifice the posterior cruciate ligament in total knee arthroplasty? A histopathological study of the cruciate ligament in osteoarthritic and rheumatoid disease. J Clin Pathol 54(5):381–384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neyret P, Chatain F, Deschamps G (1997) Unicompartmental Knee Replacement: Biomaterial and Designs Ph. Cartier: Unicomparmental knee arthroplasty. Elsevier Science. 56–60

    Google Scholar 

  • Nicol SG, Loveridge JM, Weale AE, Ackroyd CE, Newman JH (2006) Arthritis progression after patellofemoral joint replacement. The Knee 13:290–295

    PubMed  Google Scholar 

  • Nobel PC et al (2005) Does total knee replacement restore normal knee function? Clin Orthop Relat Res 431:157–165

    Google Scholar 

  • Oberlander MA, Baker CI, Morgan BE (1998) Patellofemoral arthrosis: the treatment options. Am J Orthop 27:263–270

    CAS  PubMed  Google Scholar 

  • Partington PF, Sawhney J, Rorabeck C, Barrack RL, Moore J (1999) Joint line restoration after revision total knee arthroplasty. Clin Orthop 367:165–171

    PubMed  Google Scholar 

  • Phillips RS (1973) Shiers’alloplasty of the knee. Clin Orthop 94:122–127

    PubMed  Google Scholar 

  • PIitz W (1991) Endoprothetik am Kniegelenk. Bestandsaufnahme und Perspektiven. Orthopäde 20:164–169

    Google Scholar 

  • Pinskerova V et al (2004) Does the femur roll back with flexion? J Bone Joint Surg Br 86:925–931

    CAS  PubMed  Google Scholar 

  • Pope MH, Fleming BC (1991) Knee Biomechanics and Materials. In: Laskin RS (Hrsg) Total knee replacement. Springer Verlag, London Berlin New York, S 25–40

    Google Scholar 

  • Post ZD, Matar WY, van de Leur T, Grossman EL, Austin MS (2010) Mobile-bearing total knee arthroplasty: better than a fixed-bearing? J Arthroplasty 25(6):998–1003

    PubMed  Google Scholar 

  • Railton GT, Waterfield A, Nunn D, Freeman MA (1990) The effect of a metal-back without a stem upon the fixation of a tibial prosthesis. J Arthroplasty 5(Suppl):S67–S71

    PubMed  Google Scholar 

  • Rauch G, Hiss E (1992) Primärfestigkeit intramedullarer Schaftverankerungen unterschiedlicher Länge. In: Hassenpflug J (Hrsg) Die Blauth-Knieendoprothese. Grundlagen, gegenwärtiger Stand und Ausblick. Hans Huber, Bern Göttingen Toronto Seattle, S 39–45

    Google Scholar 

  • Repicci JA (2003) Total knee or uni? Benefits and limitations of the unicondylar knee prosthesis. Orthopedics 26(3):274 (277)

    PubMed  Google Scholar 

  • Ries MD, Pruitt L (2005) Effect of cross-linking on the microstructure and mechanical properties of ultra-high molecular weight polyethylene. Clin Orthop Relat Res 440:149–156

    PubMed  Google Scholar 

  • Robertsson O, Dunbar M, Knutson K, Lewold S, Lidgren L (1999) Validation of the Swedish Knee Arthroplasty Register: a postal survey regarding 30,376 knees operated on between 1975 and 1995. Acta Orthop Scand 70(5):467–472

    CAS  PubMed  Google Scholar 

  • Robertsson O, Knutson K, Lewold S, Lidgren (2001) Unicompartmental arthroplasty. Results in Sweden 1986–1995. Acta Orthop Scand 72(5):503–513

    CAS  PubMed  Google Scholar 

  • Robinson EJ, Mulliken BD (1995) Catastrophic osteolysis in total knee replacement. Clin Orthop 321:98–105

    PubMed  Google Scholar 

  • Rodriguez JA (2008) Cross-linked polyethylene in total knee arthroplasty: in opposition. J Arthroplasty 23(7 Suppl):31–34

    PubMed  Google Scholar 

  • Rolston L (2009) Bicompartimental Knee Arthroplasty using a MonoLithic Implantdesign seminars in Arthroplasty

    Google Scholar 

  • Rolston L, Moore C (2010) Conversion of lateral unicompartmental arthroplasty to anterior cruciate retaining tricompartmental knee arthroplasty. Knee 17:249–251

    PubMed  Google Scholar 

  • Rolston L et al (2007) Bicompartimental knee arthroplasty: a bone-sparing, ligament-sparing, and minimally invasive alternative for active patients. Orthopedics 30:70–73

    PubMed  Google Scholar 

  • Rolston L, Siewert K (2009) Assessment of Knee alignment after bicompartimental knee Arthroplasty. J Arthroplasty 24:1111–1114

    PubMed  Google Scholar 

  • Romagnoli S, Camera MA, Berolotti M (2000) La protesi bimonocompartimentale con rispetto ricostruzione del LCA, Il. ginocchio 16:19

    Google Scholar 

  • Romanowski MR, Repicci JA (2003) Technical aspects of medial versus lateral minimally invasive unicondylar arthroplasty. Orthopedics 26(3):289–93

    PubMed  Google Scholar 

  • Rose R, Crugnola A, Reis M (1979) On the origins of high in vivo wear rates in polyethylene components in total joint prostheses. Clin Orthop 145:277–286

    PubMed  Google Scholar 

  • Rudert M, Galla M, Ackermann B, Stukenborg-Colsman C, Wirth CJ (2001) Valgus tibial head reconstruction, monocondylar sled prosthesis or bicondylar gliding surface replacement in therapy of medial gonarthrosis--a cost analysis. Z Orthop Ihre Grenzgeb 139(5):387–392

    CAS  PubMed  Google Scholar 

  • Ryd L, Lindstrand A, Rosenquist R, Selrik G (1986) Tibial component fixation in knee arthroplasty. Clin Orthop 213:141–149

    PubMed  Google Scholar 

  • Ryd L, Lindstrand A, Stenström A, Selvik G (1990) Cold flow reduced by metal backing. An in vivo roentgen stereophotogrammetric analysis of unicompartmental tibial components. Acta Orthop Scand 61:21–25

    CAS  PubMed  Google Scholar 

  • Saleh KJ, Arendt EA, Eldridge J, Fulkerson JP, Minas T, Mulhall KJ (2005) Symposium. Operative treatment of patellofemoral arthritis. J Bone Joint Surg Am 87:659–671

    PubMed  Google Scholar 

  • Schlepkow P (1989) The LCS knee kinematics in comparison with the kinematic behavior of the natural knee joint. LCS Users Symposium, Frankfurt Deutschland, Sept.

    Google Scholar 

  • Schlepkow P (1992) Three-dimensional kniematics of total knee replacement systems. Arch Orthop TraumatoISurg III:204

    Google Scholar 

  • Schöttle PB, Hensler D (2009) Therapie der patello-femoralen Arthrose. Arthroskopie 22:205–216

    Google Scholar 

  • Scuderi GR, Insall JN (1992) Total knee arthroplasty. Current clinical perspectives. Clin Orthop 276:26–32

    PubMed  Google Scholar 

  • Seedhom B, Dowson D, Wright V, Longton E (1972) A technique for the study of geometry and contact in normal and artificial knee joints. Wear 20:189–199

    Google Scholar 

  • Sheehan JM (1978) Arthroplasty of the knee. J Bone Joint Surg 60-B:333–338

    CAS  Google Scholar 

  • Sheehan JM (1979) Arthroplasty of the knee. Clin Orthop 145:101–109

    PubMed  Google Scholar 

  • Shiers LGP (1954) Arhroplasty of the knee. Preliminary report of a new method. J Bone Joint Surg 36B:553–560

    Google Scholar 

  • Shiers LGP (1960) Arthroplasty of the knee, interim report of a new method. J Bone Joint Surg 42B:31–39

    Google Scholar 

  • Shoji H, Wolf A, Packard S, Yoshino S (1994) Cruciate retained and excised total knee arthroplasty. A comparative study in patients with bilateral total knee arthroplasty. Clin Orthop Relat Res 305:218–22

    PubMed  Google Scholar 

  • Sisto DJ, Sarin VK (2006) Custom patellofemoral arthroplasty of the knee. Journal of Bone &amp Joint Surgery 88:1475–1480

    Google Scholar 

  • Smith AM, Peckett WRC, Butler-Manual PA, Venu KM, d’Arcy JC (2002) Treatment of patellofemoral arthritis using the Lubinus patellofemoral Arthroplasty: A retrospective review. The Knee 9:27–30

    CAS  PubMed  Google Scholar 

  • Solomonow M, Baratta R, Zhou BH, Shoji H, Bose W, Beck C, D’Ambrosia R (1987) The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 3:207–213

    Google Scholar 

  • Sonstegard DA, Kaufer H, Matthews LS, Arbo A (1977) The Sperocentric knee. J Bone Joint Surg 59 A:602–616

    Google Scholar 

  • Spector TD, MacGregor AJ (2004) Risk factors for osteoarthritis: genetics. Oesteoarthr Cartil 12(Suppl A):S39–S44

    Google Scholar 

  • Stiehl JB, Dennis DA, Komistek RD, Keblish PA (2000a) In vivo kinematic comparison of posterior cruciate ligament retention or sacrifice with a mobile bearing total knee arthroplasty. Am J Knee Surg 13(1):13–18

    CAS  PubMed  Google Scholar 

  • Stiehl JB, Komistek RD, Cloutier JM, Dennis DA (2000b) The cruciate ligaments in total knee arthroplasty: a kinematic analysis of 2 total knee arthroplasties. J Arthroplasty 15(5):545–550

    CAS  PubMed  Google Scholar 

  • Svard UC (1998) Results from a Swedish Centre Advanced Oxford Unicompartmental Course. N.O.C., Oxford

    Google Scholar 

  • Svard UC, Price AJ (2001) Oxford medial unicompartmental knee arthroplasty. A survival analysis of an independent series. J Bone Joint Surg Br 83(2):191–194

    CAS  PubMed  Google Scholar 

  • Tauro B, Ackroyd CE, Newman JH, Shah NA (2001) The Lubinus patellofemoral arthroplasty. A five- to ten-year prospective study. J Bone Joint Surg Br 83:696–701

    CAS  PubMed  Google Scholar 

  • Townsend P, Diamond R, Wyatt P (1979) Aspects of tibial plateau design: Condyle and stem deflections by micromotion and photo-elastic analysis. Trans Orthop Res Soc 4:251

    Google Scholar 

  • Treharne R, Young R, Young S (1981) Wear of artificial joint materials III: Simulation of the knee joint using a computer controlled system. Eng Med 10:137–142

    Google Scholar 

  • Tria F (2009) Knee Society Meeting, AAOS New Orleans

    Google Scholar 

  • Tsuda E, Okamura Y, Otsuka H, Komatsu T, Tokuya S (2001) Direct evidence of the anterior cruciate ligament-hamstring reflex arc in humans. Am J Sports Med 29(1):83–87

    CAS  PubMed  Google Scholar 

  • Ungethüm M, Stallforth H (1981) Die Verankerungskräfte bei Knieprothesen in Abhängigkeit von der Konzeption und Positionierung der Gelenke. Z Orthop 119:433–438

    PubMed  Google Scholar 

  • Utting MR, Davies G, Newman JH (2005) Is anterior knee pain a predisposing factor to patellofemoral osteoarthritis? The Knee 12:362–365

    CAS  PubMed  Google Scholar 

  • Vaidya C, Alvarez E, Vinciguerra J, Bruce DA, DesJardins JD (2011) Reduction of total knee replacement wear with vitamin E blended highly cross-linked ultra-high molecular weight polyethylene. Proc Inst Mech Eng H 225(1):1–7

    CAS  PubMed  Google Scholar 

  • Van Loon CJ, Wijers MM, de Waal Malefijt MC, Buma PP, Veth RP (1999) Femoral bone grafting in primary and revision total knee arthroplasty. Acta Orthop Belg 65(3):357–363

    PubMed  Google Scholar 

  • Van Loon CJ, Kyriazopoulos A, Verdonschot N, de Waal Malefijt MC, Huiskes R, Buma P (2000) The role of femoral stem extension in total knee arthroplasty. Clin Orthop 378:282–289

    PubMed  Google Scholar 

  • Vasu R, Carter D, Schurman D, Beaupre G (1986) Epiphyseal-based designs for tibial plateau design: Condyle and stem deflections by micromotion and photo-elastic analysis. Trans Orthop Re Soc 4:251

    Google Scholar 

  • Vince KG (2003) Why knees fail. J Arthroplasty 18(3 Suppl 1):39–44

    PubMed  Google Scholar 

  • Volz RG, Nisbet JK, Lee RW, McMurtry MG (1988) The mechanical stability of various noncemented tibial components. Clin Orthop 226:38–42

    PubMed  Google Scholar 

  • Wagner J, Bourgois R (1974) Biomechanical study of hinged knee prosthesis. Clin Orthop 102:188–193

    PubMed  Google Scholar 

  • Walker ES (1989) Requirements for successful total knee replacements: design considerations. Orthop Clin North Am 20:15–29

    CAS  PubMed  Google Scholar 

  • Walker ES, Zhou C (1987) The dilemma of surface design in total knee replacement. Trans Orthop Res Soc 12:291

    Google Scholar 

  • Walker PS (1977) Friction and wear in artificial joints. In: Human joints and their artificial replacements. Thomas, Illinois, S 368–422

    Google Scholar 

  • Walker PS (1991) Design of Kinemax total knee replacement bearing surfaces. Acta Orthop Belgica 57(suppl II):108–113

    Google Scholar 

  • Walker PS, Hsieh (1977) Conformity in condylar replacement knee prostheses. J Bone Joint Surg 59B:222–228

    Google Scholar 

  • Walker PS, Ranawat C, Insall JN (1976) Fixation of the tibial components condylar replacement knee prosthesis. J Biomech 9:269–275

    CAS  PubMed  Google Scholar 

  • Walker PS, Reilly D, Ben-Dov M (1980) Load transfer in the upper femur before and after tibial component attachment. Trans Orthop Res Soc 5:16

    Google Scholar 

  • Walker PS, Greene D, Reilly D, Thatcher J, Ben-Dov M, Ewald FC (1981) Fixation of tibial components of knee prosthesis. J Bone Joint Surg 63 A:258–267

    Google Scholar 

  • Walker PS, Onchi K, Kurosawa H, Rodger RE (1984) Approaches to the interface in total joint arthroplasty. Clin Orthop 182:99–108

    PubMed  Google Scholar 

  • Walldius B (1957) Arthroplasty of the knee using an endoprosthesis. Acta Orthop Scand. 5(Suppl):24

    Google Scholar 

  • Walldius B (1960) Arthroplasty of the knee using an endoprosthesis. Eight years experience. Acta Orthop Scand 39:137–148

    Google Scholar 

  • Walton MJ, Newman JH (2008) Preoperative mental well being and the outcome of knee replacement. The Knee 15:277–280

    PubMed  Google Scholar 

  • Wang H et al (2009) Gait analysis after bicompartmental knee replacement. Clin Biomech (Bristol, Avon) 24:751–754

    Google Scholar 

  • Whitehouse S, Lingard EA, Katz JN, Learmonth ID (2003) Development and testing of a reduced WOMAC function scale. J Bone Joint Surg (Br) 85-B:706–711

    Google Scholar 

  • Whiteside LA (1993) Correction of ligament and bone defects in total arthroplasty of severly valgus knee. Clin Orthop 288:234–245

    PubMed  Google Scholar 

  • Whiteside LA, Pafford J (1989) Load transfer characteristics of a noncemented total knee arthroplasty. Clin Orthop ReI Res 239:168–177

    Google Scholar 

  • Willert HG (1989) Diagnosis and salvage iof the infected hip. Presented at Current concepts in Implant Fixation, Orlando Florida

    Google Scholar 

  • Windsor RE, Scuderi GR, Moran MC, Insall JN (1989) Mechanisms of failure of femoral and tibial components in total knee arthroplasty. Clin Orthop 248:15–20

    PubMed  Google Scholar 

  • Wright T, Fukubayashi T, Burstein A (1981) The effect of carbon fiber reinforcement on contact area, contact pressure, and time dependent deformation in polyethylene tibial components. J Biomed Mater Res 15:719–730

    CAS  PubMed  Google Scholar 

  • Wright T, Rimnac C, Faris P, Bansel M (1988) Analysis of surface damage in retrieved carbon fiber reinforced and plain polyethylene tibial components from posterior stabilized tibial components. J Bone Joint Surg 70 A:1312–1319

    Google Scholar 

  • Wright TM (2005) Polyethylene in knee arthroplasty: what is the future? Clin Orthop Relat Res 440:141–8

    PubMed  Google Scholar 

  • Wright TM, Bartel DL (1986) The problem of surface damage in polyethylene total knee components. Clin Orthop 205:67–74

    PubMed  Google Scholar 

  • Wroblewski BM, Siney PD (1993) Charnley low-friction arthroplasty of the hip. Long-term results. Clin Orthop 292:191–201

    PubMed  Google Scholar 

  • Young HH (1963) Use of a hinged vitallium prosthesis for arthroplasty of the knee. A preliminary report. J Bone Joint Surg 45 A:1627–1642

    Google Scholar 

  • Zhang K, Mihalko WM (2012) Posterior cruciate mechanoreceptors in osteoarthritic and cruciate-retaining TKA retrievals: a pilot study. Clin Orthop Relat Res 470(7):1855–1859

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jerosch, J. (2015). Welche Prothesen für das Kniegelenk gibt es?. In: Knieendoprothetik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38423-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38423-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38422-6

  • Online ISBN: 978-3-642-38423-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics