Circular Chosen-Ciphertext Security
with Compact Ciphertexts

Dennis Hofheinz*

Karlsruhe Institute of Technology

Abstract. A key-dependent message (KDM) secure encryption scheme
is secure even if an adversary obtains encryptions of messages that de-
pend on the secret key. Such key-dependent encryptions naturally oc-
cur in scenarios such as harddisk encryption, formal cryptography, or
in specific protocols. However, there are not many provably secure con-
structions of KDM-secure encryption schemes. Moreover, only one con-
struction, due to Camenisch, Chandran, and Shoup (Eurocrypt 2009) is
known to be secure against active (i.e., CCA) attacks.

In this work, we construct the first public-key encryption scheme that
is KDM-secure against active adversaries and has compact ciphertexts.
As usual, we allow only circular key dependencies, meaning that en-
cryptions of arbitrary entire secret keys under arbitrary public keys are
considered in a multi-user setting.

Technically, we follow the approach of [Boneh, Halevi, Hamburg,
and Ostrovsky (Crypto 2008) to KDM security, which however only
achieves security against passive adversaries. We explain an inherent
problem in adapting their techniques to active security, and resolve this
problem using a new technical tool called “lossy algebraic filters” (LAF's).
We stress that we significantly deviate from the approach of Camenisch,
Chandran, and Shoup to obtain KDM security against active adversaries.
This allows us to develop a scheme with compact ciphertexts that consist
only of a constant number of group elements.

Keywords: key-dependent messages, chosen-ciphertext security, public-
key encryption.

1 Introduction

KDM Security. An encryption scheme is key-dependent message (KDM) se-
cure if it is secure even against an adversary who has access to encryptions of
messages that depend on the secret key. Such a setting arises, e.g., in harddisk
encryption [10], computational soundness results in formal methods [7, 2], or
specific protocols [13]. KDM security does not follow from standard security [1,
15], and there are indications [19, |5] that KDM security (at least in its most
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general form) cannot be proven using standard techniques; it seems that dedi-
cated constructions and proof techniques are necessary

The BHHO Approach to KDM-CPA Security. Boneh, Halevi, Hamburg,
and Ostrovsky |10] (henceforth BHHO) were the first to construct and prove a
public-key encryption (PKE) scheme that is KDM secure under chosen-plaintext
attacks (KDM-CPA-secure) in the standard model, under the Decisional Diffie-
Hellman (DDH) assumption. While they did not prove their scheme secure un-
der messages that arbitrarily depend on the secret key, their result encompasses
the important case of circular (CIRC-CPA) security. Loosely speaking, a PKE
scheme is circular secure if it is secure even in a multi-user setting where en-
cryptions of arbitrary secret keys under arbitrary public keys are known. This
notion is sufficient for certain applications |13], and can often be extended to
stronger forms of KDM security |5, 12]. Inspired by BHHO, KDM-CPA-secure
PKE schemes from other computational assumptions followed [4, [11], [25].

Since we will be using a similar approach, we give a high-level intuition of
BHHO'’s approach. The crucial property of their scheme is that it is publicly
possible to construct encryptions of the secret key (under the corresponding
public key). Thus, encryptions of the secret key itself do not harm the (IND-
CPA) security of that scheme. Suitable homomorphic properties of both keys
and ciphertexts allow to extend this argument to circular security (for arbitrarily
many users/keys), and to affine functions of all keys.

Why the BHHO Approach Fails to Achieve KDM-CCA Security.
When considering an active adversary, we require a stronger form of KDM secu-
rity. Namely, KDM-CCA, resp. CIRC-CCA security requires security against an
adversary who has access to key-dependent encryptions and a decryption oracle.
(Naturally, to avoid a trivial notion, the adversary is not allow to submit any
of those given KDM encryptions to its decryption oracle.) Now if we want to
extend BHHO’s KDM-CPA approach to an adversary with a decryption oracle,
the following problem arises: since it is publicly possible to construct (fresh)
encryptions of the secret key, an adversary can generate such an encryption
and then submit it to its decryption oracle, thus obtaining the full secret key.
Hence, the very property that BHHO use to prove KDM-CPA security seemingly
contradicts chosen-ciphertext security.

Our Technical Tool: Lossy Algebraic Filters (LAFs). Before we describe
our approach to KDM-CCA security, let us present the core technical tool we
use. Namely, a lossy algebraic filter (LAF) is a family of functions, indexed by a
public key and a tag. A function from that family takes a vector X = (X;)}; as
input. Now if the tag is lossy, then the output of the function reveals only a linear
combination of the X;. If the tag is injective, however, then so is the function. We
require that there are many lossy tags, which however require a special trapdoor
to be found. On the other hand, lossy and injective tags are computationally

! We mention, however, that there are semi-generic transformations that enhance the
KDM security of an already “slightly” KDM-secure scheme |3, 12, [3].
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indistinguishable. This concept is very similar to (parameterized) lossy trapdoor
functions [27], and in particular to all-but-many lossy trapdoor functions (ABM-
LTFs [20]). However, we do not require efficient inversion, but we do require that
lossy functions always reveal the same linear combination about the input. In
particular, evaluating the same input under many lossy tags will still leave the
input (partially) undetermined.

We give a construction of LAFs under the Decision Linear (DLIN) assump-
tion in pairing-friendly groups. Similar to ABM-LTFs, lossy tags correspond to
suitably blinded signatures. (This in particular allows to release many lossy tags,
while still making the generation of a fresh lossy tag hard for an adversary.) How-
ever, unlike with ABM-LTF's, functions with lossy tags always release the same
information about its input. Our construction has compact tags with O(1) group
elements, which will be crucial for our KDM-CCA secure encryption scheme

Our Approach to KDM-CCA Security. We can now describe our solution
to the KDM-CCA dilemma explained above. We will start from a hybrid between
the BHHO-like PKE schemes of Brakerski and Goldwasser |11], resp. Malkin
et al. [25]. This scheme has compact ciphertexts (O(1) group elements), and its
KDM-CPA security can be proved under the Decisional Composite Residuosity
(DCR) assumption. As with the BHHO scheme, the scheme’s KDM-CPA security
relies on the fact that encryptions of its secret key can be publicly generated.
Essentially, our modification consists of adding a suitable authentication tag to
each ciphertext. This authentication tag comprises the (encrypted) image of the
plaintext message under an LAF. During decryption, a ciphertext is rejected in
case of a wrong authentication tag.

In our security proof, all authentication tags for the key-dependent encryp-
tions the adversary gets are made with respect to lossy filter tags. This means
that information-theoretically, little information about the secret key is released
(even with many key-dependent encryptions, resp. LAF evaluations). However,
any decryption query the adversary makes must refer (by the LAF properties)
to an injective tag. Hence, in order to place a valid key-dependent decryption
query, the adversary would have to guess the whole (hidden) secret keyE

Thus, adding a suitable authentication tag allows us to leverage the techniques
by BHHO, resp. [Brakerski and Goldwassern, IMalkin et al! to chosen-ciphertext
attacks. In particular, we obtain a CIRC-CCA-secure PKE scheme with compact
ciphertexts (of O(1) group elements). We prove security under the conjunction of
the following assumptions: the DCR assumption (in ZY;;), the DLIN assumption

2 The size of the LAF public key depends on the employed signature scheme. In our
main construction, we use Waters signatures, which results in very compact tags, but
public keys of O(k) group elements, where k is the security parameter. Alternatively,
at the end of Bection 3.7 we sketch an LAF with constant-size (but larger than in
our main construction) tags and constant-size public keys.

We will also have to protect against a re-use of (lossy) authentication tags, and
“ordinary”, key-independent chosen-ciphertext attacks. This will be achieved by a
combination of one-time signatures and 2-universal hash proof systems |16, 24, 22].

3
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(in a pairing-friendly group), and the DDH assumption (somewhat curiously, in
the subgroup of order (P —1)(Q — 1)/4 of Z};;, where N = PQ)E

Relation to|Camenisch et al.’s CIRC-CCA-secure Scheme. Camenisch,
Chandran, and Shoup |14] present the only other known CIRC-CCA-secure PKE
scheme in the standard model. They also build upon BHHO techniques, but in-
stead use a Naor-Yung-style double encryption technique |26] to achieve chosen-
ciphertext security. As an authentication tag, they attach to each ciphertext
a non-interactive zero-knowledge proof that either the encryption is consistent
(in the usual Naor-Yung sense), or that they know a signature for the cipher-
text. Since they build on the original, DDH-based BHHO scheme, they can use
Groth-Sahai proofs [18] to prove consistency. Compared to our scheme, their
system is less efficient: they require O(k) group elements per ciphertext, and
the secret key can only be encrypted bitwise. However, their sole computational
assumption to prove circular security is the DDH (or, more generally, k-Linear)
assumption in pairing-friendly groups. One thing to point out is their implicit
use of a signature scheme. Their argument is conceptually not unlike our LAF
argument. However, since they can apply a hybrid argument to substitute all
key-dependent encryptions with random ciphertexts, they only require one-time
signatures. Furthermore, the meaning of “consistent ciphertext” and “proof” in
our case is very different. (Unlike |Camenisch et all, we apply an argument that
rests on the information that the adversary has about the secret key.)

Note about Concurrent Work. In a work concurrent to ours, Galindo,
Herranz, and Villar [17] define and instantiate a strong notion of KDM secu-
rity for identity-based encryption (IBE) schemes. Using the IBE—PKE trans-
formation of Boneh, Canetti, Halevi, and Katz [9], they derive a KDM-CCA-
secure PKE scheme. Their concrete construction is entropy-based and achieves
only a bounded form of KDM security, much like the KDM-secure SKE scheme
from [23]. Thus, while their ciphertexts are very compact, they can only tolerate
a number of (arbitrary) KDM queries that is linear in the size of the secret key.
In particular, it is not clear how to argue that the encryption of a full secret key
in their scheme is secure.

2 Preliminaries

Notation. For n € N, let [n] := {1,...,n}. Throughout the paper, k& € N is
the security parameter. For a finite set S, s +— S denotes the process of sampling
s uniformly from S. For a probabilistic algorithm A, y < A(z; R) denotes the
process of running A on input z and with randomness R, and assigning y the

* Very roughly, we resort to the DDH assumption since we release partial information
about our secret keys. Whereas the argument of [11, |25] relies on the fact that the
secret key sk is completely hidden modulo N, where computations take place in
Zn, we cannot avoid to leak some information about sk mod N by releasing LAF
images of sk. However, using a suitable message encoding, we can argue that sk is
completely hidden modulo the coprime order (P —1)(Q — 1)/4 of quadratic residues
modulo N, which enables a reduction to the DDH assumption.
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result. We write y « A(z) for y + A(x; R) with uniformly chosen R. If A’s
running time is polynomial in &, A is called probabilistic polynomial-time (PPT).
Standard Definitions. Due to lack of space, we postpone some standard
definitions to the full version [21]. These include definitions of PKE and signature
schemes, (one-time/strong) EUF-CMA security, IND-CPA security, (chameleon)
hash functions, and the DCR, DDH, and DLIN assumptions.

Key-unique SKE Schemes. A secret-key encryption (SKE) scheme (E, D)
consists of two PPT algorithms. Encryption E(K, M) takes a key K and a mes-
sage M, and outputs a ciphertext C. Decryption D(K, C) takes a key K and a
ciphertext C', and outputs a message M. For correctness, we want D(K,C) = M
for all M, all K, and all C' < E(K, M). We say that (E,D) is key-unique if for
every ciphertext C, there is at most one key K with D(K,C) # L. For instance,
ElGamal encryption can be interpreted as a key-unique SKE scheme through
E(x, M) := (9", 9¥,¢9™¥ - M) (and the obvious D). This example assumes a pub-
licly known group G = (g) in which the DDH assumption holdsH If a larger
message space (e.g., {0,1}*) is desired, hybrid encryption techniques (which are
easily seen to preserve key-uniqueness) can be employed.

Pairings. A (symmetric) pairing is a map e : G x G — Gy between two
cyclic groups G and G that satisfies e(g, g) # 1 and e(g¢, ¢°) = e(g, g)?° for all
generators g of G and all a,b € Z.

Waters signatures. In [28], Waters proves the following signature scheme
EUF-CMA securefd
— Gen(1%) chooses groups G, G of prime order p, along with a pairing e : G x
G — Gr, a generator g € GG, and uniform group elements g, Hy, ..., Hx €
G. Output is vk = (G, G, e,p, g, (H))%_,, e(g,9)*) and sigk = (vk, g*).
— Sig(sigk, M), for M = (M;)*_, € {0,1}*, picks r < Z,, and outputs o :=
(9", 9% - (Ho [Ty H")").

— Ver(vk, M, (09,01)), outputs 1 iff e(g,01) = e(g, g)* - e(00, Ho Hle HZMl)
KDM-CCA and CIRC-CCA security. Let n = n(k) and let PKE be a
PKE scheme with message space M. PKE is chosen-ciphertext secure under
key-dependent message attacks (n-KDM-CCA secure) iff

AV, (k) = Pr [Exp;‘:ggm(k) = 1] —1/2
is negligible for all PPT A, where experiment ExpE‘i{EﬁfA is defined as follows.
First, the experiment tosses a coin b < {0,1}, and samples public parameters
pp « Pars(1¥) and n keypairs (pk,, sk;) < Gen(pp). Then A is invoked with
input pp and (pk,),, and access to two oracles:
— a KDM oracle KDMy(-, -) that maps i € [n] and a function f : ({0,1}*)" —
{0,1}* to a ciphertext C' < Enc(pp, pk;, M ). If b =0, then M = f((ski)I-,);
else, M = Ol ((ska)izn)l,

5 In our application, G can be made part of the public parameters.
5 In fact, our description is a slight folklore variant of Waters’s scheme. The original
scheme features elements g%, g? in vk, so that e(g®, g°) takes the role of e(g,g)“.
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— a decryption oracle DEC(-,-) that takes as input an index i € [n] and a
ciphertext C, and outputs Dec(pp, sk;, C).

When A finally generates an output b’ € {0, 1}, the experiment outputs 1 if b = &’
(and 0 else). We require that (a) A never inputs a ciphertext C' to DEC that has
been produced by XDM, (for the same index i), and (b) A only specifies PPT-
computable functions f that always output messages of the same length. As a
relevant special case, PKE is n-CIRC-CCA-secure if it is n-KDM-CCA secure
against all A that only query DM, with functions f € F for

Foo= Ay s fi((ska)ie) = skitjepy U ASm s far((ska)isy) = M} pren -

(Technically, what we call “circular security” is called “clique security” in [10].
However, our notion of circular security implies that of |[L0].) Our main result
will be a PKE scheme that is n-CIRC-CCA-secure for all polynomials n = n(k).

3 Lossy Algebraic Filters

Informal Description. An (¢|ar, n)-lossy algebraic filter (LAF) is a family of
functions indexed by a public key Fpk and a tag t. A function LAF gy, + from the
family maps an input X = (X;){_, € Z} to an output LAF gy, +(X), where p is
an ¢ ap-bit prime contained in the public key.

The crucial property of an LAF is its lossiness. Namely, for a given public
key Fpk, we distinguish injective and lossy tagsﬁl For an injective tag t, the
function LAF gy, +(+) is injective, and thus has an image of size p". However, if ¢
is lossy, then LAF g, +(-) only depends on a linear combination Y}, w; X; mod p
of its input. In particular, different X with the same value Y7, w; X; mod p are
mapped to the same image. Here, the coeflicients w; € Z, only depend on Fpk
(but not on t). For a lossy tag ¢, the image of LAF gy +(+) is thus of size at most
p. Note that the modulus p is public, while the coefficients w; may be (and in
fact will have to be) computationally hidden.

For this concept to be useful, we require that (a) lossy and injective tags
are computationally indistinguishable, (b) lossy tags can be generated using a
special trapdoor, but (¢) new lossy (or, rather, non-injective) tags cannot be
found efficiently without that trapdoor, even when having seen polynomially
many lossy tags before. In view of our application, we will work with structured
tags: each tag ¢t = (tc,ta) consists of a core tag t. and an auziliary tag t,. The
auxiliary tag will be a ciphertext part that is authenticated by a filter image.

Definition 1. An (fiar,n)-lossy algebraic filter (LAF) LAF consists of three

PPT algorithms:

Key generation. FGen(1%) samples a keypair (Fpk, Ftd). The public key Fpk
contains an L ap-bit prime p and the description of a tag space T = T¢ X
{0,1}* for efficiently samplable Tc. A tag t = (te,ta) consists of a core tag
tc € Tec and an auziliary tag ta € {0,1}*. A tag may be injective, or lossy, or
neither. Ftd is a trapdoor that will allow to sample lossy tags.

" Technically, there may also be tags that are neither injective nor lossy.
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Evaluation. FEval(Fpk,t, X), for a public key Fpk and a tag t = (tc,ta) € T,
maps an input X = (X;)},) € Zy to a unique output LAF ppy, +(X).

Lossy tag generation. FTag(Ftd,t,), for a trapdoor Ftd and t, € {0,1}*,
samples a core tag tc such that t = (tc,ta) is lossy.

We require the following:

Lossiness. The function LAF ppi+(+) is injective if t is injective. If t is lossy,
then LAF ppr,+(X) depends only on Y., w;X; mod p for w; € Z, that only
depend on Fpk.

Indistinguishability. Lossy tags are indistinguishable from random tags:

AdViSe 4 (k) = Pr [A(lk, Fpk)FTee(Ftd.) 1] —Pr [A(lk, Fpk)O70) = 1]

is negligible for all PPT A, where (Fpk, Ftd) < FGen(1%), and O7.(-) is the
oracle that ignores its input and samples a random core tag t..

Evasiveness. Non-injective (and in particular lossy) tags are hard to find, even
given multiple lossy tags:

AdVi'ar 4(k) := Pr |t non-injective | t < A(lk,Fpk)FTag(Ftd")]

is negligible with (Fpk, Ftd) < FGen(1%), and for any PPT algorithm A that
never outputs a tag obtained through oracle queries (i.e., A never outputs
t = (te,ta) when tc has been obtained by an oracle query FTag(Ftd, t,)).

3.1 Construction

Intuition. We present a construction based on the DLIN problem in a group
G of order p with symmetric pairing e : G x G — Grp. Essentially, each tag
corresponds to n DLIN-encrypted Waters signatures. If the signatures are valid,
the tag is lossy. The actual filter maps an input X = (X;)}._; € Zj to the tuple

n
LAFppt(X) = Mo X = ([ ML, € G, (1)
j=1

where the matrix M = (M;;); jcn) € G*" is computed from public key and
tag. Note that this mapping is lossy if and only if the matrix

M = (M;;) = (dlog,(, ,(Mi;))i; € ZE<" (2)

of discrete logarithms (to some arbitrary basis e(g, g) € Gr) is non-invertible.
For a formal description, let £ ar(k), n(k) be two functions.

Key generation. FGen(1*) generates cyclic groups G, Gr of prime order p
(where p has bitlength |log,(p)| = fiar(k)), and a symmetric pairing e :
G x G — Gp. Then FGen chooses
— a generator g € G and a uniform exponent w + Z,,
— uniform group elements Uy, ...,U, + G, Hy,...,H < G, and
— a keypair (Hpk, Htd) for a chameleon hash CH : {0,1}* — {0, 1}*.
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FGen finally outputs
Fpk = (G? GT7 D9, (Hi)i'e:Oa (Ui)?:la W= e(gvg)wa Hpk)
Ftd := (Fpk, g, Htd).

For convenience, write U; = ¢g"¢ for suitable (unknown) exponents u;.
Tags. (Core) tags are of the form

te == (R, (S, (Si))fj=1, Ben) € G x G x G™™ x Rey

(for CH’s randomness space Rch), where we require e(Uj/, S; ;) = e(U;, S; ;1)
whenever i € {4, j'}. This means we can write R = ¢", S; = g%, and Si; =
U7 (for i # j) for suitable , s;, s;. To a tag t = (tc,ta) (with auxiliary part
ta € {0,1}*), we associate the matrix M = (M, ;)},_, € G " with

M,; = e(U;,S) - e(g,Si;) = e(g,9) &+ (i # j)

e(gasi,i) (3)
W e(HoT]i_, H", R)

for (T;)%_, := CHpi (R, (g'i)i“:l, (Si,j)i“’jzl,ta; Rcn). If the matrix M of dis-
crete logarithms (see () is invertible, we say that ¢ is injective; if M has
rank 1, then ¢ is lossy. Thus, for lossy tags, M, ; = e(g, g)% it for all i, 4.
Evaluation. FEval(Fpk,t, X), for ¢t = (t.,ta), ta € {0,1}*, X = (X)), €
Zy, and Fpk and t. as above, computes M as in (@) and then (Y;)i_, :=
LAFFpk,t(X) € G% as in (]ID
Lossiness. If we write Y; = e(g, ¢)¥*, the definition of FEval implies (y;)}; =
M - X. Since injective tags satisfy that M is invertible, they lead to injective

functions LAF gy ¢(-). But for a lossy tag, M, ; = u;(s; + s;), so that
n n
yi = > ui(5+5)X; = (Si+s)- Yy w;X; modp.
j=1 j=1

Specifically, LAF gy +(X) depends only on ), w; X; mod p for w; := u,.

Lossy tag generation. FTag(Ftd,t,), for Ftd as above and ¢, € {0,1}*, first
chooses a random CH-image T' = (T;)¥_, € {0,1}* that can later be ex-
plained, using Htd, as the CH-image of an arbitrary preimage. FTag then
chooses uniform r, s;, $; < Zj, and sets (for i # j)

R:i=g", 8, :=g",

S S~+S b T " (4)
Si,j Z:Ujl, Sii =U" g H()HHZ»" .
i=1
Finally, FTag chooses Rcn with CHppi (R, (5})}‘:1, (Si,j)zjzlyta§RCH) =T
and outputs t. = (R, (5});‘:1, (Sivj)g"jzl,RCH). Intuitively, t. consists of n
DLIN encryptions (with correlated randomness s;, ;) of Waters signatures
(9", 9% (Ho Hle H")") for message T'. Indeed, substituting into (@) yields
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(g, g) ) LW e(g, (Ho [T5, H)")

M, ,; = . o u;i (85 +85)
W -e(g", Ho Hi:1 H;")

=e(9,9) :

Hence, M” = u;(5; + s;) for all 7,7, and thus the resulting tag t = (¢, ta)
is lossy.
A Generalization. In the full paper [21], we also show how to generalize the
above construction to achieve constant-size tags and evaluation keys.

Other Instances and Further Applications of LAFs. Since LAFs can
be seen as “disguised signature schemes”, it seems interesting to try to con-
vert other signature schemes (and in particular schemes that do not require
pairing-friendly groups) to LAFs. Besides, LAFs would seem potentially useful
in other settings, specifically in settings with inherently many challenges (e.g.,
the selective-opening setting [6]).

Theorem 1. If the DLIN assumption holds in G, and CH is a chameleon hash
function, then the LAF construction LAF from[Section 3.1 satisfies[Definition 1

The lossiness of LAF has already been discussed in [Section 3.1 We prove indis-
tinguishability and evasiveness separately.

Lemma 1. For every adversary A on LAF’s indistinguishability, there exists a
DLIN distinguisher B such that Adv[‘ﬁﬁA(k:) =n-Advg"(k).

Intuitively, to see[Lemma 1}, observe that lossy tags differ from random tags only
in their S;; components, and in how the CH randomness Rcy is generated. For
lossy tags, the S;; are (parts of) DLIN ciphertexts, which are pseudorandom
under the DLIN assumption. Furthermore, the uniformity property of CH guar-
antees that the distribution of Rcy is the same for lossy and random tags. We
formally prove [Lemma 1] in the full version |21].

Lemma 2. For every adversary A on LAF’s evasiveness, there exist adversaries
B, C, and F with AdvE%e (k) < ’Adviﬂ‘ﬁFyB(k:)‘ + AdvEy o (k) + Advgl<m, (k).
Intuitively, [Lemma 2] holds because lossy (or, rather, non-injective) tags cor-
respond to DLIN-encrypted Waters signatures. Hence, even after seeing many
lossy tags (i.e., encrypted signatures), an adversary cannot produce a fresh en-
crypted signature. We note that the original Waters signatures from [28] are
re-randomizable and thus not strongly unforgeable. To achieve evasiveness, we
have thus used a chameleon hash function, much like Boneh et al. |§] did to make
Waters signatures strongly unforgeable. We give a formal proof in [21].

Combining [Lemma 1l [Lemma 2| and the fact that Waters signatures are EUF-
CMA secure already under the CDH assumption, we obtain [Theorem 1l

4 CIRC-CCA-Secure Encryption Scheme

Setting and Ingredients. First, we assume an algorithm GenN that outputs
£n-bit Blum integers N = P(Q along with their prime factors P and Q. If N
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is clear from the context, we write Grng and Gmsg for the unique subgroups of
Zys of order (P —1)(Q —1)/4, resp. N2. We also write h := 1 + N mod N3,
so (h) = Gmsg. Note that it is efficiently possible to compute dlog,(X) = =
for X := h* € Gmsg and x € Zy=. Specifically, it is efficiently possible to test
for membership in Gmsg. In our scheme, Gmsg will be used to embed a suitably
encoded message, and Gng will be used for blinding. We require that

— P and Q are safe primes of bitlength between ¢ /2 — k and {n/2 + k,

— ged((P-1)(Q—1)/4,N) =1 (as, e.g., for uniform P, Q of a certain length),

— Un > 25k + 8 (e.g., k =80 and ¢y = 2048)

— the DCR assumption holds in Z%;, and the DDH assumption holds in Gyng.

We also assume an (¢, af, n)-lossy algebraic filter LAF for n = 6 and ¢ o =

(Uny 4+ k+1)/(n—2). Our scheme will encrypt messages from the domain

M = Z23k X Zp,zk X ZN,Qk—Z,

where p is the modulus of the used LAF. (The reason for this weird-looking
message space will become clearer in the proof.) During encryption, we will have
to treat a message M = (a,b,c) € M both as an element of Zy2 and as an
LAF-input from Zjy. In these cases, we can encode

2 =a+2%.byp.2%.cc 7,
[M]zs = (a,bmod p,co,...,cn-3) € Zy

P

()

for the natural interpretation of Z;-elements as integers between 0 and i — 1, and
¢’s p-adic representation (ci);‘:_g’ € Z;‘Z with ¢ = Z;‘;g’ ¢; - p'. By our choice of
{n and faF, we have 0 < [M]z < N? — 2. However, the encoding [M]Zg is not
injective, since it only depends on b mod p (while 0 < b < p - 2F).

Finally, we assume a strongly OT-EUF-CMA secure signature scheme Sig =
(SGen, Sig, Ver) with k-bit verification keys, and a key-unique IND-CPA secure
symmetric encryption scheme (E, D) (see Section 2)) with k-bit symmetric keys
K and message space {0, 1}*.

Now consider the following PKE scheme PKE:

Public Parameters. Pars(1¥) first runs (N, P, Q) < GenN(1¥). Recall that this

fixes the groups Ging and Gmsg. Then, Pars selects two generators g1, g2 of Gng.

Finally, Pars runs (Fpk, Ftd) < FGen(1*) and outputs pp = (N, g1, g2, Fpk). In

the following, we denote with p the LAF modulus contained in Fpk.

Key Generation. Gen(pp) uniformly selects four messages s; = (a;, b;,¢;) €

M (for 1 < j < 4) as secret key, and sets pk := <u = ggsl]zggsz]z,v = g§53]29£54]z)
and sk := (s5)]-;-
Encryption. Enc(pp, pk, M), for pp and pk as above, and M € M, uni-
formly selects exponents 7,7 <~ Zy/4, a random filter core tag t., a Sig-keypair
(vk, sigk) < SGen(1*), and a random symmetric key K € {0,1}* for (E,D), and
computes
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(G1,G2) = (91, 93) Ck = E(K, LAF pppe,¢ ([M]z1))

(G1,Ga) = (g7, 95) o « Sig(sigh, (G, G;)}—1, 2, Z, Ck, o))
7 = (u"hv)m N C = ((G}.G))* 1, 2. Z,Ck, te, vk, 0)
7 = (uukv)rthKJer-[M]z

for the auxiliary tag t, := vk, and the resulting filter tag ¢ := (tc,ta).

Decryption. Dec(pp, sk,C), for pp, sk and C as above, first checks the signa-
ture o and rejects with L if Ver(vk, (G5, Gj)3-1, Z, Z, CE, tc),0) = 0, or if

Z # <G[151]Z'”k+[53]zG[252]Z'vk+[54]z)NZ

Then Dec computes

s -vk+[s s -vk+[s ~ls ~ls
7 = Glelavktla gloalavb+oda Gloile szl

and then K € {0,1}*, M € M with K + 2* . [M]g := dlog,(Z/2'). It Z]Z' ¢
Gisg, or no such M exists, or D(K,Cg) # LAFppi,([M]zs) (for t = (tc,ta)
computed as during encryption), then Dec rejects with L. Else, Dec outputs M.

Secret Keys as Messages. Our scheme has secret keys s = (s;)]_, € M*;
hence, we can only encrypt one quarter s; of a secret key at a time. In the
security proof below, we will thus only consider KDM queries that ask to encrypt
a specific secret key part. Alternatively, we can change our scheme, so that 4-
tuples of M-elements are encrypted. To avoid malleability (which would destroy
CCA security), we of course have to use only one LAF tag for this. Our CIRC-
CCA proof below applies to such a changed scheme with minor syntactic changes.

Efficiency. When instantiated with our DLIN-based LAF construction from
Section 3l and taking n = 6 as above, our scheme has ciphertexts with 43 G-
elements, 6 Zpys-elements, plus chameleon hash randomness, a one-time signa-
ture and verification key, and a symmetric ciphertext (whose size could be in
the range of one Z nz2-element plus some encryption randomness). The number
of group elements in the ciphertext is constant, and does not grow in the secu-
rity parameter. The public parameters contain O(k) group elementsd (most of
them from G), and public keys contain two Zys-elements; secret keys consist
of four Zn2-elements. While these parameters are not competitive with cur-
rent non-KDM-secure schemes, they are significantly better than those from the
circular-secure scheme of Camenisch et al. [14][

Security Proof (single-user user). It is instructive to first treat the single-
user case. Here, we essentially only require that PKE is IND-CCA secure, even if

8 Using the generalized LAF mentioned at the end of Secfion 3.1 public parameters
with O(1) group elements are possible, at the cost of a (constant) number of extra
group elements per tag.

9 For instance, Section 7 of the full version of [14] implies that their scheme has a public
key, resp. ciphertext of about 500, resp. 1000 G-elements (for log, (|G|) = 160).
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encryptions of its secret key are made public. For the multi-user case (see [21]),
we can then proceed like |10, [11] and re-randomize keys and ciphertexts of a
single PKE instance. This enables an analysis analogous to the single-user case.

Theorem 2. Assume the DCR assumption holds in Zys, the DDH assumption
holds in Gng, LAF is an LAF, Sig is a strongly OT-EUF-CMA secure signature
scheme, H is collision-resistant, and (E, D) is a key-unique IND-CPA secure SKE
scheme. Then PKE is 1-CIRC-CCA-secure.

Proof. Assume a PPT adversary A on PKE’s 1-CIRC-CCA security. Say that A
always makes ¢ = ¢(k) KDM queries. We proceed in games. Let out; denote the
output of Game i.

Game 1 is the 1-KDM-CCA experiment with PKE and A. By definition,
Prlout; =1]-1/2 = Advlﬁ‘f("é'fja(k).

In Game 2, we modify the way KDM queries are answered. Namely, in each
ciphertext prepared for A, we set up Z and Z up as

Z = <G[151]Z'”k+[53]zG[;?]Z'”’“F[Sdz)NZ

7 = G[181]Z'11k+[33]zG[282]Z'11k+[84]z6[181]25[232]2 . hK+2k-[M]z.

(6)

for the already prepared (Gj, é]) = (g7, g;’:) This change is only conceptual by
our setup of u, v, so Prlouty = 1] = Prlout; =1].

In Game 3, we again change how KDM ciphertexts are prepared. Intuitively,
our goal is now to prepare the G; and G; with additional Gusg-components,
such that Z, as computed in (@), is of the form g - hX for some g € Gmd (That
is, we want the Gmsg-components of the G, G to cancel out the h2" Mz term
in ([@).) To do so, we prepare G; = gj/hO‘J 2" and GJ = g;-"/h“J 2" for j € {1,2}
and suitable «;, @; to be determined. 7 is still computed as in (6]), so

7 = g.hKJr?k'[MJZ*Qk(al([81]Z'U’€+[53]Z)+042([52]Z'Pk+[54]z)+51[81]z+&2[82]z)
for g= g;.([sl]z-kar[ss]z)+F[S1]zg;‘-([sz]z-uk+[54]z)+ﬂ52]z _ (u“k’u)r ’U,? € G, So to
prepare a KDM encryption of s;« with 7 = g - h%, we can set (a1, o, ar,az)
to (0,0,1,0) for 5* =1, to (1,0, —vk,0) for j* =2, to (0,0, 1,0) for j* = 3, and
o (0,1,0,—vk) for j* = 4. (vk can be chosen independently in advance.) The
remaining parts of C are prepared as in Game 2. We claim

Prlouts = 1] — Prlouta =1] < 4- Advdcr ,.B(k)+ 027" (7)

for a suitable DCR distinguisher B that simulates Game 2, resp. Game 3. Con-
cretely, B gets as input a value W € Z%; of the form W= gN -h? for b € {0,1}.
Note that if we set W = W2 , we have W = g /hb 2 ¢ 735, with uniform
g" € Ging. First, B guesses a value of j* € [4]. (This gives a very small hybrid
argument, in which in the j*-th step, only encryptions of s;- are changed.) We
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only detail B’s behavior for the case j* = 3; the otlger cases are easier or anal-
ogous. First, B sets up g; := W and go := WV for uniform v € Zinys- To
prepare an encryption of s3, B chooses uniform p, p € Zy=/4 and sets

Gy =wr e Gy = WP P )-N?
Gy = Wk Gy i Wb TN,

where the values p~!, p~! are computed modulo N2. This implicitly sets r = p -

(p~1)/N? mod |Gng| and 7 = vk-p-(p~1)/N? mod |Gyna|, both of which are sta-
tistically close to uniform. Furthermore, G; = g;»"/hb'aj'Qk and @j = g?/hb'&?ak;
so, depending on B’s challenge, encryptions of s3 are prepared as in Game 2 or
Game 3. Similar arguments work for j* = 1,2, 4, and () follows. (The O(27%)
term in ([7]) accounts for the statistical defect caused by choosing G,n4-exponents
from Zy,4, resp. Znzy4.)

Using the definition of v and v, our change in Game 3 implies Z = (uVkv)r -
u” - h¥ when a key part s;j is to be encrypted. (However, note that we still
have Z = (u"kv)™N * in any case.) This means that A still obtains information
about the s; (beyond what is public from pk) from its KDM queries, but this
information is limited to values LAF gy +([s;]75). We will now further cap this
leaked information by making LAF ppy +(-) lossy. Namely, in Game 4, we use the
LAF trapdoor Ftd initially sampled along with Fpk. Concretely, when preparing
a ciphertext C' for A, we sample ¢ using t. « FTag(Ftd,t,) for the corresponding
auxiliary tag t, = vk. A simple reduction shows

Prlouty = 1] — Prlouts = 1] = AdeF,CQ(k)

for a suitable adversary Cy on LAF’s indistinguishability.

In Game 5, we reject all decryption queries of A that re-use a verification
key vk from one of the KDM ciphertexts. To show that this change does not
significantly affect A’s view, assume a decryption query C' that re-uses a key
vk = vk™ from a KDM ciphertext C*. Recall that C' contains a signature o of
X = ((Gj, Gj)?:p Z,Z,Cg,tc) under an honestly generated Sig-verification-key
vk =t =t} = vk™. Since we assumed ¢ = (tc,ta) = (£, ¢5) = ¢*, and A is not
allowed to query unchanged challenge ciphertexts for decryption, we must have
(X,0) # (X*,0%) for the corresponding message X* and signature o* from C*.
Hence, Game 4 and Game 5 only differ when A manages to forge a signature. A
straightforward reduction to the strong OT-EUF-CMA security of Sig yields

Pr[outs = 1] — Prlouty = 1] = q(k) - AdviAE 7 (k)

for a forger F' against Sig that makes at most one signature query.

In Game 6.i (for 0 < i < q¢), the first ¢ challenge ciphertexts are prepared
using Z = §N2 and Z = g-u” - ¥ (if a key component s; is to be encrypted),
resp. 7 = g-u - hE+2[M]z (if a constant M € M is to be encrypted) for an
independently uniform g < Gyng drawn freshly for each ciphertext. Obviously,
Game 6.0 is identical to Game 5: Pr[outs.o = 1] = Prlouts = 1]. We will move
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from Game 6.7 to Game 6.(: + 1) in several steps. During these steps, we denote
with C = ((G, éj)?:p 7,7, Cg, te, vk, o) the (i + 1)-st KDM ciphertext.

In Game 6.i.1, we change the G4 parts of Gy, G2 from a Diffie-Hellman tuple
(with respect to g1, g2) to a random tuple. Concretely, if an s, is to be encrypted,
we set (G1,G2) = (g{l/hal'zk,gEQ/ha“"Qk); if a constant M is encrypted, we set
(C1,C2) = (91", 95°), in both cases for independently uniform ry,ry < Zpy4.
The Gmsg parts of Gy, G are thus unchanged compared to Game 6.7. Note that
the éj are still prepared as C:’j = g?/haak, resp. éj = g?. A straightforward
reduction to the DDH assumption in Gnq yields

q(k)

Z (PI‘ [out(;_i = 1] — Pr [out(;_i_l = 1]) = q(k‘) . Adv%f:d’Dl (k‘) + O(Qik)

i=1
for a suitable D;. The O(Q_k) error term accounts for the statistical difference
caused by the choice of exponents r; < Zpy/4, which induces an only almost-

uniform distribution on group elements ¢g"i. Note that at this point, Z and Z
are still computed as in (@), even if an s; is to be encrypted.

In Game 6.i.2, we compute Z and Z as Z = §N2 and Z = g-u”-hX resp. Z=
g-u - hE+2" M)z for g fresh g < Ging. Thus, the difference to Game 6.i.1 is
that we substitute a Gng-element computed as C?gsl]z'mﬂse’]zG[;Q]Z'MH[SZ‘]Z with
a fresh random g. To show that this change affects A’s view only negligibly, it
suffices to show that A’s statistical information about

X = dlogg (G[1$1]Z'1)k+[33]zG[282]2'1)k+[34]z)
= mri([si]z - vk + [s3]z) + Y2r2([s2]z - vk + [s4]z) mod |G

(for some arbitrary generator g of Gg and 7; = dlog,(g;)) is negligible. This
part will be rather delicate, since we will have to argue that both A’s KDM
queries and A’s decryption queries yield (almost) no information about X.
First, observe that A gets the following information about the s;:
— pk reveals (through u and v) precisely the two linear equations ~y;[s1]z +
v2[s2]z mod |Gng| and v1[s3]z +y2[s4]z mod |Ga| about the s;, where the
«v; are as above. For r; # 72, these equations are linearly independent of the
equation that defines X. Hence, for uniform 71,79, X is (almost) independent
of pk.
— By LAF’s lossiness, KDM queries yield (through Ce = E(K, LAF ppp +([s;]z1))

in total at most one equation wia; + wab; + Z?:_OQ w3+iCj,; mod p for each
Jj, where (a;,bj,¢j0,...,¢jn-3) = [s;]zn, and the w; are the (fixed) coeffi-
cients from LAF’s lossiness property. (Recall the encodings [s;]z, [s;]zs of the
s; = (aj,bj,¢;) from (B)).) Hence, the b; € Z,,. o« fully blind the information
released about the ¢; € Zgr-2y through the KDM ciphertexts. Thus, KDM
ciphertexts reveal no information about ¢; mod |Gng| and hence also about
[Sj]z mod ‘Grnd|-

Consequently, even given pk and the KDM ciphertexts, X is statistically close

to independently uniform. This already shows that our change from Game 6.7.2
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affects A’s view only negligibly if A makes no decryption queries. It remains to
show that decryption queries yield no additional information about the s;.

To do so, let us say that a ciphertext C' is consistent iff there exist 7,7 with
(G;,G;) = (g;-",g?) for both j € {1,2}. Note that the decryption of a consistent
ciphertext yields no information about the s; beyond pk. (pk and r, 7 determine
the values Z, Z’ computed during decryption; everything else follows from Z’
and C.) So it suffices to prove the following lemma (which we do in [21])):

Lemma 3. In the situation of Game 6.1.0 (for £ € {1,2}), let badquery.i.e be the
event that A places an inconsistent decryption query that is not rejected. Then

q(k)
™ (Pr [badguery.i1] + Pr [badquery.2]) < 2- q(k) - Adv{%e (k) + O(27).
i=1

for a suitable evasiveness adversary F on LAF.

By our discussion above and [Lemma 3] we obtain that

q(k)

> [Prloute.2 = 1] — Prlouti1 = 1]| < 2-q(k) - Advixe p(k) + O(27F).

i=1

In Game 6.7.3, we reverse the change from Game 6.7.1. Concretely, we prepare
the G; as G; = g;/ho‘i'Qk, resp. G; = gj for a single r < Zpy/4. Another
straightforward reduction to the DDH assumption in Gyng yields that

q(k)
> (Prlouts.is = 1] — Prloutgio =1]) = q(k)-Advi§", (k) +O@27%)
i=1
for a suitable Ds. To close the hybrid argument, note that Games 6.7.3 and
6.(i+1) are identical.

In Game 7, we clear the Gmsg-component of Z in all ciphertexts prepared for
A. That is, instead of computing Z~: g-u" - hX resp. 7 = G-u - RSt Mz for
a freshly uniform g < Gina, we set Z =g - u". (We stress that we still compute
Z =gV 2.) Since all Z already have an independently uniform G,q-component,
a straightforward reduction to the DCR, assumption yields

Prloutsq = 1] — Prout; = 1] = Adv%ilv Le(k)+0@27F)

for a DCR distinguisher E. Note that because of the re-randomizability of DCR,
there is no factor of g(k), even though we substitute many group elements at
once. However, since the precise order of G,nq is not known, this re-randomization
costs us an error term of O(27F).

In Game 8, we substitute the symmetric ciphertexts Cg in all KDM cipher-
texts by encryptions of random messages. By our change in Game 7, we do not
use the symmetric keys K used to produce Cg anywhere else. Thus, a reduction
to the IND-CPA security of (E,D) gives

Prlout; = 1] — Prlouts = 1] = q(k) - AdVi(rEi-SS)aG(k)
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for an IND-CPA adversary G. Note that in Game 8, A’s view is independent
of the challenge bit b initially selected by the KDM challenger. Hence, we have
Pr[outs = 1] = 1/2. Taking things together yields the theorem.
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