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Abstract. Over the last few years, the processing of dynamic data has
gained increasing attention in the Semantic Web community. This led to
the development of several stream reasoning systems that enable on-the-
fly processing of semantically annotated data that changes over time. Due
to their streaming nature, analyzing such systems is extremely difficult.
Currently, their evaluation is conducted under heterogeneous scenarios,
hampering their comparison and an understanding of their benefits and
limitations. In this paper, we strive for a better understanding of the key
challenges that these systems must face and define a generic method-
ology to evaluate their performance. Specifically, we identify three Key
Performance Indicators and seven commandments that specify how to
design the stress tests for system evaluation.

1 Introduction

The processing of dynamic data is becoming an important research area in the
Semantic Web community, and this is fueled by an increasing number of use
cases where input data cannot be considered as static, but rather as a “flow”
that continuously changes as computation takes place [16]. Examples range from
information produced by on-line newspapers, blogs, and social networks to data
generated by sensor networks for environmental monitoring, weather forecast,
or traffic analysis in big cities, as well as stock prices for financial analysis.

This led to the definition of a number of stream reasoning systems [10, 11, 20]
that combine the on-the-fly processing capabilities of Information Flow Process-
ing (IFP) systems [15] with the use of semantically annotated data, in the form
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of RDF triples. To avoid bias in terminology and in continuity with the definition
of IFP systems, we collectively denote such systems Semantic Flow Processing
(SFP) systems. Since in SFP scenarios data changes over time, query answers
need to be updated to reflect such changes. This fact turns the entire query pro-
cess upside-down: whilst “traditional” query engines operate on fixed data and
changing queries, the SFP scenario evaluates fixed queries on changing data.

Empirical evaluation of systems is a significant challenge in computer sci-
ence [23, 24]. Due to their complexity and heterogeneity this is especially true
for SFP systems. Despite the number of SFP systems presented in literature,
their evaluation is still conducted in incomparable and limited scenarios, without
addressing a proper definition of the key performance indicators. This compli-
cates (or even prevents) any meta-analysis comparing the different systems to
understand their distinctive aspects, benefits, and limitations.

In this paper, we study the problem of benchmarking SFP systems with the
purpose of better understanding the key challenges that these system must face
and defining a generic methodology to evaluate their performance. We base our
study upon a recent survey of IFP systems [15], the commandments for bench-
marking databases [18], and our analysis of available benchmarks for testing SFP
systems [21, 26]. Our study first identifies the challenges that SFP systems must
face. Starting from these challenges, we discern the key performance indicators
(KPIs) of SFP systems and introduce seven commandments on how to evaluate
the performance of SFP systems according to these KPIs.

This work makes no effort towards defining yet another benchmark for evalu-
ating the performance of SFP systems. On the contrary, we identify as the main
contribution a systematic guideline for assessing the KPIs of SFP systems. Not
only this is useful for a systematic evaluation of a concrete benchmarking frame-
work at hand. By identifying the main KPIs for the abstract SFP scenario, our
work can be also used for understanding the requirements of concrete applica-
tions as well as guide the design and configuration of an SFP system capable of
satisfying them.

The paper is structured as follows: Section 2 provides background informa-
tion on IFP and SFP systems, as well as on frameworks and methodologies for
evaluating their performance. Section 3 investigates the main properties of SFP
systems, which we use in Section 4 to present the main challenges in the do-
main. In Section 5 we discuss the most appropriate KPIs and stress tests for the
evaluation. Finally, Section 6 summarizes our findings and concludes the paper.

2 Related Work

This section presents related work in the area of IFP and SFP systems, and in
the area of benchmarks for flow-processing systems.

Flow Processing Systems. The last years have seen the development of a
large number of IFP systems. These process continuous flows of information
based on a set of pre-deployed rules or queries to produce and deliver timely



Seven Commandments for Benchmarking Semantic Flow Processing Systems 307

responses to interested parties. Despite their common goals, existing systems
greatly differ in the language they use to define queries and on the adopted
processing mechanisms [15]. Based on these aspects, we can roughly classify
them into two main classes: Data Stream Managements Systems (DSMSs) [7]
and Complex Event Processing (CEP) systems [22]. Note that there exist hybrid
systems that combine features of DSMS and CEP.

DSMSs have been developed by the database community and exploit a pro-
cessing model that is similar to that of traditional DBMSs. More in particular,
they adopt window operators to isolate the portions of streams that are relevant
for processing and logically operate on these portions using relational algebra
operators. This processing model is described in [5] and, despite some differences,
it represents the common ground of all DSMSs [1, 8, 13].

CEP systems [2, 12, 14] take a different approach. While DSMSs use relational
operators to transform input streams, CEP rules define higher level information
(in the form of composite events) from patterns of primitive events observed
from the external environment.

SFP systems extend the IFP domain by considering semantically annotated
data, based on the RDF data model. They extend IFP systems by inference
mechanisms that reach from simple RDFS inference to supporting the OWL2
profiles.1 Most SFP systems [10, 11, 20] use the query model of DSMSs, en-
riching it with the possibility to perform reasoning over streaming data. Only
few approaches [4] take a different direction and combine RDF data with the
processing model of CEP systems.

Stream Benchmarking. In the following, we first present the Linear Road
Benchmark and the Fast Flower Delivery use case—the accepted means to com-
pare DSMSs and CEP systems—and then SR-Bench and the SLD-Bench – the
two existing proposals for benchmarking SFP systems.

Linear Road (LR) This benchmark [6] was proposed by groups at MIT, Bran-
deis University, Brown University, and Stanford University to compare the per-
formance characteristics of different DSMSs and of alternative (e.g., Relational
Database) systems. LR simulates a variable tolling system for highways. Toll
charges are determined dynamically considering traffic congestion and accident
proximity. The benchmark does not specify a solution but describes the require-
ments of the tolling system both functionally (e.g., how to determine the level of
traffic congestion or to detect accidents) and non-functionally (e.g., the vehicle
must receive toll notifications at most five seconds after moving from one road
segment to the following one). LR comes with a simulator, an environment that
validates the results of the system being benchmarked, and a set of software
sensors to measure response time and supported query load.

Fast Flower Delivery (FFD) evolved from a running example [17] to a must-to-
implement showcase for commercial CEPs. It proposes a logistic scenario, where
independent van drivers are asked to deliver flowers from the city’s flower stores
to their destinations. The use case is divided into five phases: 1 ) a bid phase,

1 http://www.w3.org/TR/owl2-profiles/
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when a store offers highly rated drivers nearby to deliver flowers to a destination
within a given time; 2 ) an assignment phase, when the system (manually or
automatically) decides which driver shall deliver the flowers; 3 ) a deliver process,
when the system monitors the delivery process; 4 ) a ranking evaluation, when
the system increases or decreases each driver’s ranking based on the ability to
deliver flowers on time; and 5 ) an activity monitoring, when the system evaluates
drivers ranking over time.

SR-Bench (SR) is defined on measurements of sensors and a fixed (i.e. non-
parameterized) set of queries [26]; some of which require RDFS reasoning capa-
bilities. Each graph points to a) the sensor, b) the timestamp of the observation,
and c) the actual observation. Each of the above refers to a complex object,
where the sensor, the timestamp and the observation follow a pre-defined fixed
schema. Observations are considered as flow-data whereas the schema and the
background knowledge are considered fixed. SR-Bench comprises 17 queries that
can be divided in sub-categories to test different kinds of use-cases: 1) query only
flow-data (Q1-Q7), 2) query both flow and background data (Q8-Q11), and 3)
additionally query the GeoNames and DBpedia datasets (Q12-Q17). Some of
these queries require inference capabilities (Q3, Q15-17).

SLD-Bench [21] is defined on three synthetically generated social streams (i.e.,
a stream of GPS position of the social media users, a stream of micro-posts, and
a stream of uploaded images), a synthetically generated social graph, and a
fixed (i.e., non-parameterized) set of queries. Emphasis is on processing social
streams against a large dataset of static data. SLD-Bench includes 12 queries:
some challenge only flow data (Q1, Q4, Q8, Q10-Q11), others joining flow and
static data (Q2, Q3, Q5-Q7, Q9), none requiring inference capabilities.

3 Properties of SFP Systems

Following the terminology for IFP systems [15] Figure 1 shows the abstract ar-
chitecture of an SFP system. It receives flows (or streams) of information items
from external sources and processes them on-the-fly to produce results for a set
of connected sinks. All existing SFP systems use RDF triples for representing
information items. Processing is governed by a set of rules or queries deployed
into the system. It is performed by one or more interconnected processors and
may consider (semi)static background data in addition to the information flowing

Sources SFP System Sinks

Processing Rules / Queries

Processors
Background

Data

Fig. 1. Abstract Architecture of an SFP System
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from sources. Processors cooperate to generate final results for sinks by produc-
ing and sharing partial results (e.g. variable bindings that are not yet complete).

With reference to this architecture, we identified seven main properties of
SFP system. Note that these properties are not unique, but rather those useful
to determine the list of challenges for an SFP system. A complete classification
of SFP systems is however beyond the scope of this paper.

[P1] Support of Background Data. It defines the feature of considering
background data during processing. An SFP system can either support or ignore
background data; assume that such data is fixed and available ex-ante; or allow
(infrequent) changes to this data.

[P2] Inference Support. The usage of semantically annotated data allows
the SFP system to infer implicit information. This process is broadly referred as
inference or reasoning. The ability of performing inference is feature unique to
SFP system and not available in IFP systems. We make, however, no assumption
about the expressive power of the inference mechanism.

[P3] Quality of Service (QoS). The QoS property identifies whether an
SFP system performs best effort processing or guarantees some specific levels
of performance. The two main metrics to measure QoS for SFP systems are
completeness and soundness of results along with the response time. Complete-
ness measures whether the system guarantees a certain proportion of all correct
answers, while soundness measures the number of incorrect results due, for ex-
ample, to approximation.

[P4] Time Model. In flow-processing applications time plays a central role.
Information items are situated in time and an SFP system may provide time
for each data item either explicitly or implicitly. In the first case, time is ex-
plicitly present in the data-flow while in the latter case the system assigns some
timestamp or interval to each incoming item. Current SFP systems either en-
code time using RDF (by using an RDF node), or add a timestamp or interval
to information items, which thus become quads or quintuples instead of triples.

[P5] Time Semantics. Time can be modeled using point-based semantics or
interval-based semantics. The point based semantics associates each information
item in the data-flow a single point in time (e.g. the occurrence of the event or
the incoming time in the system). In contrast, interval-based semantics defines
an interval of validity for the associated information.

[P6] Query Model. In the context of SFP, the query model is a discriminating
property between systems. Systems like EP-SPARQL [4] define pattern matching
queries through a set of primitive operators (e.g. sequences). Conversely, systems
like C-SPARQL [10] extend declarative languages like SQL, augmenting them
with operators like windows to limit the scope of processing. The query model
also defines when queries are evaluated. The evaluation can be either reactive
(the query is triggered when new data arrives), or periodic (the query is executed
at a specified interval of time).
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Fig. 2. Relations between the challenges and SFP properties

[P7] Distribution. To better support large scale scenarios, with sources of
information potentially distributed over a wide geographical area, SFP systems
may enable processors (see Figure 1) to be distributed among different physical
machines. Distribution enables the concurrent execution of different queries at
different nodes, but also the incremental evaluation of the building blocks of a
single query on different machines. In the latter case, distribution can be used
to push filtering operators as close as possible to the sources of the streaming
information, to reduce the volume of data propagated over the network.

4 Challenges

Defining the challenges we rely on the following assumptions. They clearly define
the scope of our analysis, and thus the area of validity of our results.

– SFP systems distinguish between stream data and background
data. Stream data changes at high frequency while background data is static.

– Streamed data does not affect the schema; no schema information
is present in the stream. In the Semantic Web, schema is defined by
ontologies describing a conceptualization for a domain of interest. Since SFP
systems assume that schema information does not change frequently it is
not present in the stream. Note that this does not contradict the Semantic
Web’s Open-World-Assumption: an SFP system’s inference process may still
discover new schema statements as long as the reasoning remains monotone.

– Only deductive and analytical processing is considered. To limit the
scope of our paper, we do not consider inductive processing (e.g., induc-
tive reasoning). It is based on completely different methods and therefore
introduces new challenges and requires a separate evaluation methodology.

We identified five classes of challenges that affect both the design and the de-
velopment of a SFP system: Managing Background Data, Inference Expressivity,
Time Modeling, and Querying, Managing Bursts. Each of them relate to one or
more properties of the SFP systems, as shown in Figure 2.

[C1] Managing Background Data. Several challenges are connected to han-
dling background data (P1) next to streaming information. First of all, storing
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and manipulating background data might be difficult due to the size of the
data, which can stress the machine resources. Data that greatly exceeds the size
of main memory, requires algorithms to govern the data transfer between disk
and memory.

Additional challenges derive from the complexity of queries over background
data (P6). Queries may require to combine, i.e., join large portions of background
data together with the elements in the flow. This poses strict timing constraints
to processing, thus demanding for the definition and maintenance of suitable
data structures for efficient retrieval and processing of information. This may
involve changes to the background data, that needs to be timely propagated to
processors. Partial results from the flow computation might become invalid, if
in the meantime the background data has changed—an even more challenging
aspect in the case of parallel and distributed processing (P7).

An SFP system must develop efficient mechanisms to handle all these issues,
and their design and implementation is certainly not trivial. Therefore, efficient
mechanisms for storing, accessing, and updating background data are crucial
and should be properly considered in the evaluation of such systems.

[C2] Expressive Power of Inference. The support for inference (P2) is the
distinguishing feature of SFP over IFP systems and introduces serious challenges.

The super-linearity of reasoning (quadratic for RDFS to super-exponential
for OWL 2) requires to carefully balance the expressive power of the inference
mechanism and performance. Even though inference can be limited to become
tractable the fast change rate inherently present in a data-flow imposes strict
constraints on the inference process (P3).

Inference requires a frequent interaction between background and stream data
(P1), as all SFP systems store schema independent from the flow-data. Efficient
mechanisms for storing as well as accessing the schema guarantee fast inference
over the flow-data. Entailment regimes like RDFS produce many duplicates re-
quiring an SFP system to handle repeatedly inserted information.

One additional challenge in the inference process is connected with the validity
of the information in the system (and this strictly relates it to the properties
P4 and P5). If a triple, for example, is no longer valid (e.g., because the active
window has moved), then the inference process might have to be repeated to
verify whether some conclusions still hold or should be retracted.

[C3] Time Modeling. This challenge differs from the others because it relates
to the design of the system while the others primarily affect its execution. In fact,
choosing a specific model –and a corresponding semantics– for representing time
(P4 and P5) can significantly impact the performance of the system (P3). For
example, it has been proven in [25] that the use of an interval-based semantics
rather than a point-based semantics may negatively impact the tractability of
some time-based operators (e.g., next, sequences). Therefore, the designer of an
SFP system must carefully analyze the requisites of the system in order to choose
an appropriate time model in order not to jeopardize its performance.

The current RDF data model includes no notion of time, which led ex-
isting SFP systems to extend RDF in several ways to handle time, e.g., by
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time-stamping the triples —with potential serious consequences for complex pro-
cessing tasks such as reasoning on the data. Suppose that the data exploits the
RDFS semantics which allows reasoning by an exhaustive application of if-then
rules. If the RDF triples used to derive some conclusions are no longer valid,
then it is unclear what happens to the derivation. All these uncertainties can be
clarified by a formal definition of the model and semantics of time associated
to RDF data, but currently there is no clear consensus on this aspect, and this
hampers an understanding of the consequences of the processing of SFP systems.

[C4] Querying. The query model determines the processing strategy (P6). A
key challenge is its definition for stream and background data (P1) that can
satisfy application level requirements on expressive power and ease of use, while
keeping the processing as simple and efficient as possible (P3).

An important challenge for CEP-inspired languages is the choice of an appro-
priate strategy for storing, accessing, and discarding partial results. This is even
more important when dealing with aggregates, in particular under non-shrinking
semantics [9], i.e., when we are not only interested in the number of items in an
aggregate but also in the items themselves. (cf. Section 5, S4).

Languages may include operators that implicitly determine the scope of pro-
cessing, e.g., time-constrained sequences. Similarly, in DSMS-inspired transform-
ing languages, the type and size of windows determines the portion of flow-data
considered for processing (P4). In both cases, isolating the elements that are
relevant for processing is a key challenge. An inappropriate choice may neg-
atively impact the performance of an SFP system: A window too small may
never contain enough information to provide the desired results; a window too
large may hamper the system’s response time. Unsuitable strategies for storing
and pruning partial results may further negatively influence response time.

Other challenges rises from the mechanism for triggering queries and the
management of multiple queries. Increasing the frequency of query evaluation
may decrease the system’s response time while too infrequent evaluations may
prevent the detection of critical situations—both resulting in decreasing system
performance. SFP systems must be able to develop techniques for sharing the
state of partial results that are common to multiple queries, thus reducing mem-
ory requirements and processing effort. The effort of managing multiple queries
increases in presence of distributed settings (P7) by the necessity of concerting
the distribution of operations over available resources with respect to processing
capabilities, connectivity, and their geographical location.

[C5] Managing Bursts. SPF systems must be able to continuously provide
timely answers to queries even in presence of sudden bursts. This strictly relates
to the property P3: indeed, depending from the QoS agreements between the
system and the users, it may be acceptable to sacrifice completeness of results
for the sake of guaranteeing lower response times. Moreover, managing bursts
also requires a careful design of the mapping of processing tasks to available
processing components, enabling load balancing and avoiding bottlenecks. This
issue becomes even more relevant in parallel and distributed systems (P7).
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5 Seven Commandments of Benchmarking SFP Systems

The evaluation of a system performance is done by changing the environment
and/or the system parameters and observing the behavior of some measurable
Key Performance Indicators (KPIs) as these changes occur. The goal of a bench-
mark consists in designing a number of stress tests so that the user can measure
how different systems react to the same changes, considering the same KPIs.
These stress tests should properly create situations when the system is called
to deal with the challenges of the domain. The LR benchmark, for example,
“is designed to measure how well a system can meet real-time query response
requirements in processing high-volume streaming and historical data.” [6].

In this section, we first define a number of KPIs to evaluate SFP systems with
respect to the challenges identified in Section 4. Then, we design some stress tests
to measure and compare the performance of various systems. We thereby analyze
to what extent current benchmarking tools cover such stress tests (see Table 1),
and provide guidelines how the missing parts can be implemented.

Note that we provide no unified benchmark but a unified model for system-
atically benchmarking aspects of SFP systems by stress tests. An actual imple-
mentation of these stress tests will depend first on the actual SFP system and
second on the use-cases at hand, and is beyond the scope of this paper.

5.1 Key Performance Indicators

In contrast to offline systems, SFP systems are reactive. A delay exists between
the points in time when the system consumes an input element and it reports
the results of its processing. If the system load exceeds available resources either
this delay compromises system reactivity or the system has to drop data.

All benchmarks for SFP systems use throughput as their KPI. This choice
yet ignores other criteria that were reported for IFP systems in [15]. We hence
identified the following three KPIs as the most suitable regarding our context.
Interestingly, they were also used used for the evaluation (yet not benchmarking)
of most the principal current SFP systems.

– Response time over all queries (Average/xthPercentile/Maximum).

– Maximum input throughput in terms of number of data element in the
input stream consumed by the system per time unit.

– Minimum time to accuracy and the minimum time to completion
for all queries [19].2

Stressing a system means exploring the input space and identifying best, average,
and –most importantly– worst cases for its performance, i.e., the conditions
under which the system performs how in relation to the KPIs.

2 This includes recall, precision and error rate in relation to processing time.
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Table 1. Stress tests existing benchmarks support. P indicates a potential support or a
partial implementation for stress testing. (a) load balancing, (b) simple, (c) sequential
or (d) temporal joins flow-flow data, (e) joins on flow-background data, aggregates
under shrinking (f) and non-shrinking semantics (g), (h) out-of-order or (i) missing
data, (j) inference, and finally (k) changes in background data.

Benchmark S1 S2 S3 S4 S5 S6 S7
(a) (b) / (c) / (d) (e) (f) / (g) (h) / (i) (j) (k)

LR P Yes/ Yes/ P No No/ Yes P/ P No No
FFD P Yes/ P/ Yes No No/ Yes No/ P P No
SR P Yes/ P/ P Yes P/ Yes P/ P Yes P
SLD P Yes/ P/ P Yes P/ Yes P/ P P P

5.2 Stress Tests

After identifying the KPIs, the definition of stress tests first involves diagnosing
which parameters to manipulate to change the input of the system. In the case of
SFP systems, these parameters have some impact on background data, streaming
data, input rate, etc. It is important to devise how to change these parameters
to achieve the purpose of the test, i.e. to properly impact on the desired KPIs.

In this section we present the seven commandments we worked out based on
our study of the challenges in Section 4. Each commandment represents one of
the stress tests that in our opinion best suit the evaluation of SFP systems. We
show how the current benchmarks address these tests in Table 1. We observe
that all the benchmarks identified in Section 2 either implemented one or more
of these stress tests or could implement them (indicated by “P”). However, no
existing benchmark fully implements all of them.

[S1] Load Balancing [Relates to C5]. SFP systems usually consider multiple
input flows of information, with possible bursts (C5). Therefore, the SFP system
must implement a proper mapping of operators over available processors and
good load balancing strategies.

Finding potential bottlenecks in settings in which many queries are deployed
and multiple processors are available is extremely difficult. However, benchmarks
can empirically evaluate a system under various conditions by repeatedly apply-
ing a set of changes to the input. In particular, it is possible to stress the system
by (i) changing the load of every stream relative to the others at random, (ii) cre-
ating bursts on an increasing number of input streams, and by (iii) dynamically
switching data sources to provide their input on some other data flow. All cur-
rent benchmarks identified in Section 2 provide streaming data from sensors,
and therefore implement variants of this stress test. However, the sensors in SR
can only emit data on regular stable intervals. SLD and LR offer support for
skewed distributions for the generation rate of different streams, although the
specifications do not clearly state to what extent the skew can be controlled.

[S2] Joins and Inference on Flow Data Only [Relates to C3, C4]. In
order to stress the joins between bindings of flow data we need to distinguish
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between simple, sequential, and temporal joins. Simple joins put no further con-
straints on the join but the join-equality. Sequential joins add a sequential con-
straint (like the SEQ-operator [4]). Temporal joins further extend sequential joins
by enabling advanced temporal constraints such as Allen’s intervals [3]. Note that
both sequential and temporal joins require that the system defines an ordering
of the flow-data (C3) as well as a proper extension of the query language (C4).

A stress test to measure the performance of data joins has to consider in-
creasingly complex cascades of joins. For testing sequential and temporal joins
a benchmark will have to add further constraints on the joins, which have to be
reflected in the data. The current benchmarks LR and SLD provide data and
use-cases for sequential joins but at the moment none of them implements stress
tests for temporal joins—although all datasets would allow to. Therefore, a full
implementation of this stress-test is currently unavailable in these benchmarks.

[S3] Joins and Inference in Flow and Background Data [Relates to
C1, C4]. In contrast to joins on flow data only, joining stream and background
data is not subject to any ordering and hence always results in simple joins.
These can be stress-tested by considering single joins and increasingly complex
cascades thereof. Notice that systems often exploit the combination of flow and
background data to perform inference. In this context, the ability of the system
to manage background data (C1) is crucial, since complex reasoning tasks (C4)
can require frequent and repeated access to background data.

Currently, both the SR and SLD benchmarks only provide a few fixed queries.
They are not parameterized, and thus do not allow an exhaustive assessment of
join performance. Furthermore, only SR and SLD can stress an SFP by consid-
ering the accesses to background data that is stored in the disk. Conversely, the
background data of LR and FFD easily fits into the main memory.

[S4] Aggregates [Relates to C3, C4]. Aggregates enable computation on
groups of entities or literals. Such computations include statistics such as counts,
averages but also any other arithmetic operation on groups nodes that fulfill
a grouping constraint. We distinguish between aggregating over entities and
literals. In contrast to literal aggregates, entities aggregates refer to groups of
actual entities and not data values. Consider, for example, detecting situations
where more than n people with similar interest are watching the same show.

We refer to detecting the sole event as shrinking semantics, i.e., we are not
interested in the actual people but only some statistics about them. Referring to
the actual entities taking part in the aggregate (i.e., the actual people watching
the show) is called non-shrinking semantics [9]. We may assess both types by
testing a) how the system scales with an increasing number of groups (lots of
shows, n small), b) by increasing the complexity of the grouping constraints
(complex definition of similar interests) and c) by adjusting the data such that
there will be a lot of candidates for groups of which only a small number will
finally fulfill the grouping criterion (lots of shows with a number of viewers just
below the threshold n).

In contrast to shrinking semantics, non-shrinking semantics are not directly
supported by standard SPARQL and also not implemented by any of the existing
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benchmarks. All of the benchmarks test aggregates in a limited scope, e.g., by
implementing single queries (SR, SLD) or the expected outcome (LR).

[S5] Unexpected Data [Relates to C3, C4]. In distributed settings, SFP
systems have to deal with out-of-order arrival of information and data loss.
This may affect the correctness of query answers, especially (C3) when temporal
operators and constraints are involved. We can measure the ability to handle out-
of-order observations by (i) increasing the number of events arriving not in the
expected order; (ii) by testing the amount of time or data which can be handled
until some out-of-order observation will be no longer considered for processing.
SPARQL OPTIONAL operators, for example allow answering a query even if
some data is still missing (C4). In both cases the benchmark should measure
precision and recall of the amount of missing data. Interestingly, none of the
current benchmarks implements tests for out-of-order events or missing data.

While the ability to deal with noisy data is a relevant problem it is our form be-
lieve that this must be handled outside the core query processing. Consequently,
we did not add stress-tests for handling noisy data.

[S6] Schema [Relates to C1, C2]. Since the schema of both the stream and
the background data is known ex-ante, we can only evaluate the system’s ability
to handle (i) an increasing number of statements in the schema (i.e., axioms
of the system’s ontology), and (ii) statements that generate a more complex
reasoning. In this last case the system needs to provide inference services (C2).

Number of Axioms. When testing an SFP system by increasing the number
of axioms in its ontology it is fundamental to add new axioms that could not
have been deduced from existing ones. Moreover, the expressive power should
not increase as this will spoil the results of this test. SR and SLD are the only
benchmarks with ontology schemata. In spite of the several thousand axioms the
ontologies comprise the number of axioms involved in these benchmarks’ queries
is roughly one per cent of that number.

Expressive Power. Increasing the expressive power of the schema not only for
the background data but also of the flow data may stress an SFP system signifi-
cantly [9]. Evaluating the impact of expressive power requires changing the con-
straints or rules applied by the reasoner, while leaving the ontology unchanged,
e.g., by implementing different combinations of the RDFS inference rules or dif-
ferent profiles of OWL 2. The variation in complexity must have some effect on
the performance of the inference engine. Adding, for example, disjunction to the
reasoner only makes sense in case the ontology contains disjunctive axioms.

In spite of missing features like negation, testing variations of the expressive
power is possible in SR and SLD as they refer to some OWL 2-DL ontologies.
Currently, they only test whether RDFS subclass reasoning is possible but do not
measure the impact on KPIs when varying the expressive power. On the other
hand, works like [9] provide a stress test for inference on transitive properties
under RDFS semantics.

[S7] Changes in Background-Data [Relates to C1, C2] Nearly all systems
identified in [15] consider background data in answering queries and this by pre-
compiling the query. When the background data changes (C1), those parts have
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to be re-compiled and in this intermediate state processing may be delayed or
corrupted,3 further worsened by the presence of inference services (C2). Stress-
testing changes in background data should aim at varying the update frequency
and the sheer amount of data that is subject to an update. Addressing the
query-related part of the background data it should force the system to access
background-data from disk as much as possible.

Currently, no benchmark implements this stress test, and only benchmarks
that use datasets with rich background data can properly implement it, which
is not the case for LR and FFD. The SLD and SR benchmarks do support such
data and are suitable for this task. In particular for the SR system, we can simply
increase the background data by all those datasets in the LOD cloud for which
we may establish links to the GeoNames dataset.

6 Conclusion and Future Work

SFP systems are becoming increasingly popular for processing flows of seman-
tically annotated data on-line and on large scale. Yet, the field of SFP lacks a
classification scheme such as [15] for understanding and comparing existing sys-
tems. Even more significanlty, there is a lack of common agreement of which are
the key performance indicators in the field, and they can be evaluated. A few
good proposals for benchmarking SFP systems were published recently [21, 26],
but none of them has (yet) come up with a pair of simulator/validator systems
comparable to what the LR benchmark provides for IFP systems.

In this paper we diagnosed this research gap and approached the problem of
benchmarking SFP systems from another perspective, following a top-down ap-
proach. We identified those properties of SFP systems relevant for understanding
the key challenges SFP system face and defining the key performance indicators
that allow to assess such challenges.

Starting from this analysis, we proposed seven commandments for defining a
set of benchmarks that comprehensively stress test SFP systems in relation to
precisely defined KPIs. We worked out these commandments as currently the
most important for benchmarking current SFP systems. With new features for
SFP systems this list will certainly have to be extended. For the same reasons
as the LR benchmark, we provided no algorithm for implementing a benchmark
nor did we address the definition of a common protocol for running a concrete
benchmark on different systems. Instead we provide clear guidelines that specify
how concrete benchmarks can implement relevant stress tests for SFP systems.

It is our firm belief that following these guidelines will enable implementing
new or adjusting existing benchmarks, thus making it possible to realize a thor-
ough evaluation and comparison of SFP systems, clearly spotting their strenghts
and weaknesses. The tale of understanding SFP systems by systematic evalua-
tion and comparison has only just begun.

3 Note that a change in background data does not allow for a change in the schema.
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