Skip to main content
  • 3174 Accesses

Abstract

This chapter addresses three basic graph problems encountered in the context of distributed systems. These problems are (a) the computation of the shortest paths between a pair of processes where a positive length (or weight) is attached to each communication channel, (b) the coloring of the vertices (processes) of a graph in Δ+1 colors (where Δ is the maximal number of neighbors of a process, i.e., the maximal degree of a vertex when using the graph terminology), and (c) the detection of knots and cycles in a graph. As for the previous chapter devoted to graph traversal algorithms, an aim of this chapter is not only to present specific distributed graph algorithms, but also to show that their design is not always obtained from a simple extension of their sequential counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Barenboim, M. Elkin, Deterministic distributed vertex coloring in polylogarithmic time. J. ACM 58(5), 23 (2011), 25 pages

    Article  MathSciNet  Google Scholar 

  2. R. Bellman, Dynamic Programming (Princeton University Press, Princeton, 1957)

    MATH  Google Scholar 

  3. A. Boukerche, C. Tropper, A distributed graph algorithm for the detection of local cycles and knots. IEEE Trans. Parallel Distrib. Syst. 9(8), 748–757 (1998)

    Article  Google Scholar 

  4. K.M. Chandy, J. Misra, Distributed computation on graphs: shortest path algorithms. Commun. ACM 25(11), 833–837 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Cidon, An efficient knot detection algorithm. IEEE Trans. Softw. Eng. 15(5), 644–649 (1989)

    Article  Google Scholar 

  6. S. Even, Graph Algorithms, 2nd edn. (Cambridge University Press, Cambridge, 2011), 202 pages (edited by G. Even)

    Book  Google Scholar 

  7. R.W. Floyd, Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)

    Article  Google Scholar 

  8. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979), 340 pages

    MATH  Google Scholar 

  9. A. Gibbons, Algorithmic Graph Theory (Cambridge University Press, Cambridge, 1985), 260 pages

    MATH  Google Scholar 

  10. J.L. Gross, J. Yellen (eds.), Graph Theory (CRC Press, Boca Raton, 2004), 1167 pages

    MATH  Google Scholar 

  11. Ö. Johansson, Simple distributed (Δ+1)-coloring of graphs. Inf. Process. Lett. 70(5), 229–232 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Kanchi, D. Vineyard, An optimal distributed algorithm for all-pairs shortest-path. Int. J. Inf. Theories Appl. 11(2), 141–146 (2004)

    Google Scholar 

  13. E. Korach, D. Rotem, N. Santoro, Distributed algorithms for finding centers and medians in networks. ACM Trans. Program. Lang. Syst. 6(3), 380–401 (1984)

    Article  MATH  Google Scholar 

  14. A.D. Kshemkalyani, M. Singhal, Distributed Computing: Principles, Algorithms and Systems (Cambridge University Press, Cambridge, 2008), 736 pages

    Book  MATH  Google Scholar 

  15. M. Luby, A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4), 1036–1053 (1987)

    Article  MathSciNet  Google Scholar 

  16. D. Manivannan, M. Singhal, An efficient distributed algorithm for detection of knots and cycles in a distributed graph. IEEE Trans. Parallel Distrib. Syst. 14(10), 961–972 (2003)

    Article  Google Scholar 

  17. J. Misra, K.M. Chandy, A distributed graph algorithm: knot detection. ACM Trans. Program. Lang. Syst. 4(4), 678–686 (1982)

    Article  MATH  Google Scholar 

  18. D. Peleg, Distributed Computing: A Locally-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications (2000), 343 pages

    Book  Google Scholar 

  19. S. Toueg, An all-pairs shortest paths distributed algorithm. IBM Technical Report RC 8327, 1980

    Google Scholar 

  20. S. Warshall, A theorem on Boolean matrices. J. ACM 9(1), 11–12 (1962)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raynal, M. (2013). Distributed Graph Algorithms. In: Distributed Algorithms for Message-Passing Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38123-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38123-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38122-5

  • Online ISBN: 978-3-642-38123-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics