

A. Ghose et al. (Eds.): ICSOC 2012, LNCS 7759, pp. 72–84, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Kachako: A Hybrid-Cloud Unstructured Information
Platform for Full Automation of Service Composition,

Scalable Deployment and Evaluation

Natural Language Processing as an Example

Yoshinobu Kano

PRESTO, Japan Science and Technology Agency (JST), Japan
kano@kachako.org

Abstract. Automation is the key concept when designing a service platform,
because automation could reduce human’s work. Focusing on unstructured infor-
mation such as text, image and audio, we implemented our service platform
“Kachako” in a hybrid-cloud way where services themselves are transferred on
demand. We suggest making each service specified by its input and output types,
and executable of the service portable, compatible and interoperable. Assuming
such services, Kachako thoroughly automates everything that users need. Kacha-
ko provides graphical user interfaces allowing end users to complete their tasks
within Kachako without programming. Kachako is designed in a modular way by
complying with well-known frameworks such as UIMA, Hadoop and Maven, al-
lowing partial reuse or customization. We showed that Kachako is practically use-
ful by integrating our natural language processing (NLP) services. Kachako is the
world first full automation system for NLP freely available.

Keywords: Automation, Unstructured Information, Service Composition, Sca-
lability, Natural Language Processing.

1 Introduction

One of the primary motivations providing services would be to save users’ labor, i.e.
automation. However, do current services sufficiently provide automation features? If
we could thoroughly automate users’ service related tasks, what remains as human’s
task? What do we need to achieve such automation?

Our answer is that the minimum user operations include only two steps: prepare a
user account in machines, and specify a service that the user wishes to run. The rest of
everything could be automated if we provide an ideal service platform. That said,
unfortunately, existing service platforms tend to ask users too many manual tasks that
could be potentially automated.

An advantage of web services would be the easiness of using services. However,
web services, from users’ point of view, have more or less fixed configurations
both as software and hardware; services are under control of service providers, so

 Kachako: A Hybrid-Cloud Unstructured Information Platform for Full Automation 73

customization of already deployed services is limited; physical servers of services
cannot be changed, which prevents service scalability and availability.

We could provide users the scalability and the availability by making the entire
service deployment under control of users themselves. Such a control can be practi-
cally available if users could transfer the services themselves, but not the data to be
processed, to arbitrary servers that users wish to use. We call this style as hybrid-
cloud, because we take benefits of both cloud and local deployments. This is possible
due to the recent growth of open source projects, including software from state-of-the-
art research tools to enterprise middleware implementations. We exploit such freely
available software, together with the decreasing cost of computational resources e.g.
the so-called cloud servers, to make such portable services available.

In addition to the portability, services need to be compatible and interoperable to
allow automatic service composition. We focus on unstructured information
processing where we could assume relatively simpler input and output dependencies.

Assuming such services, a fully automated platform could be available. Kachako,
our platform, is just such a full automation system. Kachako is publicly available
under open source license1. Kachako is designed to thoroughly automate any proce-
dure in using services for unstructured information processing: selection, composi-
tion, (parallel distributed) deployment, result visualization, and evaluation of services.

We would like to emphasize here that users of Kachako do not need to know any
detail described in this paper, as these details are obscured due to the automation
features. Even when users wish to customize our system, users simply have to learn a
specific standardized interface which users are interested in.

In this paper, we first describe background and related works of this research in
Section 2. Then we discuss ideal form of services from an automation point of view in
Section 3. We describe our Kachako system architecture which automates total use of
services in Section 4, details discussed in subsections. In Section 5, we describe our
domain specific service implementation in natural language processing, showing that
the architecture is practically available and useful integrating all of features described
in this paper. Section 6 describes limitations of our architecture. We conclude this
paper in Section 7, discussing possible future works.

2 Background and Related Works

We adopted Java Standard Edition 7 as the main programming language of our im-
plementation, as Java is suitable to achieve portability over different environments.

Kachako is compliant with Apache UIMA [1]. UIMA, Unstructured Information
Management Architecture, is a framework which provides metadata schemes and
processing architecture [2]. We selected UIMA not just because we focus on unstruc-
tured information processing, but also UIMA is currently the most suitable open
framework for the automation features we need; UIMA’s block-wise architecture
concept potentially offers easier service composition and scalability, although simply

1 The Kachako system will be available from http://kachako.org/

74 Y. Kano

using UIMA is not sufficient. UIMA’s processing unit is called a UIMA component.
We call a UIMA component as a service in this paper because we make any service
into a UIMA component in Kachako. A UIMA workflow consists of a (nested) list of
components. A parent component may have a programmable flow controller that
decides the processing order of its child components. A collection reader is a special
UIMA component which retrieves input data; a collection reader is normally located
at the start of a workflow. UIMA-AS (asynchronous UIMA) is a set of UIMA’s next
generation architectures including UIMA-AS workflow, UIMA-AS web service, etc.
UIMA’s data structure is called CAS (Common Analysis Structure), which is
represented as a Java object at runtime and normally stored as XMI (XML Metadata
Interchange) format in the disk. A CAS consists of raw data part and annotations part.
The raw data part is normally kept unchanged once stored, holds raw data of e.g. text,
audio, image, etc. The annotations part holds directed graphs of feature structures,
where some of the feature structures are linked with the raw data by data offset posi-
tions. This representation style is called a stand-off annotation style. Any feature
structure should be typed by a user defined data type. Types are defined hierarchically
in a type system XML file. UIMA-AS uses Apache ActiveMQ [3] (a reference im-
plementation of JMS, Java Messaging Service) as a web server.

We also adopt other open source standards in Kachako. Regarding scalability mid-
dleware, we use Apache Hadoop [4] with HDFS. Hadoop is now very widely used
and stable enough. Our service repository is based on Apache Ivy [5], which provides
remote file fetching system with dependency descriptions either in its original format
or in an Apache Maven [6] format.

There are many UIMA related works, while most of them only provide UIMA ser-
vice components. The IBM’s Watson Question-Answer (QA) system [7] is UIMA
compliant, but Watson is specific to the QA (and answering the Jeopardy quiz) do-
main; Watson is commercial software and not publicly available. There are several
UIMA compliant resources available [8][9] [10] but they are services not a platform.

There are also a couple of previous studies of workflow oriented systems, but pre-
vious discussions remained partial when seen from the automation point of view.
U-Compare [11][12][13], our previous product, is a UIMA compliant platform but
automation and scalability were insufficient. Taverna [14] is a workflow system wide-
ly used in the Bioinformatics domain. In Taverna users can connect web services in a
graphical way but service compatibility and interoperability is not sufficiently consi-
dered, users need to understand each service behavior in detail and in most cases re-
quired to write a script to match their I/O formats. Galaxy [15] is another workflow
based system. Galaxy’s service I/O is simply files, so preferred by shell-based pro-
grammers. However, this easiness rather requires extra human works when connect-
ing different services because each service may have different formats. Langrid [16]
is a collection of NLP web services where a service administration system is pro-
vided. Langrid uses BPEL to describe workflows, assuming programming work to
customize the workflows. GATE [17] is a total text mining programming environ-
ment like Eclipse, but is not intended to provide an automation platform like
Kachako.

 Kachako: A Hybrid-Cloud Unstructured Information Platform for Full Automation 75

Fig. 1. A conceptual figure of Kachako’s physical configuration. This figure illustrates a typical
configuration, e.g. there may be no remote server used depending on users’ configurations.

3 Forming Services for Automation

Users are often required expert knowledge in order to determine whether a pair of
services can be composed or not. Such an interoperability issue depends not only on
surficial format definition e.g. XML, but on deeper semantic compatibility. In a worse
case, users need to re-implement the original service implementation for the services
to be able to be combined. We certainly need automation here, as users are not neces-
sarily programmers or experts. Furthermore, this is not an essential task for users.

Such service compatibility and interoperability problem includes several issues:
data format, data type, service metadata, and form of services. As we adopted UIMA
as the basic framework, so data format and service metadata description format are
guaranteed to be compatible. We discuss the rest of theoretical issues in this section.

While standardization of metadata and data format syntax is often discussed, it
tends to be missed in what shape a service should be formed. Some of the existing
services are provided as APIs, while others are a large integrated application. From
our point of view, reusability is the critical issue for the service users. If a service is
smaller, there is more possibility to reuse the service; a smaller service could be more
generic than a large application service, which would assume a more specific use
case. However, this discussion of service granularity is not sufficient. While APIs
(functions of programing languages) could be the smallest service we can provide,

Metadata Reposito-
ry

client
machine

users’ remote servers

master

slave

slave

slave

service repositories
 on the web

SSH

Kachako
repository

third party
repositories

Resource Reposito-
ry Service 1

Service 2

…..

Resource a

Resource b

…..

HTTP

HTTP

(local deployment)

(remote deployment)

servicelist

HTTP

76 Y. Kano

Fig. 2. A conceptual system flow diagram of Kachako’s remote deployment

simply providing APIs do not achieve sufficient reusability. APIs are normally de-
scribed by input data types and output data types. However, an API does not return
meaningful result if we just combine arbitrary two API functions whose I/O data
types formally match. This is because most of APIs have implicit conditions which
are described in machine unreadable documentations, or often not described at all.

In order to allow automatic composition, we suggest that a service metadata should
be specified by a list of I/O data types without any other implicit information. This
obscures the implicit API conditions, so users and developers do not need to under-
stand inside the service implementations. A service should be as small as possible at
the same time, to be more reusable as discussed above. We can create such a service
because tasks are composite in nature in case of unstructured information processing.

Scalability is another critical issue that we have to consider together with the reu-
sability. If a service can process a block of input data without referring to another
input block, then we can parallelize the service process by dividing the input into
independent blocks. This parallelization can scale the entire process out without over-
heads of distributed communication cost. This is an ideal parallelization from the
automation point of view because the original service can be reused without modifica-
tion. Such block division can be decided by semantic relations in the original input
data. For example, a document is normally independent in a collection of documents,
while they are sometimes merged into a single file. The number of possible paralleli-
zation is decided by the number of blocks. Therefore, the input retrieval service, a
collection reader in case of UIMA, should retrieve input by splitting the original data

Prepare machine accounts

Find and select a service

Select a workflow

Select deployment mode

Analyze result

Create new
service

Java installation

Hadoop/HDFS installation

ActiveMQ installation

Add
repository

Create workflow
candidates and

recommendation

UIMA-AS deployment

Fetch Resources

Fetch Metadata Fetch Resources

Hadoop-UIMA deployment On-demand
transparent

result transfer

Monitoring

Servers Client

Typical User Operations

User Operation User Operation (optional) Automatic System Operation LEGEND

Share with other users

R
epositories

Repositories

 Kachako: A Hybrid-Cloud Unstructured Information Platform for Full Automation 77

into smallest but semantically independent blocks. If the input is split so, developers
can implement a service without aware of such a scalability issue. In case a service
needs to collect information over blocks, e.g. search engine indexing, the service
should be specially implemented in a scalable way though this is limited to a couple
of special purposes. We describe our ready-to-use services of NLP in Section 5.

4 Service Platform for Full Automation

Roughly speaking, Kachako physically consists of three parts: a client module includ-
ing GUIs (Graphical User Interfaces), a server module, and repositories on the web.
These modules can be used either in an integrated way or in a partial way; using the
client only for lightweight tasks, using both client and server for automatic large-scale
processing, using the server only to integrate with other existing systems, etc. We also
provide modules in smaller granularity for the reusability.

Kachako’s client runs in a machine where users can configure everything by GUIs.
We only require Java 7 to be installed, so machines of any modern OS (Windows,
Mac, Linux) are available. Most machines have Java pre-installed nowadays. Installa-
tion of Kachako’s client is automatic. By running our small Java launcher program,
all of required binaries and resources are downloaded, cached, and updated if there is
any update. Kachako’s client provides GUIs to configure workflows in an automated
way, as described in the later sections. Kachako also provides a command-line mode,
where users can run a specified workflow without the GUIs.

Fig. 1 illustrates architecture of the entire Kachako system conceptually. Fig. 2
shows a conceptual flow diagram of the system from the user’s point of view.

4.1 Repository Architecture for Finding Services and Resolving Dependencies

Our goal in designing service repository architecture is that files can be shared effi-
ciently, while dependencies between files could be automatically resolved.

For our dependency description, we adopt the Apache Ivy [5] format including
Maven. Because Ivy allows specifying multiple repositories, it is possible to configure
a cloned backup repository. Any resource is cached in the user’s local disk. This me-
chanism allows efficient and dynamic resource distribution.

We separate our service repository into metadata and actual resources (executable
binaries, external data etc.) for efficient data transfer. When users search and confi-
gure services into a workflow, they just need the metadata repository. After creating a
workflow, the Kachako system can collect required resources assuming resource
dependencies are defined properly. Fig. 1 illustrates this architecture conceptually.

Third party service providers can distribute their services by building their own re-
pository. In addition to our default service repository, users can add such a third party
repository by simply specifying a repository location URL as described below.
Then Kachako seeks for available services and resolves any required dependencies
automatically.

78 Y. Kano

4.2 Workflow Oriented Automatic Service Composition

When services are formed as described in the previous section, all of possible combi-
nations of services can be theoretically calculated from services’ I/O conditions. Ka-
chako considers data type hierarchy which makes this calculation a bit complex. The
entire combinations of services form a directed graph structure in general.

The number of the combinations may become too large for humans to grasp, so a
proper filtering feature would be helpful. Because users’ goal is usually linked with
the final output, Kachako asks users to specify which service they wish to run as the
final output service. Kachako also asks users to specify which collection reader to
retrieve as workflow input. These are the only decisions of users, which a system
cannot automatically determine. Given these input and output services, Kachako’s
automatic workflow composition GUI shows possible service combinations. Users
can further filter workflows by specifying intermediate services, while hasty users can
immediately run a suggested workflow.

Kachako provides another workflow creation GUI. Users can specify components
one by one manually in a dragging-and-dropping manner, where any UIMA workflow
can be created even ignoring the I/O conditions.

Kachako further provides other automatic service composition GUI for comparison
and evaluation as described in Section 4.4.

4.3 Automatic Service Deployment, Execution and Monitoring

Kachako provides three service deployment modes: local, batch, and listener dep-
loyment mode. Most of users’ requirements can be satisfied by using one of, or a
combination of these modes. Details are described in subsections.

4.3.1 Local Deployment: Automatic Service Deployment in Local Machine
The local deployment would be suitable for running lightweight tasks immediately.
We assume that service metadata and resources are properly configured as described
in Section 3. By tracing the dependency information for each service in a workflow,

Fig. 3. A diagram of Hadoop-UIMA processing

Mapper process #1

HDFS
XMI

reader

HDFS
XMI
writer

UIMA
service

#1

…
.

Map/
Reduce
special
process

Result transferred
 to local machine

 on demand

User Specified
UIMA Services

Automatic
System Operations

Hadoop/HDFS wrapped workflow

Mapper process #2

HDFS
XMI

reader

HDFS
XMI
writer

UIMA
service

#2

 Kachako: A Hybrid-Cloud Unstructured Information Platform for Full Automation 79

Fig. 4. An example of NLP information visualizing co-reference and predicate relations (left)
and showing details as a table (right)

Kachako can obtain all of required resources. Each service is assigned a separate Java
class loader to avoid version conflicts of libraries, which often occur and difficult to
resolve. This is common with other deployment modes. Kachako deploys a specified
workflow as a UIMA-AS service locally and saves its result in UIMA’s XMI format.

4.3.2 Automatic Server Configuration for Batch and Listener Modes
For the other two modes, remote server configuration is required. We aim to avoid
any permission of root authority that becomes a bottleneck in the setup tasks. Kacha-
ko’s only requirement is that a user should prepare Linux based machines where the
user has his/her user account, accessible via SSH and connected to the Internet via
HTTP. Once the account is registered, Kachako sets up everything automatically. If a
machine configuration is provided by administrator using our importable configura-
tion format, users can skip this registration step.

Kachako uses user’s home directory or the OS’s temporary directory as its root di-
rectory for saving any file. In case of the temporary directory, Kachako prevents the
OS to delete the saved files. Kachako automatically installs Java 7 if not installed yet.

4.3.3 Batch Deployment: Remote Batch Scalable Processing with Hadoop
The batch deployment uses Apache Hadoop [4] as a low level API. We assume that a
workflow, which a user wishes to run, is given as described in the previous sections.

Installation and deployment of Hadoop are not so easy task for end users. Kachako
automatically installs and deploys Hadoop/HDFS. Recent multi-core servers are not
efficiently used because required parallelization works are not essential for the users;
users just want to scale out. Kachako’s automatic scalable deployment would increase
the efficiency. Users can customize configurations when they need specific tuning.

Kachako’s server configuration GUI allows users to create a Hadoop/HDFS cluster
setting from the registered servers. This setting includes Hadoop’s JobTracker,
TaskTracker(s), NameNode, and DataNode(s). Using our modules described earlier,
Kachako automatically installs Java and Hadoop by creating relevant configuration
files for each server in accordance with the user’s server setting.

80 Y. Kano

Fig. 5. An example of evaluation statistics comparing three different tokenizers. Left hand
columns show service names, right hand numerical value columns show standard evaluation
statistics in NLP (F1, precision and recall scores).

Then Kachako will deploy the given UIMA workflow. If there is any required re-
source created locally, Kachako archives these resources, creates a local Ivy reposito-
ry, and transfers them over SSH. A collection reader will run first to retrieve input
data into HDFS in the XMI format. For each service in the rest of the top level servic-
es in the workflow, Kachako runs a Hadoop’s Mapper without Reducer. As illustrated
in Fig. 4, our special XMI reader and writer transfers XMI files from and to the HDFS
file system. These allow mostly any UIMA service to be deployed in Hadoop/HDFS
without modifying the original service implementation. Some special services, such
as search engine indexing, would need Map/Reduce implementation.

Finally, Kachako provides on-demand result transfer feature. After finishing the
workflow in Hadoop, Kachako transfers an index and statistics of result files to the
client. When users need the content of the result e.g. for visualization, Kachako
transfers relevant files from remote HDFS to the client in an on-demand way.

A monitoring feature is important for users, especially because large scale
processing could take very long time, sometimes fails due to unpredictable reasons.
Kachako shows Hadoop job’s progress status in the GUI, as users’ primary concern
would be how much the job has progressed, and whether they are dead or alive. Fur-
ther monitoring information can be shown simply by clicking a button in our GUI.

4.3.4 Listener Deployment: Scalable Remote Deployment with UIMA-AS
The listener deployment mode satisfies broad range of use cases. Firstly, although we
assume freely available software, there would be certain requests not to provide
source codes but services only. Secondly, some services may take very long time to
initialize, or require special environment to run e.g. very large amount of disk space,
difficult to setup for end users, etc. We can avoid such problems by deploying specif-
ic services as web services using our listener deployment mode.

By the UIMA-AS web service, we can deploy any local UIMA component as a
web service. Kachako installs ActiveMQ in a specified remote server first. Then Ka-
chako deploys specified services as UIMA-AS services. Required resources are trans-
ferred as same as the Hadoop mode above.

Simply deploying as a UIMA-AS web service does not scale. We provide a load
balancer which distributes requests over UIMA-AS service nodes, pretending as a
scalable single UIMA-AS service as a whole. Users can deploy such a scalable

 Kachako: A Hybrid-Cloud Unstructured Information Platform for Full Automation 81

UIMA-AS cluster by specifying a load-balancer server and slave servers for the
UIMA-AS services. Users can deploy, undeploy, and monitor services via the GUI.

4.4 Automatic Service Evaluation by Combinatorial Workflow Composition

Because there are many similar but different services available, comparison and eval-
uation of services are critical issues. Services are more or less black-boxed, and be-
have differently depending on their input. Thus it is impossible to predict the best
combination of services for a specific goal without actually running services.

As we discussed in Section 4.2, possible combinations of services can be calcu-
lated. Because such combinations tend to share partial graph, we can efficiently run
combinations of services rather than separately running each of combinations as inde-
pendent workflows. The basic concept is similar to our previous work [11], but in the
previous work we assumed manual configurations which were difficult for users to
configure. In contrast, Kachako automates everything by a new architecture as below.

Firstly, Kachako calculates a possible service combination graph as described in
Section 4.2. Then, for each edge of the graph, CAS content is filtered by the input
type(s), copied to a new CAS and passed to the next service. After processing the next
service, output of the service is internally grouped and stored back into the CAS. This
architecture allows an efficient automatic execution of combinatorial workflows,
while the original services do not need to be modified.

By plugging comparison metric services, users can obtain statistical values for each
pair of comparable service graphs. If a pair includes the so-called gold standard data,
i.e. the correct answer, then the comparison becomes an evaluation. Fig. 5 shows an
example comparison result for an NLP task, tokenization.

The above discussion raises an issue, in what way data types should be defined.
Our automatic service composition is based on the I/O metadata descriptions of ser-
vices, which are described in terms of data types. Therefore, data types should in-
clude, at least, types which are used to describe the I/O metadata. In addition, data
types should include concepts which are used to compare and evaluate services as
discussed in this section. Actual data type definition is a domain specific issue.

5 Ready-to-Use Implementation for Natural Language
Processing as System Evaluation

The Kachako platform architecture we discussed so far is generic. However, we claim
that an ideal system should help users by automation as much as possible. It is abso-
lutely required to provide actual implementation for a specific target domain; else the
system would be just useless as it is too abstract. We show and evaluate our system’s
usefulness by implementing domain specific parts of the system, for the NLP domain
of text processing.

Domain specific issues include data visualization, data type definition, and actual
services. Our system assumes a trial-and-error style use case, in order for users to
obtain the most suitable workflow. Thus error analysis, especially the visualization

82 Y. Kano

Table 1. Result of performance test in the batch mode. Input is the BioMedCentral’s full text
corpus. # of input is the documents processed, # of mappers is parallel process counts, actual
time is elapsed time for the processes, total CPU time is sum of CPU time over mappers.

of Input 20 20 100 100 1000 1000

of Mappers 5 10 5 10 5 10

Actual Time (s) 130 61 584 379 5684 3666

Total CPU Time (ms) 508,720 68,870 2,442,520 2,483,580 23,963,340 23,959,530

feature, is very important. We have developed a generic visualizer for text which can
show annotations and relations of annotations graphically (Fig. 6).

Developing services and defining data types are not a separate issue. We have been
developing compatible NLP services from basic linguistic tools to applied text mining
tools in different languages. We also provide utilities to help developers wrap existing
tools into compatible UIMA services. Everything is integrated into the Kachako sys-
tem, allowing users to find an NLP service, create and run a workflow, and analyze its
result in an ultimately automated way. The number of our services is currently around
one hundred, which can generate thousands of possible workflows theoretically.

We have performed a scalability test by using the NLP services. As a realistic sce-
nario, we used the BioMedCentral’s full text corpus [18] as input and performed a
protein mention extraction task by ABNER [19] in our batch processing mode. Table 1
is the statistics of the testing. Some overhead was observed as expected, but it scaled
out as a whole when increasing the number of mappers.

6 Limitation

One of the limitations is authentication. There would be certain needs for user authen-
tication. Our listener deployment could provide authentication of services. The com-
ponent repository could also limit users. However, these are not supported currently.

Another limitation is the way forming services. Unfortunately, not all the services
can be ideally formed like we discussed. For example, dictionaries are often used as
external resources in NLP tools. Although it is ideal for such external resources to be
compatible, we currently simply specify locations of resources. Such resources are
read in the initialization time but not read during the process time, and so it is unna-
tural and difficult to put the resource into the CAS.

The other type of limitations is stability and compatibility of the data type defini-
tions. We have been implicitly assuming that data types are static. However, if an
incompatible type system is used, previously created services and their results become
incompatible. A solution would be to develop a type system converter. But it is
not a trivial task as there could be many incompatible type systems by different
developers.

 Kachako: A Hybrid-Cloud Unstructured Information Platform for Full Automation 83

7 Conclusion and Future Work

In this paper, we proposed architecture to ultimately automate tasks using services,
and showed its implementation is practically useful, in the NLP domain as an exam-
ple. This system, Kachako, is the world first system providing such thorough automa-
tion features in a scalable and reusable way; select a service and specify servers to
run, that’s all. Board range of standards and technologies were harmonized for these
automation features to be reusable. Increasing the number of available services, in-
cluding Map/Reduce services, is the future work. Enhancement of the Kachako
system to support other domains would be a future work as well.

Acknowledgements. This work was partially supported by JST PRESTO and
KAKENHI 21500130 (MEXT, Japan).

References

1. Apache UIMA, http://uima.apache.org/
2. Ferrucci, D., Lally, A., Gruhl, D., Epstein, E., Schor, M., Murdock, J.W., Frenkiel, A.,

Brown, E.W., Hampp, T., Doganata, Y., Welty, C., Amini, L., Kofman, G., Kozakov, L.,
Mass, Y.: Towards an Interoperability Standard for Text and Multi-Modal Analytics. IBM
Research Report, RC24122 (2006)

3. Apache ActiveMQ, http://activemq.apache.org/
4. Apache Hadoop, http://hadoop.apache.org/
5. Apache Ivy, http://ant.apache.org/ivy/
6. Apache Maven, http://maven.apache.org/
7. Ferrucci, D.A.: Introduction to This is Watson. IBM Journal of Research and Develop-

ment 56, 1:1–1:15 (2012)
8. Hahn, U., Buyko, E., Landefeld, R., Mühlhausen, M., Poprat, M., Tomanek, K., Wermter,

J.: An Overview of JCoRe, the JULIE Lab UIMA Component Repository. In: LREC 2008
Workshop, Towards Enhanced Interoperability for Large HLT Systems: UIMA for NLP,
Marrakech, Morocco, pp. 1–8 (2008)

9. Hernandez, N., Poulard, F., Vernier, M., Rocheteau, J.: Building a French-speaking com-
munity around UIMA, gathering research, education and industrial partners, mainly in
Natural Language Processing and Speech Recognizing domains. In: LREC 2010 Work-
shop of New Challenges for NLP Frameworks, Valletta, Malta (2010)

10. Ogren, P.V., Wetzler, P.G., Bethard, S.: ClearTK: A UIMA Toolkit for Statistical Natural
Language Processing. In: LREC 2008 Workshop ’Towards Enhanced Interoperability for
Large HLT Systems: UIMA for NLP’, Marrakech, Morocco, pp. 32–38 (2008)

11. Kano, Y., Miwa, M., Cohen, K., Hunter, L., Ananiadou, S., Tsujii, J.: U-Compare: a mod-
ular NLP workflow construction and evaluation system. IBM Journal of Research and De-
velopment 55, 11:1–11:10 (2011)

12. Kano, Y., Dorado, R., McCrohon, L., Ananiadou, S., Tsujii, J.: U-Compare: An Integrated
Language Resource Evaluation Platform Including a Comprehensive UIMA Resource Li-
brary. In: 7th International Conference on Language Resources and Evaluation (LREC
2010), Valletta, Malta, pp. 428–434 (2010)

84 Y. Kano

13. Kano, Y., Baumgartner, W.A., McCrohon, L., Ananiadou, S., Cohen, K.B., Hunter, L.,
Tsujii, J.: U-Compare: share and compare text mining tools with UIMA. Bioinformat-
ics 25, 1997–1998 (2009)

14. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn, T.: Taverna:
a tool for building and running workflows of services. Nucleic Acids Res. 34, W729–
W732 (2006)

15. Blankenberg, D., Von Kuster, G., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., Ne-
krutenko, A., Taylor, J.: Galaxy: a web-based genome analysis tool for experimentalists.
Curr. Protoc. Mol. Biol. ch. 19, Unit 19.10.1–19.10.21 (2010)

16. Ishida, T.: Language Grid: An Infrastructure for Intercultural Collaboration. In: Proceed-
ings of the International Symposium on Applications on Internet, pp. 96–100. IEEE Com-
puter Society (2006)

17. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A framework and
graphical development environment for robust NLP tools and applications. In: 40th Anni-
versary Meeting of the Association for Computational Linguistics, Philadelphia, USA, pp.
168–175 (2002)

18. BioMed Central’s open access full-text corpus,
http://www.biomedcentral.com/about/datamining

19. Settles, B.: ABNER: an open source tool for automatically tagging genes, proteins and
other entity names in text. Bioinformatics 21, 3191–3192 (2005)

	Kachako: A Hybrid-Cloud Unstructured InformationPlatform for Full Automation of Service Composition,Scalable Deployment and Evaluation
	Introduction
	Background and Related Works
	Forming Services for Automation
	Service Platform for Full Automation
	Repository Architecture for Finding Services and Resolving Dependencies
	Workflow Oriented Automatic Service Composition
	Automatic Service Deployment, Execution and Monitoring
	Automatic Service Evaluation by Combinatorial Workflow Composition

	Ready-to-Use Implementation for Natural LanguageProcessing as System Evaluation
	Limitation
	Conclusion and Future Work
	References

