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Abstract. The cloud computing has provided customers with various
services at its SaaS layer though, few work has been done on the secu-
rity checking of messages exchanged between a customer and a service
provider at SaaS so as to protect SaaS. In this paper we propose a valida-
tion model to investigate the SaaS security issue. Rather than installing a
set of probes as we have done for the testing web services, in this model
we introduce a validation service that plays the role of a firewall and
protects our SaaS by verifying the correctness of messages with respect
to a set of predefined security rules and forwarding them to their real
destinations if they pass the verification or rejecting them otherwise. We
develop a prototype model based on the tool known as RV4AWS which
was developed in our early study on web service runtime verification, as
well as a checking engine RVEngine to verify our checking algorithm for
the model. A survey on how to use this model for the services deployed
on Google App Engine, Window Azure and Oracle Java Cloud Service
is also presented.

Keywords: SaaS, Cloud Computing, Security Checking, Rule Specifi-
cation.

1 Introduction

The cloud computing [I] has been witnessed to grow tremendously in recent
years as driven by the ubiquitous availability of high capacity networks, low cost
computers and storage devices, as well as the widespread adoption of service-
oriented architecture and utility computing. Cloud computing is the delivery
of computing as a service rather than a product. The current cloud computing
architecture provides clients with three layers of services [2] for them to interact
with the clouds:

— TaaS (Infrastructure as a Service) is the fundamental layer providing services
for deploying, running and managing virtual machines, networks and storage.

— PaaS (Platform as a Service) is the layer above IaaS by delivering the services
for programming and execution, like deploying, monitoring, testing, security,
analyzing, etc.
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— SaaS (Software as a Service) is the top layer that is the URI software appli-
cations providing customers with the shared services.

Given the above layered model, our SaaS (a.k.a, service) is built using the ex-
isting PaaS and TaaS such as Google App Engine [3], Window Azure [4], Oracle
Java Cloud Service [5], and Amazon S3 [6], due to security and reliability of PaaS
and TaaS. In a cloud, however, the services may play the roles of consumers and
providers. Therefore, without an adequate protection mechanism our service
may breakdown due to customer’s and/or provider’s unpredictable behaviors.
For example, during the communication between a customer and its provider,
the messages from the customer /provider may contain untrusted data like virus
links which may harm the service, or the customer/provider sends/responds the
same message several times within a short duration or accesses a cloud service
from different devices (e.g., mobile phones and PCs) at the same time which
may bring with unexpected results to the service. Moreover, an untrusted ser-
vice existing in a composite of services may harm all composition.

To protect the services, an important step is to go through a solid security
testing and verification of the software at runtime. The security testing of a soft-
ware implementation is usually executed via runtime verification. Presently the
approaches to runtime verification of software are usually carried out by collect-
ing the messages exchanged and verifying them against a set of constraints [7],[8],
in which message collecting is generally practiced by installing a set of points
of observation (a.k.a., a set of probes). However, these approaches are not ap-
plicable to a cloud environment due to two reasons: (1) SaaS in a cloud uses a
dynamic and virtual infrastructure, and it does not function well to install a set
of points of observation because of some limitations, for example, only Servlet
is supported in Google App Engine, and (2) the points of observation do not
allow us to make several decisions like reject, modify or ignore the unexpected
messages (from both directions) which are necessary to protect the services.

Given the above situation, in this paper we firstly survey on several clouds
and propose the corresponding validation model for security checking of services
in these clouds. A validation module which plays the role of a firewall, is actually
performing as a kind of intermediary between the customer side and the provider
side, serving as the probes to collect messages, and verifying them with respect
to a set of predefined security constrains. Secondly, our prototype model is de-
veloped with a tool known as RVAWS (Runtime Verification for Web Services)
which was developed in our early study on automated runtime verification for
web services [9]. Besides, we survey on how to use this prototype for the ser-
vice composition that are deployed on two popular clouds, namely Google App
Engine and Microsoft Window Azure.

The remaining sections of the paper are organized as follows. In Section [2]
we review related work on testing of SaaS, and present our security model in
Section [3 which includes a validation architecture, rule model and an algorithm
to check the correctness of a sequence of messages with respect to a set of security
rules, followed by showing our implementation details of prototype development
with open discussions in Section [ before concluding the paper in Section Bl
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2 Related Work on Testing of SaaS in the Clouds

There is few published work focusing on either active or passive testing and ver-
ification of a cloud application though, some approaches have been proposed to
deal with the testing of web services and can be considered as a cloud application
if they are applied to a cloud environment.

To protect a web service, Gruschka and Luttenberger [I0] proposed a mecha-
nism by validating the SOAP (Simple Object Access Protocol) messages, aiming
to filter out the SOAP messages by detecting the malicious ones so as to improve
the availability web services. They set up a web service firewall that can validate
all incoming and outgoing SOAP messages against the schema, and forward valid
messages or reject invalid messages.

Salva et al. [11] proposed a security testing method for stated web services.
In this work, the security rules defined by the Nomad language are used to con-
struct the test purposes. This security rule set expresses the different properties
such as the web service availability, authorization and authentication by means
of malicious requests. Using these test purposes, the test cases are then gener-
ated from the symbolic specification of web services to test against the service
implementation.

The approaches proposed in [§] and [12] focus on invariant satisfiability. These
invariants are constructed from the specification and are later on checked based
on the collected traces. These approaches use a sniffer-based module which may
not be easy to set up on a cloud environment to collect the traces.

Chan et al. [13] presented a graph-theoretic model of computing clouds to-
gether with a family of model-based testing criteria for testing cloud applications.
Their approach is proposed particularly for clouds-in-the-small to predicate the
behaviors of applications though, it may not be viable to our study scenario
which focuses on protecting SaaS via security testing.

A recent model-based testing process proposed by Endo and Simao [14] sug-
gested using finite state machines to model and support the test case generation
for the verification of service-oriented applications. This process focuses on the
functional verification of SaaS rather than the security checking.

In [I5], Salva defined a proxy-tester as a product between the specification
and its canonical tester, which is an intermediary between the client and its
implementation. Whenever the proxy-tester receives a message either from the
client or from the implementation, it will analyze this message by means of zoco
for passive testing to detect faults.

Our motivation of this study is based on the idea presented in [I0] and the
features of clouds. Since a cloud environment is dynamic, virtual and limitation
of supported technologies, making it difficult to install a sniffer-based [8] [12]
module, we build a firewall, which is either installed totally outside the Clouds
or a part depending on the concrete cloud environment, to verify all commu-
nicating messages before forwarding them to their destinations so as to protect
our services. However, unlike the work in [I0] that checks the correctness of mes-
sages by comparing the structure of those messages against the schema defined
in WSDLs file, we focus on the security issue to protect our service from the
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Fig. 1. Testbed architecture using Servlet Filter

untrusted customers or the mistake of partners. For example, the partner re-
sponses a message two time, the second one will be rejected. We firstly predefine
a set of security rules by giving its syntax, and then verify all messages based
on the set of rules defined by this syntax. Amongst these rules, some aspects
are considered as time constraint (i.e., future and past time), data correlation,
message filtering out by its content, and service behavior.

3 Security Model of SaaS in a Cloud

3.1 A Survey on the Existing Clouds

In this section, we conduct a survey on how the validation model can deploy on
the popular PaaS such as Google App Engine (GAE), Window Azure, Oracle
Java Cloud Service. Google App Engine [3] supports Java technologies with re-
strictions at the moment for developing and deploying the services, only Servlet
and Rest Web Services are supported. Window Azure [4] supports more stan-
dards and it also allows us to configure an application on this environment to
call the other one though an HTTP Proxy which is installed outside of the cloud.
It allows a service to call to the other one outside the cloud by using the Service
Bus or Window Azure Connect [16]. Oracle Java Cloud Service [5] supports full
standards of Java EE which allows to call other applications though an HTTP
Proxy. However, a little modification of source code is required.

With the services (also service composition) that are developed using Servlet
of Java EE, using a Filtel] as a transparent proxy module, we can capture
all communicating message among consumers and providers. This module com-
municate with Checking Engine that is installed outside the cloud via HTTP
Protocol to validate these messages before forwarding them to corresponding
Servlet. The Filter is a specialized Servlet which can intercept and transform
any requests and responses, therefore it can deploy on the same environment

!http://www.oracle.com/technetwork/java/filters-137243.html
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Fig. 2. Testbed architecture though Proxy

with the services. With this architecture, any kind of messages exchanged be-
tween a consumer and a provider can be observed without modifying any source
code, whereas we do not need to install the checking engine inside the cloud.
We can also configure a filter to capture the messages between partners of a ser-
vice composition. Figure [Tl shows the testbed architecture using Servlet Filter.
However, an environment, such as Window Azure or Oracle Java Cloud Service,
allows the applications to configure to use an HTTP Proxy to call other applica-
tions. The checking engine can be integrated into a proxy as shown in Figure 2
However, the consumer is required to call the service though this proxy.

3.2 Security Checking

There have been approaches [8/12] proposed for web services and security check-
ing, which only focus on the behavior of the applications and ignore the data
part (i.e., the contents of messages exchanged between a customer and a service
provider). However, the security of a service oriented application needs to con-
sider the following aspects, namely (1) Data Constraints, i.e. limitations on the
structures and contents of the messages sent to the service, (2) Control-Flow Con-
straints, and (3) Data-aware Control Flow Constraints, i.e. the authorized sequence
of messages depends on relationships between values of multiple messages. To sup-
port our model for security checking, in this section we present a checking algo-
rithm that can verify the correctness of a timed trace with respect to a set of con-
straints. For this purpose, in what follows, we give some formal definitions as pre-
liminaries to the checking algorithm. Our rule definitions and checking algorithm
inherit from our previous study [9] on runtime verification of web services.

Rule Definition. The rule definitions include two parts, namely syntax and
semantics.

For the syntax part, we consider each message as an atomic action, and use
one or several messages to define a formula as a boolean expression. We also
use the operation NOT to indicate that a message is prohibited to appear in
the trace within a duration. During the formula definition, the constraint on the
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values of message parameters may be considered. Finally, from these formulas,
the rule is defined in two parts, namely supposition (or condition) and context.
A set of data correlations are included as an option.

Definition 1. (Atomic action). An atomic action is either an input message or
an output message, formally denoted as

A = Event(Const)|-A

where

— Fvent represents an input /output message name;
— Const :== P = V|Const A Const|Const V Const where
e P are the parameters. These parameters represent the relevant fields in

the message;
e 1/ are the possible parameters values;
o me{=#<>5,>h
— —A means not(A).

Definition 2. (Formula). A formula is recursively defined as
F := start(A) | done(A) | FAF | FV F | Odelmn p
where

— A is the atomic action;

— start(A): A is being started;

— done(A): A has been finished;

— Qd%€lmn] . F was true in d units of time ago if m > n, and F will be true
in the next d units of time if m < n where m and n are natural numbers.

Definition 3. (Data correlation). A data correlation is a set of parameters that
have the same data type where each different parameter represents a relevant field
in a different message, for which the operator = (equal) is used to compare the
equality amongst parameters. A data correlation is considered as a property on
data.

By putting the time constraints into an interval, we support two types of rules,
namely obligation and prohibition. Obligation means that all traces must satisfy
the constraints; whereas prohibition is the negation of an obligation constraint.

Definition 4. (Rule with data correlation). Let o and 8 be formulas, and C'S be a
set of data correlations based on « and 8 (CS is defined based on the messages of
a and B). A rule with data correlation is defined as R(a\ﬁ)/C’ where R € {O:
Obligation; F: Prohibition;}. The constraint O(«|f) or F(«|5) (where F(«|S3)
= O(NOT «|p)) respectively means that it is obligated or prohibited to have «
true when context S holds within the conditions of CS.

Example 1. If we have such a constraint that we do not allow to submit the
same login request twice within a period of time, say 3 seconds, then we can use
userld to distinguish among requests with the following formula:

2 CS is an optional part.
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F(start(login Request)| 00315 done(loginRequest)) /
{{loginRequest.userId, loginRequest.userId}}

Example 2. We also define a rule to control the client behavior. For example, if
a client wants to send a confirmation request to a service provider, then the client
must firstly receive a response from the previous operation within maximum 5
minutes where the content of this response is accepted.

O(start(con firmRequest)|O€POM done(zzz Response(resp = "accept”)))

For the semantics part, we have the following definition for a rule model.

Definition 5. (Rule model). A model of rules corresponds to a pair r = (P, C,)
where

— P, is a total function that associates every integer x with a propositional
formula.

— C, is a total function that associates every integer « with a pair («, d) where
a is a formula and d a positive integer.

Intuitively, Vz, p € P,.(z) means that proposition p is true at time x; while (a,
d) € Cy(x) means that context of formula a holds (is evaluated true) at time ¢
where

— t € [z, x + d] if we focus on future time.
— t € [vr — d, ] if we focus on past time.

Checking Algorithm. Given the above rule definitions, in what follows we
present our algorithm to check a message’s security property with respect to a
set of constraints. Our algorithm will deal with two cases of rules, namely rules
with future time and rules with past time, in which we use two global variables,
namely currlist and rulelist, in which currlist is a list of enabled rules that have
been activated and rulelist is the list of defined rules that are used to verify the
system. The full verification algorithm is presented in [9] and it is summarized
as follows.

a) Rules with Future Time

Given that each rule has two parts (i.e., the supposition and context parts), a
rule will be evaluated as either true or false or unde fined if its supposition has
been enabled and the current message belongs to its context. At any occurrence
time ¢ of message msg, our algorithm checks the correctness of a rule by two
steps.

— Step 1. Examine the list of enabled rules currlist to evaluate their context
if the time constraints are valid. If the context of a rule is evaluated to be
true/ false, then it will be removed from the enabled list currlist and the
corresponding verdict is returned. Otherwise (i.e., the context is unde fined,
meaning incomplete context), we wait for the arrival of the next message
and return true to the verdict.
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Algorithm 1. Checking algorithm for future time rules
Input : timed event: (msg,t)
Output: true/false
1 verdict <— true
1. For each r € currlist
— IF the time constraints of r at t are validation
e IF msg belongs to the context of r
x Update context of r by msg
* IF the evaluation of the context of r is true/ false
- Remove r from currlist
- verdict +— verdictA true/false
— ELSE: verdict «— false
2. For each r € rulelist
— IF msg belongs to the supposition of r
e Update the activated time for r by ¢
e Add r into currlist (activated)

— Step 2. Examine the list of rules rulelist to activatdd them if their supposition
contains the current message msg.

Algorithm [[lshows how to check the correctness of a message with a set of future
time rules, in which we assume that the rules are Obligation (the Prohibition
rules are the negation of the verdict of the Obligation rules), and do not consider
data correlation.

b) Rules with Past Time

For a rule with past time, the context part will happen before its supposition,
meaning that the context part must be evaluated to be true/ false whenever its
supposition handles the current message. Upon the arrival of any timed event
(msg, t), our algorithm checks correctness of a rule with past time by two steps.

— Step 1. Examine the list of enabled rules currlist to check the correctness
of current message msg. If t satisfies their time constraints and msg belongs
to their supposition, then remove them from list currlist. At the same time,
if their context is evaluated to be false/undefined, then a false verdict
will be assigned; otherwise, a true verdict is admitted. On the other hand, if
msg does not belong to their supposition and msg is found in their context,
then we update their context by msg and wait the next message to evaluate
these rules.

— Step 2. Examine the list of rules rulelist and activate them if their context
contains the current message msg.

Algorithm [2] shows how to check the correctness of a message with a set of past
time rules under the assumption that the rules are Obligation.

3 If a rule exists in the current enable rule list, it will still be activated.
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Algorithm 2. Checking algorithm for past time rules
Input : timed event: (msg,t)
Output: true/false
1 verdict <— true
1. For each r € currlist
— IF the time constraints of r at t are validation
e IF msg belongs to the supposition of r
* Remove r from currlist
x IF the evaluation of the context of r is false/undefined
- verdict <— verdict A\ false
e ELSE IF the context of r contains msg
+ Update the context of r by msg
— ELSE: verdict +— false
2. For each r € rulelist
— IF msg belongs to the context of r
e Update the activated time for r by ¢
e Add r into currlist (activated)

4 Implementation and Discussion

With the above rule definitions and checking algorithm, in what follows we
present the implementation of our prototype, as well as applying to a simple
example of service composition which can well demonstrate the effectiveness of
our security model and method.

To support our security checking method, in the context of WebMo project,
we developed a tool known as RVAWS [17][18] (Runtime Verification for Web Ser-
vices) that checks a timed trace with respect to a set of security rules predefined
by the syntax as introduced in Section In this tool, a checking engine [19]
(i.e., RVEngine) is developed independently in Java language and used as a
library of the tool. To support several types of systems, this engine defines an
interface known as IParseData which allows us to parse the different structure of
messages by implementing it. This interface provides two operations, namely (1)
getMessageName() which returns the message name by analyzing the structure
or content of a message, and (2) gueryData() which allows us to query a data
value from a specific field of a message. The query path of the latter operation
depends on the structure of messages. For example, it is an XPath in the case
of SOAP message of web services.

To demonstrate the effectiveness of our prototype, we developed a simple
service composition where 4 services (i.e., Shopping, Login, Stock and Cart)
are developed using Servlet and deployed in Google App Engine [3]. In this
composition, Shopping service proposes an interface that allows a client to
search a book from Stock service by sending an ISBN (International Standard
Book Number). If a book is found, the client can add it into a temporary cart

4http://webmov.lri.fr
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Fig. 3. Latency measurements of composition on GAE Cloud

(i.e., Cart service) and search the other ones. Finally, when one or several books
were added into the cart, the client can checkout. However, to use these services,
the client is required firstly to access to the Login service to get a ticket. And
then, every time when the client is accessing Shopping service, the ticket is re-
quired and Shopping service will contact to Login service to validate this ticket.
A Filter is also configured to collect all communicating messages from 4 services
and the client. These messages will be sent to Checking Engine which is installed
on a local machine to validate. We implemented our prototype with 20 instances
of mocked client written in Java, which simulate real client applications. They
run in a loop and perform the following actions, namely call to Login Service
to get a ticket and use this ticket to search a book, add the found book into a
temporary cart and check out the cart. In this paper we ignore the correctness
of RVEngine because it is proved in [9], but we are interested in the latency of
messages while applying our prototype to protect the services. The latency mea-
surement is important since it may lead to an issue if it is equal to or longer than
the time set for a connection. Figure Bl shows the obtained latency measurement
with GAE. This is the average of total time to complete the sequence of actions
with 1,5, 10, 15 and 20 clients running in parallel. We observe that the difference
of time execution between non validation and validation of one instance is 4620
ms (6144-1524) while 184 messages were passed to the checking engine. It means
that each message is delayed 256 ms for capturing of filter, sending/receiving to
checking engine and checking time. However, if many instances are executed in
parallel, then the latency can be reduced. For example, with 10 instances, the
difference of time is 13466 — 5669 = 7797 ms for all 180 messages. However, all
these latencies depend on the network between our local machine and the Google
cloud at different moment.

5 loginReq— loginResp— bookReq— verifyReq— verifyResp— stockReq— stockResp—
bookResp— addCartReq — verifyReq— verifyResp— cartAddReq — cartAddResp—
addCartResp — checkReq— checkCartReq — checkCartResp — checkResp.
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This validation model provides us with some other choices than those de-
scribed in this paper. We discuss several choices of our validation model in the
following.

— Integrate with a Passive Testing. All communicating messages of service are
passed to it before forwarding to the final destination. Beside the security
checking, it also collects the traces. Therefore, a passive testing method can
also apply to this step to verify the behavior of the service with respect to a
formal specification using these input/output messages. Both on-line [I5] or
off-line [20] [I2] methods can be integrated in this service however, the data
correlation must be considered in the case when traces are mixed by many
sessions.

— Integrate with an Analytical Method. With the model given in Figures [
and 2l where all communicating messages are collected, an analytical method
can be used at the checking engine part for the purpose of understanding
and optimizing service usage. Either off-site analytical methods such as the
measurement of a service’s potential audience (opportunity), share of voice
(visibility), or buzz (comments) that is happening on the service or on-site
analytical methods such as service analytics measuring a client’s journey can
use our model.

— Using this model with a String Solver such as [21I] [22], we can apply it to
the problem of finding client-side code injection vulnerabilities of the web
applications.

5 Conclusion

In this paper, we have proposed a proxy-tester model to protect the security
of SaaS. Our contributions are multi-fold. First, we have proposed a firewall
model as a validation service for the security checking of SaaS. Second, we have
presented an algorithm to check the correctness of messages for both past time
and future time cases. Third, we have developed a tool and a checking engine for
our model. Fourth, we have conducted a survey on how to use our tool to validate
the services that are deployed on several available PaaS. We have also conducted
experiments on a simple of service composition which is deployed in GAE and
verified the effectiveness of our model. In the future, we plan to investigate our
prototype for the real applications and also on Window Azure clouds.
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