
A. Ghose et al. (Eds.): ICSOC 2012, LNCS 7759, pp. 426–432, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Detecting Runtime Business Process Compliance
with Artifact Lifecycles

Qi He1,2

1 School of Computer Science, Fudan University, China
2 College of Information Technology, Shanghai Ocean University, China

061021059@fudan.edu.cn

Abstract. Detecting business process compliance in runtime is the
complementary to static compliance checking in the stage of process design,
and allows checking whether an execution of a business process satisfies a
given constraint. In this paper, runtime compliance checking is used for artifact-
centric business process and artifact lifecycles are treated as business
constraints. Previous methods for runtime compliance checking mainly put
focus on activities in business process and lose the attention for data. In this
work we concentrate on both the evolution of artifacts (data) and services
(activities) to identify the frontier between decidability and undecidability of
the runtime compliance problem. We also provide decidable results and the
implement method under regular and context-free artifact lifecycles.

Keywords: BPM, artifact, compliance, decidability.

1 Introduction

As the technique to ensure business processes conforming to rules and regulations,
compliance checking occurs in almost full stages of BPM (business processes
management) lifecycle. More and more enterprises and organizations are focusing on
employing this technique into their BPM systems to improve business efficiency.

Traditionally, the BPM systems are organized in control-centric business process
models in which activities are focused on and data just serve as inputs and outputs of
some services. In recent years, as a data-centric approach, the artifact-centric
methodology[1] has emerged as a new paradigm to support business process
management. In the future, most business processes will be implemented based on the
artifact-centric idea and this methodology will become the major tendency of BPM.

Currently, researches on compliance of artifact-centric business processes have
been carried out by guaranteeing business process models complying with business
constraints in the process design phase [2,3,4]. But, it is not comprehensive to only
consider compliance during the process of design. For example, in many business
processes, non-compliant behaviors can most likely emerge during business process
executions for human errors. So, how to detect runtime business process compliance
is a crucial challenge of business process management.

 Detecting Runtime Business Process Compliance with Artifact Lifecycles 427

As key information records in business process, artifacts include both the business-
relevant data and their own lifecycles which constrain how they can evolve over time
from being created to being achieved as the result of services being applied to them.
In general, artifact lifecycles reflect rules that constrain business process. Therefore
artifact lifecycles can be regarded as business constraints.

In this paper, our goal is thus to discuss the problem of detecting runtime
compliance between artifact-centric business processes executions and business
constraints (artifact lifecycles). We propose the formal definition of artifact lifecycles
which are languages over special alphabets. Based on this definition, we define the
problem of runtime compliance as the acceptance problem for languages. Then we
identify the frontier between decidability and undecidability of this problem. To
obtain various decidability results, we focus on two kinds of business constraints,
regular and context-free artifact lifecycles, and provide the result of decidability. To
our knowledge, the present work is the first to study the runtime compliance problem
by considering both data (artifacts) and activities (services) formally.

The paper is organized as follows. In Section 2 we survey related works. In Section
3 we formulate the problem of runtime compliance checking with artifact lifecycles.
In Section 4 we study the decidability of runtime compliance checking, provide
decidable results and the implement method under regular and context-free artifact
lifecycles. Section 5 concludes the paper.

2 Related Work

Compliance checking for artifact-centric business processes can be executed both in
the stage of process design and the stage of process implementation.

In the stages of process design, compliance checking is developed to verify if
business process models is complied with business constraints. [2,3] puts attentions
on static analyzing the properties of artifact-centric business processes, such as
general temporal constraints. [4] discusses static checking problem, based on the
conditions that business processes are represented in artifact systems and the rules are
expressed in linear-time temporal logic.

In the stages of process implementation, the runtime compliance checking usually
utilizes the results of business process executions to judge if the operations do not
violate business rules. In [5, 6], the problem of conformance checking is discussed,
which is to check whether the business process executions recorded in logs is
consistent with the business process models. [7] presents a novel runtime verification
framework based on linear temporal logic, and translates constraint model into
colored automata to monitor the business process execution. But, these techniques for
runtime compliance checking only consider the activities of business and omit the
evolution of data entities.

In this paper, we propose a novel approach to implement runtime compliance
checking. And in our works, the changes of data and activities are all considered.

428 Q. He

3 Problem Statement

For formulating the problem of runtime compliance for artifact-centric business
processes, we provide the definitions of artifact schema, artifact instance, and artifact.
We assume the existence of the infinite set D = {D1, D2, …, Di, …}, where Di is a
finite domain.

Definition 1. An artifact schema Γ (simply schema) is a tuple of (U, τ), where (1)U is
a finite set of attributes, a special attribute ID∈U is identifier attribute, and (2)τ:U→D
is a total mapping.

Definition 2. An artifact instance aΓ of schema Γ is a tuple of (id, μ), where (1) μ is a
partial mapping that assigns each attribute X in U a value x, x∈τ(X), and (2) id∈τ(ID)
is an identifier.

Definition 3 [8]. An artifact AΓ of schema Γ is a tuple of (id, T, AI, λ), where (1) id is
the identifier of artifact, (2) T={t1, t2,…, tn} is the domain of time, (3) AI is the set of
artifact instances of Γ, the identifiers of which are id, (4) λ: T→AI is a total mapping.

Example 1. We briefly describe an example of a business process for equipment sale
in shops to illustrate concepts as we introduce them. In this application, only one
artifact schema Order, shown in Table 1, is included. Table 2 and Table 3 show some
artifact instances and artifacts of Order.

Table 3. Artifacts of Order

Artifact
Name

id equipName Customer checkAvail checkPaid TimeStamp

A1
01 printer Tom null null 20-10,09:12
01 printer Tom yes null 21-10,10:11
01 printer Tom yes yes 21-10,15:09

A2

02 displayer Jack null null 20-10,19:05
02 displayer Jack no null 21-10,10:30
02 displayer Jack yes null 23-10,10:05
02 displayer Jack yes yes 23-10,13:15

Table 1. Artifact Schema Order

U τ(X), X∈U
ID { 01, 02 }

equipName {printer, displayer }
Customer { Tom, Jack}
checkAvail {yes, no}
checkPaied {yes, no}

Table 2. Artifact Instances of Order

Artifact
Instances

Name
id equipName Customer checkAvail checkPaid

a11 01 printer Tom null null
a12 01 printer Tom yes null
a13 01 printer Tom yes yes
a21 02 displayer Jack null null
a22 02 displayer Jack no null
a23 02 displayer Jack yes null
a24 02 displayer Jack yes yes

 Detecting Runtime Business Process Compliance with Artifact Lifecycles 429

Services are used to modify the values of artifact attributes. The evolutions of
artifacts are recorded in execution logs in form of sequences made up of alternate
services and artifact instances. In this paper, we define the sequence as a string over
an alphabet.

Definition 4. A service artifact-instance string ω (simply s-a string) of Γ is a string
over the alphabet Σ, where Σ⊆S×AI, AI is a set of artifact instances of Γ, S is a set of
services acting on artifacts of Γ and artifact instances occurring in the string have the
same identifier.

Example 2. For the artifact schema Order in Example 1, there exist the set of services
SOrder and the set of artifact instances AIOrder, where SOrder = {so1, so2, so3},

so1: Create artifacts of Order; so2: Check whether equipments are available,
so3: Check whether the order is paid,
and AIOrder = {a11, a12, a13, a21, a22, a23, a24}. Let alphabet ΣOrder⊆ SOrder×AIOrder, and

ΣOrder = {(so1, a11), (so1, a21), (so2, a12), (so2, a22), (so2, a23), (so3, a13), (so3, a24)}. ω1, ω2,
ω3 are three s-a strings of Order, where
ω1= (so1, a11)(so2, a12)(so3, a13), ω2= (so1, a21)(so2, a22)(so2, a23)(so3, a24),
ω3= (so1, a21)(so2, a22)(so2, a22)(so2, a23)(so3, a24).
Next, we introduce two operations which are provided to get artifact instance

sequences (simply AISs) from an artifact and from an s-a string respectively.

Definition 5. Given an artifact AΓ= (id, T, AI, λ) of schema Γ and a set of AISs Q in
which a AIS is sequence of artifact instances in AI, we provide the operation α,
α:{AΓ}→Q, where α(AΓ) is a AIS a1a2…ai… an and ai =λ(ti), 0≤ i≤n.

Definition 6. Let ω=(s1, a1)(s2, a2)…(si, ai)…(sn, an) be a s-a string over Σ⊆ S×AI
and Q be a set of AISs in which a AIS is sequence of artifact instances in AI. We
provide the operation β, β :{ω}→Q, where β(ω) is the AIS a1a2…ai… an.

Example 3. We apply the operation α to A1, A2 in Example 1 and apply β to ω1, ω2,
ω3 in Example 3. The results are following.

α(A1)= a11a12a13 , α(A2)= a21a22a23a24 ,
β(ω1)= a11a12a13 , β(ω2)= a21a22a23a24 , β(ω3)= a21a22a22a23a24

Definition 7. Given an artifact AΓ of schema Γ and a s-a string ω of Γ, ω is the
evolution of AΓ if α(AΓ)= β(ω).

Now, we can say that ω1is the evolution of artifact A1, and ω2 is the evolution of
artifact A2.

Definition 8. Let AI be a set of artifact instances of schema Γ and S is a set of services
acting on artifacts of Γ. An artifact lifecycle L of Γ is a language over alphabet Σ, Σ⊆
S×AI, i.e., L = {ω | ω is a s-a string of Γ}.

Example 4. Suppose that LOrder= {ω1, ω2, ω3}, and ω1, ω2, ω3 are s-a strings of Γ
shown in Example 3. Then LOrder is an artifact lifecycle of Γ.

430 Q. He

According to the above definitions, we can know that the execution of an artifact-
centric business process can be recorded in form of the evolutions of artifacts, and
that the problem of runtime compliance is equivalent to the membership problem for
an artifact lifecycle L. Formally, we state the problem as follows:

Runtime Compliance Problem: Suppose that Γ is an artifact schema, AΓ is an artifact
of Γ. Given an artifact lifecycle L of Γ and the evolution ω of AΓ, we say that the
execution of business process on artifact AΓ is in accordance with artifact lifecycle, if
ω∈ L is hold.

4 Detecting Runtime Business Process Compliance

Firstly, we address the decision problem of Runtime Compliance Problem. As
illustrated in Section 3, an artifact lifecycle is an arbitrary language over alphabet Σ⊆
S×AI, then we show that some artifact lifecycles are not Turing-recognizable.

Theorem 1. Let Γ be an artifact schema, AI be a set of artifact instances of schema Γ
and S be a set of services acting on artifacts of Γ. Some artifact lifecycles of Γ are not
Turing-recognizable.

Clearly, if an artifact lifecycle is an arbitrary language over alphabet Σ, Runtime
Compliance Problem is probable not Turing-recognizable for the reason that the
artifact lifecycle is not Turing-recognizable. Therefore we consider the case that the
artifact lifecycle is described in a Turing machine.The artifact lifecycle described in a
Turing machine is called TM artifact lifecycle in this paper.

Theorem 2. Let Γ be an artifact schema, AΓ be an artifact of Γ, LM be a TM artifact
lifecycle of Γ and LM be described in a Turing machine M. Given LM and the evolution
ω of AΓ, Runtime Compliance Problem is undecidable.

Proof Idea. This proof is obvious, because LM described in a Turing machine M and
the acceptance problem for Turing machine is undecidable. □

Theorem 1 shows that there are artifacts whose lifecycles are not Turing-
recognizable, and Theorem 2 implies that Runtime Compliance Problem is
undecidable under the condition that an artifact lifecycle is described in Turing
machine. To obtain various decidability results, we focus on artifact lifecycles that are
described in regular expressions and pushdown automatons.

Definition 9. Let L1 and L2 be artifact lifecycles. We define the regular operations
union, concatenation, and star as follows:

1. Union. L1∪L2={x | x∈L1or x∈L2,}.
2. Concatenation. L1°L2={xy | x∈L1, y∈L2, and the artifact instances occurring in x

and y have the same identifier}.
3. Star. L1

∗={x1 x2… xk | k≥0, each xi∈L1, and the artifact instances occurring in
x1, x2, …, xk have the same identifier}.

Definition 10. Let Γ be an artifact schema, AI be a set of artifact instances of schema
Γ and S is a set of services acting on artifacts of Γ. For an alphabet Σ⊆ S×AI, say that

 Detecting Runtime Business Process Compliance with Artifact Lifecycles 431

R is a regular artifact lifecycle expression of Γ (simply regular ALE) over Σ if R is
any form listed below.

1. (s, a) for some (s, a) in the alphabet Σ,
2. ε,
3. ∅,
4. (R1∪R2), where R1and R2 are regular ALEs,
5. (R1°R2), where R1and R2 are regular ALEs,
6. (R1

∗), where R1 is a regular ALE.

An artifact lifecycle described in a regular ALE is a regular artifact lifecycle.

Theorem 3. Let Γ be an artifact schema, AΓ be an artifact of Γ, LR be a regular artifact
lifecycle of Γ and be described in a regular ALE R. Given LR and the evolution ω of
AΓ, Runtime Compliance Problem is decidable.

The regular ALE provides us a powerful tool to describe artifact lifecycles. But the
fact still exists that some artifact lifecycles cannot be described in this way. So, we
present pushdown automata (PDA) as more powerful tools to describe artifact
lifecycles, and call artifact lifecycles described in pushdown automata context-free
artifact lifecycles.

Definition 11. Let Γ be an artifact schema, AI be a set of artifact instances of schema
Γ and S be a set of services acting on artifacts of Γ. A pushdown automata N of Γ is a
6-tuple(Q, Σ, Ζ, δ, q0, F), where

1. Q is the set of finite states,
2. Σ is the finite input alphabet, Σ⊆ S×AI,
3. Ζ is the finite stack alphabet,
4. δ: Q×Σε×Ζε→P(Q ×Ζε), where Σε=Σ∪{ε}, Ζε=Ζ∪{ε}, and P(Q ×Ζε) is the

power set of Q ×Ζε,
5. q0∈ is the start state, and
6. F ⊆ Q is the set of accept states.

The language recognized by PDA N is a context-free artifact lifecycles LN of Γ.

Theorem 4. Let Γ be an artifact schema, AΓ be an artifact of Γ, LN be a context-free
artifact lifecycle of Γ and be described in a PDA N. Given LN and the evolution ω of
AΓ, Runtime Compliance Problem is decidable.

We applied our approach to detecting business process compliance with artifact
lifecycles without considering state explosion problems. Here, we provide the
framework of this method below:

1. Describe business constraints in regular artifact lifecycles or context-free
artifact lifecycles;

2. Generate the corresponding language accepters from the business constraints;
3. Abstract the service artifact-instance string ω (s-a string) from business

process execution logs, and ensure ω is the evolution of AΓ;

432 Q. He

4. Provide ω to accepters. If ω is accepted, we can return the result that the
execution of business process on artifact AΓ is in accordance with artifact
lifecycles.

5 Summary and Future Work

This paper studies the runtime compliance checking for artifact-centric business
process. Based on the approach in this paper, we can effectively check whether
business processes are compliant with artifact lifecycles in runtime. In future, we are
going to build up a comprehensive compliance checking environment for BPM.

References

1. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification.
IBM Systems Journal 42(3), 428–445 (2003)

2. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards Formal Analysis of
Artifact-Centric Business Process Models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.)
BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

3. Gerede, C.E., Su, J.: Specification and Verification of Artifact Behaviors in Business
Process Models. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 181–192. Springer, Heidelberg (2007)

4. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric
business processes. In: International Conference on Database Theory (ICDT 2009), pp.
252–267. ACM Press (2009)

5. Rozinat, A., Jong, I., Gunther, C., Aalst, W.: Conformance Analysis of ASML’s Test
Process. In: GRCIS 2009, vol. 459, pp. 1–15. CEUR-WS.org (2009)

6. Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.M.P.: Conformance
Checking of Interacting Processes with Overlapping Instances. In: Rinderle-Ma, S.,
Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 345–361. Springer,
Heidelberg (2011)

7. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring Business
Constraints with Linear Temporal Logic: An Approach Based on Colored Automata. In:
Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 132–147.
Springer, Heidelberg (2011)

8. Ying, W., Guohua, L., Zhen, H., et al.: The Research on Validity of Artifact in BPM. In:
International Conference on Business Management and Electronic Information, pp. 15–18.
IEEE, Piscataway (2011)

	Detecting Runtime Business Process Compliancewith Artifact Lifecycles
	Introduction
	Related Work
	Problem Statement
	Detecting Runtime Business Process Compliance
	Summary and Future Work
	References

