Data Consistency Enforcement
on Business Process Transactions

Xi Liu*

State Key Laboratory for Novel Software Technology at Nanjing University
Department of Computer Science and Technology, Nanjing University, China
liux@seg.nju.edu.cn

Abstract. Transactions are common in business processes (BPs). Consistency
on data, which is defined as satisfaction of a set of data integrity constraints, is
one of the basic properties for business process transactions (BPTs). This requires
a BPT to bring the BP execution from one consistent state to another consistent
state. It is desirable to ensure within BP executions that every BPT preserves data
consistency. Besides, the earlier an inconsistency is detected the less recovery is
necessary. It is studied in this paper how to detect and recover from potential fu-
ture inconsistency as early as possible in a BPT execution. We propose a runtime
proactive mechanism enforcing consistency on BPTs, called “transaction con-
sistency guarding”, based on symbolic execution of BPEL scopes for bounded
length and correct design of fault and compensation handlers.

1 Introduction

Data are important assets for any business to make decisions and gain global com-
petitiveness. Transactions are common in business processes (BPs). Consistency on
data is one of the most desired properties for business process transactions (BPTs).
That is, business data must adhere to a set of integrity constraints (ICs) [14] both when
the transaction just starts and when the transaction just completes.

In most current business process models, data management is outside BP manage-
ment, and is carried out by underlying database management systems (DBMSs). Conse-
quently, the vital task of keeping data consistent belongs to the DBMSs. However, this
“detached” method is problematic, as argued in [[L1]. Besides, compared to database
transactions [14], BPTs often involve interactions and collaboration with parties and
applications outside the BP, and can last for a long duration. Transactional mechanisms
in DBMSs, such as roll-back, locking, etc. [[14], do not work for BPTs [6/2]. Compen-
sation is used instead for recovery from failure. It is therefore desirable to have BPs
responsible for enforcing data consistency on BPTs.

Example 1. Consider an online shopping center BPMart (partially shown in Fig. [IJ)
whose data are managed in an underlying database. Assume IC 7 relates the inventory
available quantity to the business revenue and product price; defined as y::= avail gty >
(revenue /price x 10%), where revenue and price are also attributes of relations stored

* Supported by the National Grand Fundamental Research 973 Program of China
(No.2009CB320702).

A. Ghose et al. (Eds.): ICSOC 2012, LNCS 7759, pp. 394-B99] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



Data Consistency Enforcement on Business Process Transactions 395

Order pay: revenue :=
revenuetpayResp.paid amount
Inventory sell: inventory.avail qty :=
inventory.avail qty—order.qty
Order deliver: inventory.avail qty :=
inventory.avail qty+deliverResp.return qty

1 e
1
Order ! I’f """"" 1
checkout 2 !
-:—[Inventory seIIH Order deliver]

T I

Fig. 1. A segment in BPMart, where round-corner boxes denote actions (details not included),
dotted boxed denotes BPEL scopes (fault and compensation handler not included). Updates to
the database by the actions correspond to calculations listed on the right.

in the database. The available quantity is updated in “Inventory sell” in BPT T5: at-
tribute avail gty of the instance of Inventory corresponding to inventory is updated to
inventory.avail qty — order.qty, where order and inventory are variables denoting the
instances of business data classes (stored in database as relations) Order and Inventory,
resp. If “Inventory sell” sets avail gty to a “bad” value not satisfying 7, the database
integrity is destroyed when 7T, commits. Since the calculation in “Inventory sell” is
deterministic, with the value of inventory.avail qty, revenue and price, such inconsis-
tency can be detected as soon as T, starts. Thus, 7, aborts immediately and prevents
inconsistency caused by the update in “Inventory sell”.

Preservation of data consistency by BPs was studied in [[11]], in which the “guard injec-
tion” technique is developed on rule-based workflows. The updates that might violate
some ICs are blocked before they are about to execute. No transactional structure is
considered in guard injection.

It is preferred to detect potential data inconsistency as early as possible in a BPT
execution, so that the BPT aborts immediately and the compensation would be simpler
in order to recover the consistency. BPTs are defined using scopes in BPEL. So we look
into the Transaction Consistency Problem (TCP): will data inconsistency be detected
when a BPEL scope starts? Unfortunately, TCP is generally undecidable.

We developed the transaction consistency guarding mechanism to proactively en-
force consistency of BPEL scopes at runtime. To tackle the undecidability of TCP, only
scope executions within bounded length is considered, and strategies like postponed
checking and conservativeness are used to check IC satisfaction until all relevant mes-
sages are received and assume variables not from messages will cause IC violation.

The proposed transaction consistency guarding mechanism symbolically executes
the BPEL scopes for bounded number of steps. When the commitment point of the
scope is reached within the bounded length, and inconsistency is detected, the BPEL
scope aborts (as if a fault occurs). The scope’s fault handler is triggered to recovery
consistency, in which sub-scopes are compensated to reverse the committed effect. This
mechanism requires correct design of BPTs with fault handling and compensation (such
as BPEL scopes). Issues concerning correctness of the proposed mechanism are also
discussed: correct design of BPTs as well as soundness and conservative completeness.

The remainder of the paper is organized as follows. Section[2] compares our mecha-
nism with related work. The transaction consistency guarding is introduced in Section[3l
Correctness issues are discussed in Section[l Section[3l concludes the paper.



396 X. Liu

2 Related Work

Data manipulation and compensable transactions are supported in most BP models. In
BPEL, when a variable value does not conform to its definition, faults are thrown and
handled. However, current SOA specifications and BP models (e.g., BPEL, BPMN,
YAWL, WS-Coordination) put no requirement on effect of transactions. Thus there is
no way to ensure data consistency. Besides, web service XML Schemas usually do not
constraint inter-related data. Although static analysis on data dependencies in BPEL
processes helps the understanding of dataflow [10l16], and verification against data-
related temporal logic properties checks the process design [15/4], they offer no guidance
for data consistency on BPTs.

In the field of database theory, enforcement of ICs is not new. ICs can be statically
verified before short-lived database transactions [1]], or checked at runtime [[14]]. Trig-
gers are a powerful tool to “fix” constraint violations as a reactive means [3l]. However,
it is often difficult to locate the origin of the constraint violation and fix the error in
BPs. It was revealed in [9]] the difficulty of IC preservation in distributed databases and
investigated the approach to maintain distributed ICs by reducing the necessity to look
at remote databases according to specific updates. In our problem, however, concrete
updates are unknown. And it is unclear that shared DBMSs would realize protocols to
maintain data consistency in loosely coupled databases (e.g., [8]).

Compensation is introduced in Sagas [[6]. Although compensation is supported in
most BP models, consistency cannot be automatically recovered [7]]. In contrast with
requiring nothing on the compensation, theoretical work such as cCSP requires the
whole world must be restored [2]]. This can help to recover consistency. However, due
to the open-world assumption of BPTs, such requirement is hardly practical. It is also
possible to extend the DBMSs to manage BPTs by adding new intermediate layers, e.g.
[L5]. But this introduces more complexity and has no feedback to BPs.

The “guard injection” mechanism is developed on rule-based workflows [11]] to
strengthen the enableness condition of update actions that might violate ICs at design
time. However, guard injection is not for runtime detection of violations in future exe-
cutions of transactions, and therefore do not solve TCP.

3 Transaction Consistency Guarding

Presented in this section is how the guarding is performed at runtime. First the Tran-
saction Consistency Problem is formulated with the undecidable result in general case.
The framework for transaction consistency guarding is given next.

3.1 Transaction Consistency Problem

BPEL is a widely used BP modeling language supporting compensable BPT as scopes.
Key business data are stored in DBMSs in relational model. For simplicity, we assumed
that relational data is supported in BPEL. The semantics of BPEL can be modeled by
Petri net [12] or process algebra [[13]]. The execution of a BPEL process with data access
is defined, in this paper, as an sequence of states (s;,DB;), denoting the BPEL process



Data Consistency Enforcement on Business Process Transactions 397

state s; (with variable valuation) together with database snapshot DB;, and transitions #;,
denoting firing a basic process step (such as a basic activity), where i > 0.

Transaction Consistency Problem (TCP): Given a database (snapshot) satisfing a set
of ICs K, a BPEL process YV with a scope-based transition T, when the execution of T
starts in W, will it terminates in a state whose database snapshot violates K?

Theorem 1. Transaction Consistency Problem is undecidable.

Theorem [[limplies unsolvability to force abortion at the beginning of exactly the set of
“bad” BPTs. The undecidability comes from the fact that general BPEL processes (and
its scopes) are Turing-complete; and satisfaction problem of first-order formulas, that
is the integrity constraints, are undecidable. However, we take strategies like bounding
the length of execution for checking and the “conservativeness”, and develop a “sound”
solution for TCP.

3.2 Transaction Consistency Guarding Framework

The runtime guarding is performed by checking in symbolic execution of the BPEL
scopes. When violation is detected, fault handler of the current scope is triggered to
restore the IC related data so that the data consistency is recovered.

In the symbolic execution, the actual database should not be updated. A simulation
database supporting instances with symbolic values is assumed. Define the database for
symbolic execution be the union of the actual database and the symbolic database.

The mechanism is performed by a “process guard” as an extension to BPEL engines.
Let a positive integer k be the given bound. The process guard monitors the execution
of the target process ¥V and symbolically executes the scope to check violation for the
next k steps. The checking starts whenever: (1) a scope starts; (2) a message is received
in a scope’s execution; or (3) the execution of a scope has continued k steps or more
without a checking. Let the scope in question be denoted 7. The checking is performed
by symbolic execution from current state s to detect inconsistency in the next k steps.
If commitment of 7T is reached within the k-step symbolic execution, and some IC is
violated, T is forced to abort at the state s, i.e., the process guard raise a fault on state
s. Running sub-scopes are also aborted; then the parent scope’s abortion waits until the
fault handling of the sub-scopes finishes. Otherwise, the execution continues.

All possible executions (within the bound) must be traversed. When message varia-
ble symbols are involved in symbolically checking of some IC, the checking is skipped
and execution continues. Because the symbolic checking is called whenever a message
comes, the test is actually “postponed” until all necessary messages are received. But if
variable symbols are still involved to evaluate the constraint when all relevant messages
are received, these symbols denote internal variables (i.e., the variables whose value do
not depend on messages). “Conservative” strategy is taken: such scope aborts.

Example 2. Consider the cases as in Example [Tl Suppose when T starts, avail gty =
9 for the Inventory instance corresponding to variable inventory, order.qty = 5 and
(revenue[price x 10%) = 5. If the bound is enough to finish 75, inconsistency on y
(see Example [I) is detected in the symbolic execution. Then a fault is raised in T5.
Because no actual update is yet made, consistency is preserved.



398 X. Liu

Consider scope T; in Fig.[Il in which business revenue is updated by the actual paid
amount in “Order pay”; and, action “Order deliver” replenishes the inventory with re-
turned products. Assume when T starts, avail gty = 9 for the Inventory instance cor-
responding to variable inventory and order.qty = 5. Suppose T, starts before “Order
pay”, so that (revenue/price x 10%) = 4 when T, starts. Then T, completes success-
fully. The satisfaction of y on T} depends on both messages paidResp and deliverResp.
The checking is postponed until both messages are received. If then, v fails to hold, a
fault is raised in 7. Provided that the fault handler of 77 with compensation of 7, can
reverse the calculation made on inventory.avail qty, revenue and order.qty, the consis-
tency on Y is recovered.

4 Correctness of Transaction Consistency Guarding

Correctness of BPTs and Compensation

Transaction consistency guarding mechanism relies on the fault and compensation han-
dler to restore data consistency. Because BPEL relies completely on designers to write
the code for fault handling and compensation, and ideal recovery (such as [2]) is im-
practical, correct design of scopes must be investigated.

There are several issues concerning the compensation correctness. First, certain vari-
ables must be selected to be critical to scopes. Such variables affect the consistency on
ICs and updates to the databases. Second, correctness criteria for scopes must be de-
fined. Such criteria should require the fault and compensation handler of scopes to re-
store the value of critical variables to the same value as the scope (instance) starts. Note
that the fault can also be raised by the process guard when inconsistency is detected
in symbolic execution of the scopes. Third, verification techniques need to be studied
to ensure that the scope’s design conforms to the correctness criteria. Such verification
may be done by theorem proving, program analysis and (bounded) model checking.

Correctness and Variants of Transaction Consistency Guarding
The most desired property of the process safe guarding mechanism is soundness: no
IC violation throughout the execution. However, it is the fact that, when there is no
execution at all, no violation can occur. The notion of completeness is therefore nec-
essary. Recall that to gain soundness, conservative strategy is used. The conservative
completeness requires that, every execution of the original scope without IC violation
or assignment to internal variable (variables do not depend on messages) is also an
execution of the guarded process. Provided that the fault and compensation handler of
every scope can reverse the changes made on IC-related variables in the scope activity,
the consistency guarding mechanism is both sound and conservative complete.
Conservativeness may cause scope abortion when no inconsistency occur in actual
executions. However, this is necessary to ensure soundness. If restrictions are made so
that first order theory is decidable, conservativeness is not necessary. One example is
to confine the arithmetic in scopes as: (a) integers or rational numbers with addition; or
(b) real numbers with addition and multiplication. Confining the scopes’ structure can
also help the verification of scopes against desired transactional properties [4]].



Data Consistency Enforcement on Business Process Transactions 399

5 Conclusion

Consistency enforcement in business process transactions is an interesting problem but
is hardly solved. To find future inconsistency as early as possible, we first study the gen-
erally undecidable Transaction Consistency Problem. Transaction consistency guarding
mechanism is suggested with respect to the given bound and strategies of postponed
checking and conservativeness, so that after the proactive checking and recovery by the
fault handling and compensation, consistency of the transaction is ensured. The cor-
rectness of the mechanism depends on correct design of compensable transactions. The
transactions may also be restricted to allow relaxed mechanism (e.g., no conservative-
ness) and to help the verification of compensation design. Future work can be on issues
such as: realization and application of the mechanism, validation on real-life BPs, tran-
saction design assurance and more interesting restriction on transaction structures.

References

1. Benedikt, M., Griffin, T., Libkin, L.: Verifiable properties of database transactions. In: Proc.
of Symposium on Principles of Database Systems (PODS), pp. 117-127 (1996)

2. Butler, M., Hoare, S.T., Ferreira, C.: A Trace Semantics for Long-Running Transactions. In:
Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) CSP 25. LNCS, vol. 3525, pp. 133-150.
Springer, Heidelberg (2005)

3. Ceri, S., Widom, J.: Deriving production rules for constraint maintainance. In: Proc. Int.
Conf. on Very Large Data Bases (VLDB), pp. 566-577 (1990)

4. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business
processes. In: Proc. of Int. Conf. on Database Theory (ICDT), pp. 252-267 (2009)

5. Fu, X., Bultan, T., Su, J.: Model checking XML manipulating software. In: Proc. Int. sym-
posium on Software Testing and Analysis (ISSTA), pp. 252-262 (2004)

6. Garcia-Molina, H., Salem, K.: Sagas. In: Proc. of Int. Conf. on Management of data (SIG-
MOD), pp. 249-259 (1987)

7. Greenfield, P., Fekete, A., Jang, J., Kuo, D.: Compensation is not enough. In: Proc. of Int.
Conf. on Enterprise Distributed Object Computing (EDOC), pp. 232-239 (2003)

8. Grefen, P., Widom, J.: Protocols for integrity constraint checking in federated databases.
Distrib. Parallel Databases 5, 327-355 (1997)

9. Gupta, A., Widom, J.: Local verification of global integrity constraints in distributed data-
bases. In: Proc. of Int. Conf. on Management of Data (SIGMOD), pp. 49-58 (1993)

10. Kopp, O., Khalaf, R., Leymann, F.: Deriving explicit data links in WS-BPEL processes. In:
Proc. of Int. Conf. on Services Computing (SCC), pp. 367-376 (2008)

11. Liu, X., Su, J., Yang, J.: Preservation of integrity constraints by workflow. In: Proc. of Int.
Conf. on Cooperative Information Systems (CooplS), pp. 64-81 (2011)

12. Lohmann, N.: A Feature-Complete Petri Net Semantics for WS-BPEL 2.0. In: Dumas, M.,
Heckel, R. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 77-91. Springer, Heidelberg (2008)

13. Qiu, Z., Wang, S., Pu, G., Zhao, X.: Semantics of BPEL4WS-like fault and compensation
handling. In: Proc. of Int. Conf. on Formal Methods, pp. 350-365 (2005)

14. Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edn. McGraw-Hill (2002)

15. Wang, R., Salzberg, B., Lomet, D.: Log-based middleware server recovery with transaction
support. The VLDB Journal, 1-24 (2010)

16. Amme, W., Martens, A., Moser, S.: Advanced verification of distributed WS-BPEL business
processes incorporating CSSA-based data flow analysis. Int. Journal of Business Process
Integration and Management 4(1), 47-59 (2009)



	Data Consistency Enforcementon Business Process Transactions

	Introduction
	Related Work
	Transaction Consistency Guarding
	Transaction Consistency Problem
	Transaction Consistency Guarding Framework

	Correctness of Transaction Consistency Guarding
	Conclusion
	References




