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Abstract. With the rapid application of cloud computing technologies, service 
and data outsourcing has become a practical and useful paradigm. In order to 
manage sensitive information in this outsourcing scenario, combined use of 
access control technologies and cryptography was proposed by many 
researchers. However, the rigid combination in existing approaches has difficulty 
in satisfying the flexible data management for diverse applications. In this paper, 
we advocate a separation methodology where an authorization policy is not 
required to be embedded into ciphertexts or keys during encrypting data, and can 
be linked to the ciphertexts at any time. Authorization is independently carried 
out as usually without involving encryption, and encryption plays a foundational 
mechanism without considering authorization. We propose a separation approach 
based on homomorphic encryption to realize outsourced data management, 
where an encryption procedure is separated from authorization, and dynamically 
integrated with authorization policy according to subjects’ attributes at any time.   

Keywords: Outsourced Data Service, Access Management, Homomorphic 
Encryption. 

1 Introduction 

1.1 Motivation  

When cloud services become popular on the Internet, users are more and more resorting 
to service providers for publishing resources shared with others. Service providers are 
requested to realize data and service outsourcing architecture on a wide scale. For 
example, YouTube and MySpace are such service providers. Their basic assumption 
that service providers have complete access to the stored resources is not applicable for 
all actual scenarios such as outsourcing sensitive data. Current solutions adopt  
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Fig. 1. Separation based on encryption homomorphism 

encryption techniques instead of the legal protection offered by contracts when 
enforcing access control, i.e. the data owner encrypts data, sends ciphertexts to the 
service providers for storage, and distributes the corresponding key to authorized users 
[1], [2], [3], [4], [5].  

In particular, since neither the data owner nor the service providers can solely 
assume the access control task for either efficiency or security reasons, realizing access 
control via the stored data themselves appears more applicable. As an example, the 
selective encryption technique was adopted to encrypt different data with different 
keys, which guarantees that legal users can retrieve the key to decrypt the encrypted 
resource [6], [7], [8], [9], [4], [12], [13]. However, those approaches need user to derive 
all the keys of authorized data items according to a public catalog of tokens, or assume 
that users’ attributes are a set without inner structures. The complexity of authorization 
policies is passed to cryptographic operations, and end users directly face with it. This 
also results in static data management without supporting practical attribute structure, 
and policies are hard to be updated. Therefore, we advocate a relative separation 
methodology, where authorization and cryptographic operations both independently 
carried out, and are transparently combined for users. 

In this paper, according to the separation methodology, the authorization policies are 
independently made and data is independently encrypted. When a policy should be 
applied to a data item which could have become a ciphertext, the data owner translates  
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the policy into another ciphertext and uses a homomorphic function to get the sum of 
the two ciphertexts (add ciphertexts), i.e. combining the policy with the data item. The 
outsourcer has the ciphertext of a user’s attribute, and subtracts this ciphertext from the 
sum. If the user’s attribute is equal to the subject’s attribute in the authorization rule, the 
sum is transformed into the ciphertext of the data item. This cloud data management 
idea is illustrated in the below figure 1.  

From the figure 1, we can know the owner does combination, i.e. adding ciphertexts, 
the outsource does subtracting and transforming, and the user transparently decrypts 
ciphertexts under her or his private key. If she or he has the proper attribute, the user 
gets a correct ciphertext, i.e. the value of Ciphertext3 – Ciphertext4 being equal to 
Ciphertext1. The key points are designing homomorphic function and preventing 
homomorphic attacks. The homomorphism brings designers great power. It also 
provides adversaries a homomorphic attack method. The scheme designers should try 
to limit the capacity of adversaries. 

1.2 Contributions 

Contributions of our paper are as follows: 

1. A separation methodology is adopted to get a flexible data management 
framework for cloud data services.  

2. Based on the homomorphic key-switching scheme, a cloud data management 
solution is proposed. The data owner can authorize before, during, or after doing 
encryption. The complex subject attribute relationship is supported.    

2 Preliminaries 

2.1 Attribute-Based Authorization Policy 

We adopt the attribute-based access control model.  

Definition 1. Attribute Tuple. The attribute of a subject S  is denoted by 

),,_( kkkk valueopattrss =  and the attribute of an object O  as 

),,_( nnnn valueopattroo = , where attrs _  and attro _ are attribute names, value  is 

the attribute value, and op  is some attribute operator such as },,,,,{ inop ≥≤><=∈ . The 

action attribute can be one of object’s attribute. The attribute tuple is >< Ksss ,,, 21   

or >< Nooo ,,, 21  , where the relationship among the attributes is conjunction. S can be 

represented by the set of attribute tuples },,,{ 21 >< Ksss  , and O  by 

},,,{ 21 >< Nooo  . 

In our paper, the op  is simplified as }{=  by describing digital attributes with careful 

intervals. 
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Definition 2. Authorization Rule. An attribute-based rule is 

),(),,,,,,,( 2121 OASAooosssrule nk =><><=  . The thj −  subject attribute is written 

as jsrule. . The thj −  object attribute is written as jorule. . 

An access control policy iAP  can be defined as ji

L

j
i ruleAP ,1=

∪= . Then, 

SAruleSAAP j

L

j
i .. ,11=

∪= ， OAruleOAAP ji

L

j
i .. ,1=

∪= .  

2.2 Access Expression 

Let Γ  be an access expression representing the subject attributes required to access 

some data, which uses logic operators to associate the attributes. According to the 

authorization policy SA.ruleSA.ruleP.SAA l∪∪= 1 , the access expression Γ  could 

be represented as )()( ,11,,11,1 1 lnln wwww ∧∧∨∨∧∧= Γ , where 

ljijiji njlivalueattrsw ≤≤≤≤== 1,1,"_":: ,,, . 
 

Definition 3 (Satisfying an access expression Γ ). If a subject attribute expression 

)()(
'1 ,11,',11,1 lnln wwww ′′ ∧∧∨∨∧∧= γ  satisfies Γ , we denote it by 1)( =γΓ , else 

0)( =γΓ . We compute 1)( =γΓ  as follows: 

For liww
inii ≤≤∧∧ 1),( ,1,   in Γ , there is a '1),( ,11, ljww

jnj ≤≤∧∧ ′  in γ  

satisfying: 

For each ixi nxw ≤≤1,,  in )( ,1, inii ww ∧∧ , there is a jxj nxw ′≤≤′ 1,,   satisfying  

xjw ′,  = xiw , . 

We add such )( ,1, inii ww ∧∧  into the set Δ  which is filled with all such rules 

(sub-expression). 

We denote Δ  as γΓ  , i.e., ΔγΓ = . If Δ  is not empty, we think that γ  and 

Γ  are matching, i.e. 1)( =γΓ . 

In a word, the access expression Γ  for a data item represents the subject attributes in 

authorization rules of the data owner, and the subject attribute expression γ  represents 

a user’s attributes. These attributes have inner structures, i.e. attribute conjunction and 

disjunction.   

3 Separate Data Management Framework 

The Figure 2 demonstrates our core idea to realize separate data management for cloud 

services. During authorization, the data owner chooses a random value as an 
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Fig. 2. Data Management Framework 

authorization anchor r  and translates authorization policies into data access polices 
(DAP) according to the anchor r . DAP can be informally considered as the ciphertexts 
for the subject attributes in authorization rules. The anchor r  is used to randomize DAP 
such that even if the same authorization rule is applied to different data items, there are 
different DAPs which are not interchangeable. DAP can be generated before operating 
data encryption because it is linked to a random r . Subject encryption policies (SEP) are 
generated according to customers’ attributes attr  at any time, and can also be considered 
as the ciphertexts for attr . At the same time, re-encryption keys are given to the 
outsourced data service who uses them to keyswitch ciphertxts, i.e. translating one 
ciphertext under the data owner’s public key into another ciphertext under a user’s public 
key. In our framework, each participant has only one public/private key pair to identify 
herself. During runtime, the encryption scheme allows for embedding the anchor r  in 
the ciphertext. The outsourced data service makes matching between SEP and DAP, and 
gets one matched DAP if the requesting user has been granted the privilege. The matched 
DAP is keyswitched. The keyswitched DAP includes the anchor r . The keyswitched 
DAP can be used to remove the anchor r  in the data ciphertext. The user recovers the 
data by her or his private key.    

There are two difficulties. One is how to embed and remove the anchor, where the 
anchor is secret. The other is how to decrypt the ciphertext under the data owner’s key, 
where we do not hope to carry out complex key distribution schemes to issue a series of 
keys to the customer. In this paper, we adopt a homomorphic encryption scheme to 
address the first issue. We design a switching key approach to address the second issue. 
That is to say, a ciphertext under the data owner’s keys can be switched into a 
ciphertext under customers’ keys. Our solution has the following characteristics: 
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1) The attributes of a subject can have inner structures, that is to say, there are logic 
‘AND’ and ‘OR’ relations among them.  

2) The authorization policies can be generated or modified after the ciphertexts 
have been computed. It can also be generated before the ciphertexts are 
produced.  

4 Fundamental Encryption Scheme  

We adopt the fully homomorphic encryption scheme in [10] which is CPA-secure 
based on the RLWE (Ring Learning with Errors) assumption. We rewrite the scheme in 
our words (some details can be found in [10]). According to the encryption scheme, we 
modify a little the key switching scheme, where the customer’s private key need not be 
disclosed to the data owner during generating switching keys. If a reader is familiar 
with the encryption scheme in [10], she or he could skip this section.    

4.1 Homomorphic Encryption 

The following homomorphic encryption scheme only supports multiplication one time, 

which is a simplified version of the one in [10]. A prime qt <  defines the message 

space )(/][ xfXZR tt = , the ring of integer polynomials modulo )(xf  and t . We can 

adopt the message encoding algorithm used in [11] to optimize performance. 

— )1(. λSetupFHE : It takes as input the security parameter λ . It chooses appropriately 

the dimension d , which is a power of 2, the modulus q  which is a prime such 

that 2d) 1(modq =  and )1/(][ += d
q xXZR , a prime t  which defines the message 

space, an error distribution χ  over R  which depends sub-logarithmically on 

q ( log(q/B))(d ⋅= λΩ ), to ensure that the scheme is based on a RLWE instance that 

achieves λ2  security against known attacks.  Let qN log=  and let 

)d,(q,params χ= .  

— . ( )FHE SecretKeyGen params : It draws χ←′s . Set 2),1( Rsssk ∈′←= . 

— . ( , )FHE PublicKeyGen params sk : It takes as input a secret key ),1( sssk ′←= , 

which 1s[0] =  and Rs ∈′  and the parameters params . It generates matrix 
1×←′ NRA  where a vector Ne χ←  and set tesAb +′′← . Sets A  to be 2-column 

matrix consisting of b  followed by the columns of A′− . (Obs erve: tesA =⋅ ). 

Set the public key Apk = . 
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— ),,(. mpkparamsEncFHE : To encrypt a message tRm ∈ , it sets 2)0,( Rmm ∈= , 

samples N
tRr ←  and outputs the ciphertext 2RrAmc T ∈+← . 

— )c,sk,params(Dec.FHE : It outputs tqscm ]],[[ ><←  or tqsscm ]],[[ >⊗<←  if 

the length of c  is longer than N , where  ><,  means the dot product of two 

vectors, and q[]  means mod q. 

— )c,c,pk,params(Add.FHE 21 : It takes two ciphertexts encrypted under the same 

key. It sets 213 ccc += . 

— )c,c,pk,params(Mult.FHE 21 : It takes two ciphertexts encrypted under the same 

key. The new ciphertext, under the secret key sss ⊗= , is the coefficient vector 

3c  of the linear equation )(
21 , xxLlong

cc ⊗  where ><⋅>=<⊗ xcxcxxLlong
cc ,,)( 11, 21

, xx ⊗  

is the tensoring of x  with itself. ])1[]1[],0[]1[]1[]0[],0[]0[( 212121213 ccccccccc += . 

Decryption works correctly because: 

   tq
TT

tq sArmsc ]])[[(]],[[ ⋅+=><  

        tq
T ertm ]][[ ⋅+=  

        t
T etrm ][ +=  

        m=  

The ciphertexts produced by EncFHE.  contains two ring elements. Homomorphic 

addition is done by simple component-wise addition of two ciphertexts. For 

homomorphic multiplication, letting each ciphertext being the coefficients of the 

polynomial of symbolic variable, we can symbolically (treating the symbolic variable 

as an unknown one) open the parenthesis in )(
21 , xxLlong

cc ⊗  to compute the product. The 

ciphertext product is decrypted under the key sss ⊗= , i.e. tqsscmm ]],[[ 321 >⊗<←× . 

4.2 Proxy Key Switching Scheme 

Key switching consists of two procedures: first, a procedure takes as input a customer’s 
public key and a data owner’s private key, and outputs some switching keys that 
enables the switching; and second, a procedure takes the switching keys and a 
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ciphertext encrypted under the data owner’s public key, and outputs a new ciphertext 
that encrypts the same message under the customer’s public key. Although it is inspired 
by the key switching algorithm in [10], our key switching scheme does not require the 
customer to provide its private key, such that ours can be used in outsourcing scenarios. 
When the data owner gets the customer’s public key, it chooses a secret random matrix 

jB  which is used to blind the public key of customers. The customer cannot recover 
the jB  even if it gets the blinded public key. The data owner then embeds its private 
key in the blinded key. When the embedded public key is used to re-encrypt a 
ciphertext, the decryption under the embedded private key and encryption under the 
customer’s public key take place at the same time. According to the 

enPublicKeyGFHE .  algorithm, the random matrix does not impair the customer’s 
decryption capability. The tensor of data owner’s private key can be used when 
switching the product of ciphertexts, where no modulus switching implies that the 
ciphertext multiplication is supported only once. 

The following two functions were introduced in [10].   

   (1) n
j

}qlog,,{j
j

jn R,x.Rx:x)BitDecomp( 2
0

2 ∈=∈ 
∈

μμ


. Let qnL log= , output 
L

q R2log1 ),,( ∈μμ   

(2) .(2 nRx:x)owersofP ∈  Output Lq

q
Rxxx ∈)2,,2,( log  

If it is known a priori that x  has coefficients in ],0[ B  for qB << , then BitDecomp  

can be optimized in the obvious way to output a shorter bit-decomposition in logB
2R . 

Observe that BitDecomp  and 2owersofP  do not affect the dot product, in the 

following sense (Referring to [10]): 

For vectors c  and s  of equal length, we have  

odqms,cs)Powersof2(c),BitDecomp( >>=<<  

The proxy key switching scheme is as follows:  

),(. jiKeyGenProxy : i  generates key ),( ii pksk , j  generates key ),( ii pksk , 
2),( ×∈′−= N

jjj RAbpk . 

),(. '
ji pkskReKeyGenProxy : i  randomly chooses Ne 3χ←′ , 

,RB NN
j

×∈ 3
2 computes ))(,(),( jjjjjjj ABbBAbkp ′−⋅⋅=′′′=′ , 

),)(2( jiijji AetskskPowersofbrekey ′′′⋅+⊗+′=→  

),(. mpkEncProxy i : ),(. mpkEncFHEc i= . 

),(. crekeySwitchKeyProxy : jirekeycBitDecompc →⋅= )(' . 

),(. cskDecProxy j
′ : ),(. cskDecFHEm j

′= . 

The key switching procedure preserves the correctness of decryption under the new key 

because 
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jjij srekey)c(BitDecompsk,'c ⋅⋅>=< →
Τ  

))ss(Powersoft)eeB(()c(BitDecomp iij ⊗+′+⋅⋅= 2Τ  

)c(BitDecomp)eeB((),c(BitDecompt j <+>′+⋅<⋅= >⊗ )ss(ofPowers, ii2  

>⊗<+>′+⋅<⋅= iij ss,c)eeB((),c(BitDecompt  

><+>′+⋅<⋅= ij s,c)eeB((),c(BitDecompt . 

5 Separation Construction 

In our construction, each participant has one public/private key pair to identify herself. 
We adopt an anchor-embedding approach to translate the data owner i ’s authorization 
polices into DAPs.  

All attributes in one conjunction of the access expression are bound together through 
the hash function and a random, where the random assures that even if two 
conjunctions are equal, their DAPs are different. If a user’s attributes are the same as 
the subject’s attributes in the authorization rules (access expression), the user can 
remove the embedded attributes, the random, and the anchor from the data ciphertext to 
recover data. Each attribute of the user is independently translated into SEP such that 
SEPs can compose as needed. The binding function through hash (such as xho ) is used 
to prevent homomorhic attacks. For example, faking a attribute ciphertxet through 
homomorhic adding and multiplication of attribute ciphertexts is hard. We then define 
the detail construction.  

The attacks to the construction include (1) the outsourced data service uses its stored 
re-encryption keys, DAPs and all users’ SEPs to recover the secret data; (2) users use 
attributes and their key-pairs to access to unauthorized data; (3) the corrupted data 
service and users collude to disclose secret data. The homomorphic attack is the 
primary threat. 

For the first kind of attack, the data service can use stored re-encryption keys to 
switch any DAP to the ciphertext under any user’s public key, and does subtraction to 
remove the authorization anchor and embedded attributes from the data ciphertext. 
Because the data service does not have users’ private keys, it cannot remove the binder 

xho . The binder xho  is computed by the one-way function (hash function) on 
attributes and the random xr . If the random xr  is unknown, the probability to correctly 
guess xho  is negligible. The ciphertext for xho  and the attribute conjunction cannot 
be faked by homomorphic attacks because xho  is one-way. Thus, the data service 
cannot get the correct ciphertext for the data item. This also prevents the curious 
behavior of the data service from leaking secrets, that is to say, the data service is not 
corrupted, but it does some unscheduled actions such as sending any ciphertext to any 
user.  
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For the second kind of attack, the DAPs are ciphertexts encrypted under the data 
owner’s public key and the SEPs are ciphertexts encrypted under users’ public key such 
that the homomorphic function cannot operate on them. Users have not re-encryption 
keys to switch the key of DAPs. Because iϖ  is secret, x,yiwϖ  cannot be computed. 
Users’ attributes cannot be interwoven either, i.e. inserting one attribute in one 
conjunction into another conjunction for binding each attribute in one conjunction. 
Users only by themselves cannot disclose the data included in ciphertexts.   

For the third kind of attack, we cannot prevent. So we assume the outsourced data 
service is half honest. That is to say, the data service does not collude with users, but it 
may try to get some secret by itself or send any ciphertext to any user. 

6 Conclusions 

In this paper, we address the problem of how to realize separate cloud data management 
in this outsourcing scenarios to manage the sensitive data of owners. The homomorphic 
encryption scheme is adopted as a foundation for our framework, and the homomorphic 
attack is also discussed. Based on the former, the relative separation could be achieved 
with combining encryption and authorization. The solution also realizes simple key 
management and the capacity to compose attributes with inner structure. How to 
prevent the collusion of the data service and users is left open, which is also our future 
research target. Therefore, our solution will provide strong building blocks for the 
design and implementation of manage the sensitive information in cloud computing. 
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