

A. Ghose et al. (Eds.): ICSOC 2012, LNCS 7759, pp. 24–34, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Homomorphic-Encryption-Based Separation Approach
for Outsourced Data Management*

Yang Zhang and Jun-Liang Chen

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts & Telecommunications,

Beijing 100876, China
YangZhang@bupt.edu.cn

Abstract. With the rapid application of cloud computing technologies, service
and data outsourcing has become a practical and useful paradigm. In order to
manage sensitive information in this outsourcing scenario, combined use of
access control technologies and cryptography was proposed by many
researchers. However, the rigid combination in existing approaches has difficulty
in satisfying the flexible data management for diverse applications. In this paper,
we advocate a separation methodology where an authorization policy is not
required to be embedded into ciphertexts or keys during encrypting data, and can
be linked to the ciphertexts at any time. Authorization is independently carried
out as usually without involving encryption, and encryption plays a foundational
mechanism without considering authorization. We propose a separation approach
based on homomorphic encryption to realize outsourced data management,
where an encryption procedure is separated from authorization, and dynamically
integrated with authorization policy according to subjects’ attributes at any time.

Keywords: Outsourced Data Service, Access Management, Homomorphic
Encryption.

1 Introduction

1.1 Motivation

When cloud services become popular on the Internet, users are more and more resorting
to service providers for publishing resources shared with others. Service providers are
requested to realize data and service outsourcing architecture on a wide scale. For
example, YouTube and MySpace are such service providers. Their basic assumption
that service providers have complete access to the stored resources is not applicable for
all actual scenarios such as outsourcing sensitive data. Current solutions adopt

* Supported by Project of New Generation Broadband Wireless Network under(Grant

No.2010ZX03004-001, 2011ZX03002-002-01, 2012ZX03005008-001).

Homomorphic-Encryption-Based Separation Approach for Outsourced Data Management 25

Data Item

Ciphertext1

Subject’s
Attribute
in a policy

Ciphertext2

Combination: adding

Ciphertext

User’s
Attribute

Ciphertext4

Access: subtracting

Ciphertext

Decrypt
Under
User’s key

Ciphertext’

Transform: KeySwitching

Fig. 1. Separation based on encryption homomorphism

encryption techniques instead of the legal protection offered by contracts when
enforcing access control, i.e. the data owner encrypts data, sends ciphertexts to the
service providers for storage, and distributes the corresponding key to authorized users
[1], [2], [3], [4], [5].

In particular, since neither the data owner nor the service providers can solely
assume the access control task for either efficiency or security reasons, realizing access
control via the stored data themselves appears more applicable. As an example, the
selective encryption technique was adopted to encrypt different data with different
keys, which guarantees that legal users can retrieve the key to decrypt the encrypted
resource [6], [7], [8], [9], [4], [12], [13]. However, those approaches need user to derive
all the keys of authorized data items according to a public catalog of tokens, or assume
that users’ attributes are a set without inner structures. The complexity of authorization
policies is passed to cryptographic operations, and end users directly face with it. This
also results in static data management without supporting practical attribute structure,
and policies are hard to be updated. Therefore, we advocate a relative separation
methodology, where authorization and cryptographic operations both independently
carried out, and are transparently combined for users.

In this paper, according to the separation methodology, the authorization policies are
independently made and data is independently encrypted. When a policy should be
applied to a data item which could have become a ciphertext, the data owner translates

26 Y. Zhang and J.-L. Chen

the policy into another ciphertext and uses a homomorphic function to get the sum of
the two ciphertexts (add ciphertexts), i.e. combining the policy with the data item. The
outsourcer has the ciphertext of a user’s attribute, and subtracts this ciphertext from the
sum. If the user’s attribute is equal to the subject’s attribute in the authorization rule, the
sum is transformed into the ciphertext of the data item. This cloud data management
idea is illustrated in the below figure 1.

From the figure 1, we can know the owner does combination, i.e. adding ciphertexts,
the outsource does subtracting and transforming, and the user transparently decrypts
ciphertexts under her or his private key. If she or he has the proper attribute, the user
gets a correct ciphertext, i.e. the value of Ciphertext3 – Ciphertext4 being equal to
Ciphertext1. The key points are designing homomorphic function and preventing
homomorphic attacks. The homomorphism brings designers great power. It also
provides adversaries a homomorphic attack method. The scheme designers should try
to limit the capacity of adversaries.

1.2 Contributions

Contributions of our paper are as follows:

1. A separation methodology is adopted to get a flexible data management
framework for cloud data services.

2. Based on the homomorphic key-switching scheme, a cloud data management
solution is proposed. The data owner can authorize before, during, or after doing
encryption. The complex subject attribute relationship is supported.

2 Preliminaries

2.1 Attribute-Based Authorization Policy

We adopt the attribute-based access control model.

Definition 1. Attribute Tuple. The attribute of a subject S is denoted by

),,_(kkkk valueopattrss = and the attribute of an object O as

),,_(nnnn valueopattroo = , where attrs _ and attro _ are attribute names, value is

the attribute value, and op is some attribute operator such as },,,,,{ inop ≥≤><=∈ . The

action attribute can be one of object’s attribute. The attribute tuple is >< Ksss ,,, 21 

or >< Nooo ,,, 21  , where the relationship among the attributes is conjunction. S can be

represented by the set of attribute tuples },,,{ 21 >< Ksss  , and O by

},,,{ 21 >< Nooo  .

In our paper, the op is simplified as }{= by describing digital attributes with careful

intervals.

Homomorphic-Encryption-Based Separation Approach for Outsourced Data Management 27

Definition 2. Authorization Rule. An attribute-based rule is

),(),,,,,,,(2121 OASAooosssrule nk =><><=  . The thj − subject attribute is written

as jsrule. . The thj − object attribute is written as jorule. .

An access control policy iAP can be defined as ji

L

j
i ruleAP ,1=

∪= . Then,

SAruleSAAP j

L

j
i .. ,11=

∪= ， OAruleOAAP ji

L

j
i .. ,1=

∪= .

2.2 Access Expression

Let Γ be an access expression representing the subject attributes required to access

some data, which uses logic operators to associate the attributes. According to the

authorization policy SA.ruleSA.ruleP.SAA l∪∪= 1 , the access expression Γ could

be represented as)()(,11,,11,1 1 lnln wwww ∧∧∨∨∧∧= Γ , where

ljijiji njlivalueattrsw ≤≤≤≤== 1,1,"_":: ,,, .

Definition 3 (Satisfying an access expression Γ). If a subject attribute expression

)()(
'1 ,11,',11,1 lnln wwww ′′ ∧∧∨∨∧∧= γ satisfies Γ , we denote it by 1)(=γΓ , else

0)(=γΓ . We compute 1)(=γΓ as follows:

For liww
inii ≤≤∧∧ 1),(,1,  in Γ , there is a '1),(,11, ljww

jnj ≤≤∧∧ ′ in γ

satisfying:

For each ixi nxw ≤≤1,, in)(,1, inii ww ∧∧ , there is a jxj nxw ′≤≤′ 1,, satisfying

xjw ′, = xiw , .

We add such)(,1, inii ww ∧∧ into the set Δ which is filled with all such rules

(sub-expression).

We denote Δ as γΓ  , i.e., ΔγΓ = . If Δ is not empty, we think that γ and

Γ are matching, i.e. 1)(=γΓ .

In a word, the access expression Γ for a data item represents the subject attributes in

authorization rules of the data owner, and the subject attribute expression γ represents

a user’s attributes. These attributes have inner structures, i.e. attribute conjunction and

disjunction.

3 Separate Data Management Framework

The Figure 2 demonstrates our core idea to realize separate data management for cloud

services. During authorization, the data owner chooses a random value as an

28 Y. Zhang and J.-L. Chen

Fig. 2. Data Management Framework

authorization anchor r and translates authorization policies into data access polices
(DAP) according to the anchor r . DAP can be informally considered as the ciphertexts
for the subject attributes in authorization rules. The anchor r is used to randomize DAP
such that even if the same authorization rule is applied to different data items, there are
different DAPs which are not interchangeable. DAP can be generated before operating
data encryption because it is linked to a random r . Subject encryption policies (SEP) are
generated according to customers’ attributes attr at any time, and can also be considered
as the ciphertexts for attr . At the same time, re-encryption keys are given to the
outsourced data service who uses them to keyswitch ciphertxts, i.e. translating one
ciphertext under the data owner’s public key into another ciphertext under a user’s public
key. In our framework, each participant has only one public/private key pair to identify
herself. During runtime, the encryption scheme allows for embedding the anchor r in
the ciphertext. The outsourced data service makes matching between SEP and DAP, and
gets one matched DAP if the requesting user has been granted the privilege. The matched
DAP is keyswitched. The keyswitched DAP includes the anchor r . The keyswitched
DAP can be used to remove the anchor r in the data ciphertext. The user recovers the
data by her or his private key.

There are two difficulties. One is how to embed and remove the anchor, where the
anchor is secret. The other is how to decrypt the ciphertext under the data owner’s key,
where we do not hope to carry out complex key distribution schemes to issue a series of
keys to the customer. In this paper, we adopt a homomorphic encryption scheme to
address the first issue. We design a switching key approach to address the second issue.
That is to say, a ciphertext under the data owner’s keys can be switched into a
ciphertext under customers’ keys. Our solution has the following characteristics:

Homomorphic-Encryption-Based Separation Approach for Outsourced Data Management 29

1) The attributes of a subject can have inner structures, that is to say, there are logic
‘AND’ and ‘OR’ relations among them.

2) The authorization policies can be generated or modified after the ciphertexts
have been computed. It can also be generated before the ciphertexts are
produced.

4 Fundamental Encryption Scheme

We adopt the fully homomorphic encryption scheme in [10] which is CPA-secure
based on the RLWE (Ring Learning with Errors) assumption. We rewrite the scheme in
our words (some details can be found in [10]). According to the encryption scheme, we
modify a little the key switching scheme, where the customer’s private key need not be
disclosed to the data owner during generating switching keys. If a reader is familiar
with the encryption scheme in [10], she or he could skip this section.

4.1 Homomorphic Encryption

The following homomorphic encryption scheme only supports multiplication one time,

which is a simplified version of the one in [10]. A prime qt < defines the message

space)(/][xfXZR tt = , the ring of integer polynomials modulo)(xf and t . We can

adopt the message encoding algorithm used in [11] to optimize performance.

—)1(. λSetupFHE : It takes as input the security parameter λ . It chooses appropriately

the dimension d , which is a power of 2, the modulus q which is a prime such

that 2d) 1(modq = and)1/(][+= d
q xXZR , a prime t which defines the message

space, an error distribution χ over R which depends sub-logarithmically on

q (log(q/B))(d ⋅= λΩ), to ensure that the scheme is based on a RLWE instance that

achieves λ2 security against known attacks. Let qN log= and let

)d,(q,params χ= .

— . ()FHE SecretKeyGen params : It draws χ←′s . Set 2),1(Rsssk ∈′←= .

— . (,)FHE PublicKeyGen params sk : It takes as input a secret key),1(sssk ′←= ,

which 1s[0] = and Rs ∈′ and the parameters params . It generates matrix
1×←′ NRA where a vector Ne χ← and set tesAb +′′← . Sets A to be 2-column

matrix consisting of b followed by the columns of A′− . (Obs erve: tesA =⋅).

Set the public key Apk = .

30 Y. Zhang and J.-L. Chen

—),,(. mpkparamsEncFHE : To encrypt a message tRm ∈ , it sets 2)0,(Rmm ∈= ,

samples N
tRr ← and outputs the ciphertext 2RrAmc T ∈+← .

—)c,sk,params(Dec.FHE : It outputs tqscm]],[[><← or tqsscm]],[[>⊗<← if

the length of c is longer than N , where ><, means the dot product of two

vectors, and q[] means mod q.

—)c,c,pk,params(Add.FHE 21 : It takes two ciphertexts encrypted under the same

key. It sets 213 ccc += .

—)c,c,pk,params(Mult.FHE 21 : It takes two ciphertexts encrypted under the same

key. The new ciphertext, under the secret key sss ⊗= , is the coefficient vector

3c of the linear equation)(
21 , xxLlong

cc ⊗ where ><⋅>=<⊗ xcxcxxLlong
cc ,,)(11, 21

, xx ⊗

is the tensoring of x with itself.])1[]1[],0[]1[]1[]0[],0[]0[(212121213 ccccccccc += .

Decryption works correctly because:

 tq
TT

tq sArmsc]])[[(]],[[⋅+=><

 tq
T ertm]][[⋅+=

 t
T etrm][+=

 m=

The ciphertexts produced by EncFHE. contains two ring elements. Homomorphic

addition is done by simple component-wise addition of two ciphertexts. For

homomorphic multiplication, letting each ciphertext being the coefficients of the

polynomial of symbolic variable, we can symbolically (treating the symbolic variable

as an unknown one) open the parenthesis in)(
21 , xxLlong

cc ⊗ to compute the product. The

ciphertext product is decrypted under the key sss ⊗= , i.e. tqsscmm]],[[321 >⊗<←× .

4.2 Proxy Key Switching Scheme

Key switching consists of two procedures: first, a procedure takes as input a customer’s
public key and a data owner’s private key, and outputs some switching keys that
enables the switching; and second, a procedure takes the switching keys and a

Homomorphic-Encryption-Based Separation Approach for Outsourced Data Management 31

ciphertext encrypted under the data owner’s public key, and outputs a new ciphertext
that encrypts the same message under the customer’s public key. Although it is inspired
by the key switching algorithm in [10], our key switching scheme does not require the
customer to provide its private key, such that ours can be used in outsourcing scenarios.
When the data owner gets the customer’s public key, it chooses a secret random matrix

jB which is used to blind the public key of customers. The customer cannot recover
the jB even if it gets the blinded public key. The data owner then embeds its private
key in the blinded key. When the embedded public key is used to re-encrypt a
ciphertext, the decryption under the embedded private key and encryption under the
customer’s public key take place at the same time. According to the

enPublicKeyGFHE . algorithm, the random matrix does not impair the customer’s
decryption capability. The tensor of data owner’s private key can be used when
switching the product of ciphertexts, where no modulus switching implies that the
ciphertext multiplication is supported only once.

The following two functions were introduced in [10].

 (1) n
j

}qlog,,{j
j

jn R,x.Rx:x)BitDecomp(2
0

2 ∈=∈ 
∈

μμ


. Let qnL log= , output
L

q R2log1),,(∈μμ 

(2) .(2 nRx:x)owersofP ∈ Output Lq

q
Rxxx ∈)2,,2,(log

If it is known a priori that x has coefficients in],0[B for qB << , then BitDecomp

can be optimized in the obvious way to output a shorter bit-decomposition in logB
2R .

Observe that BitDecomp and 2owersofP do not affect the dot product, in the

following sense (Referring to [10]):

For vectors c and s of equal length, we have

odqms,cs)Powersof2(c),BitDecomp(>>=<<

The proxy key switching scheme is as follows:

),(. jiKeyGenProxy : i generates key),(ii pksk , j generates key),(ii pksk ,
2),(×∈′−= N

jjj RAbpk .

),(. '
ji pkskReKeyGenProxy : i randomly chooses Ne 3χ←′ ,

,RB NN
j

×∈ 3
2 computes))(,(),(jjjjjjj ABbBAbkp ′−⋅⋅=′′′=′ ,

),)(2(jiijji AetskskPowersofbrekey ′′′⋅+⊗+′=→

),(. mpkEncProxy i :),(. mpkEncFHEc i= .

),(. crekeySwitchKeyProxy : jirekeycBitDecompc →⋅=)(' .

),(. cskDecProxy j
′ :),(. cskDecFHEm j

′= .

The key switching procedure preserves the correctness of decryption under the new key

because

32 Y. Zhang and J.-L. Chen

jjij srekey)c(BitDecompsk,'c ⋅⋅>=< →
Τ

))ss(Powersoft)eeB(()c(BitDecomp iij ⊗+′+⋅⋅= 2Τ

)c(BitDecomp)eeB((),c(BitDecompt j <+>′+⋅<⋅= >⊗)ss(ofPowers, ii2

>⊗<+>′+⋅<⋅= iij ss,c)eeB((),c(BitDecompt

><+>′+⋅<⋅= ij s,c)eeB((),c(BitDecompt .

5 Separation Construction

In our construction, each participant has one public/private key pair to identify herself.
We adopt an anchor-embedding approach to translate the data owner i ’s authorization
polices into DAPs.

All attributes in one conjunction of the access expression are bound together through
the hash function and a random, where the random assures that even if two
conjunctions are equal, their DAPs are different. If a user’s attributes are the same as
the subject’s attributes in the authorization rules (access expression), the user can
remove the embedded attributes, the random, and the anchor from the data ciphertext to
recover data. Each attribute of the user is independently translated into SEP such that
SEPs can compose as needed. The binding function through hash (such as xho) is used
to prevent homomorhic attacks. For example, faking a attribute ciphertxet through
homomorhic adding and multiplication of attribute ciphertexts is hard. We then define
the detail construction.

The attacks to the construction include (1) the outsourced data service uses its stored
re-encryption keys, DAPs and all users’ SEPs to recover the secret data; (2) users use
attributes and their key-pairs to access to unauthorized data; (3) the corrupted data
service and users collude to disclose secret data. The homomorphic attack is the
primary threat.

For the first kind of attack, the data service can use stored re-encryption keys to
switch any DAP to the ciphertext under any user’s public key, and does subtraction to
remove the authorization anchor and embedded attributes from the data ciphertext.
Because the data service does not have users’ private keys, it cannot remove the binder

xho . The binder xho is computed by the one-way function (hash function) on
attributes and the random xr . If the random xr is unknown, the probability to correctly
guess xho is negligible. The ciphertext for xho and the attribute conjunction cannot
be faked by homomorphic attacks because xho is one-way. Thus, the data service
cannot get the correct ciphertext for the data item. This also prevents the curious
behavior of the data service from leaking secrets, that is to say, the data service is not
corrupted, but it does some unscheduled actions such as sending any ciphertext to any
user.

Homomorphic-Encryption-Based Separation Approach for Outsourced Data Management 33

For the second kind of attack, the DAPs are ciphertexts encrypted under the data
owner’s public key and the SEPs are ciphertexts encrypted under users’ public key such
that the homomorphic function cannot operate on them. Users have not re-encryption
keys to switch the key of DAPs. Because iϖ is secret, x,yiwϖ cannot be computed.
Users’ attributes cannot be interwoven either, i.e. inserting one attribute in one
conjunction into another conjunction for binding each attribute in one conjunction.
Users only by themselves cannot disclose the data included in ciphertexts.

For the third kind of attack, we cannot prevent. So we assume the outsourced data
service is half honest. That is to say, the data service does not collude with users, but it
may try to get some secret by itself or send any ciphertext to any user.

6 Conclusions

In this paper, we address the problem of how to realize separate cloud data management
in this outsourcing scenarios to manage the sensitive data of owners. The homomorphic
encryption scheme is adopted as a foundation for our framework, and the homomorphic
attack is also discussed. Based on the former, the relative separation could be achieved
with combining encryption and authorization. The solution also realizes simple key
management and the capacity to compose attributes with inner structure. How to
prevent the collusion of the data service and users is left open, which is also our future
research target. Therefore, our solution will provide strong building blocks for the
design and implementation of manage the sensitive information in cloud computing.

References

1. Ceselli, A., Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Modeling and assessing inference exposure in encrypted databases. ACM Trans. on
Information and System Security 8(1), 119–152 (2005)

2. Hacigumus, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Proc. of ICDE
2002, pp. 29–39. IEEE Computer Society, Washington (2002)

3. Hacigumus, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data in the
database-service-provider model. In: Proc. of ACM SIGMOD 2002, pp. 216–227. ACM,
New York (2002)

4. De Capitani di Vimercati, S., Foresti, S., Jajodia, S.: Preserving Confidentiality of Security
Policies in Data Outsourcing. In: Proceedings of the 7th ACM Workshop on Privacy in the
Electronic Society, pp. 75–84 (2008)

5. Samarati, P., de Capitani di Vimercati, S.: Access Control: Policies, Models, and
Mechanisms. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp.
137–196. Springer, Heidelberg (2001)

6. Damiani, E., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Selective Data Encryption in Outsourced Dynamic Environments. Electronic Notes in
Theoretical Computer Science, 127–142 (2007)

34 Y. Zhang and J.-L. Chen

7. Damiani, E., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Metadata Management in Outsourced Encrypted Databases. In: Jonker, W., Petković, M.
(eds.) SDM 2005. LNCS, vol. 3674, pp. 16–32. Springer, Heidelberg (2005)

8. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Over-encryption: management of access control evolution on outsourced data. In: Proc. of
the 33rd VLDB Conference, Vienna, Austria, pp. 123–134 (September 2007)

9. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: A data
outsourcing architecture combining cryptography and access control. In: Proc. of the 1st
Computer Security Architecture Workshop, Fairfax, VA, pp. 63–69 (November 2007)

10. Gentry, C.: Fully Homomorphic Encryption without Bootstrapping (2011),
http://eprint.iacr.org

11. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can Homomorphic Encryption be Practical,
http://eprint.iacr.org/2011/133.pdf

12. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Encryption
Policies for Regulating Access to Outsourced Data. ACM Transactions on Database
Systems, 1–45 (2010)

13. Yu, S.C., Wang, C., Ren, K., Lou, W.J.: Achieving secure, scalable, and fine-grained data
access control in cloud computing. In: IEEE INFOCOM (2010)

	Homomorphic-Encryption-Based Separation Approach for Outsourced Data Management

	Introduction
	Motivation
	Contributions

	Preliminaries
	Attribute-Based Authorization Policy
	Access Expression

	Separate Data Management Framework
	Fundamental Encryption Scheme
	Homomorphic Encryption
	Proxy Key Switching Scheme

	Separation Construction
	Conclusions
	References

