

A. Ghose et al. (Eds.): ICSOC 2012, LNCS 7759, pp. 356–367, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Evaluation of Quality of Design
for Document-Centric Software Services

George Feuerlicht1,2

1 Department of Information Technology,
University of Economics, Prague, W. Churchill Sq. 4, Prague, Czech Republic

2 Faculty of Engineering and Information Technology,
University of Technology, Sydney,

P.O. Box 123 Broadway, Sydney, NSW 2007, Australia
george.feuerlicht.uts.edu.au

Abstract. As the size and complexity of service oriented applications increases
ensuring the quality of design of services that constitute these applications is
becoming critical. Poor design of services results in unnecessarily complex and
inflexible applications that are difficult to maintain and evolve. Service design
has been the subject of intense research interest for almost a decade and there is
a wide agreement about the key service design principles that promote
maintainability of software services. Recent research efforts include attempts to
develop reliable metrics for assessing design quality of service-oriented
applications. Most of these metrics were adapted from metrics for object-
oriented software and focus on measuring intra-service cohesion and inter-
service coupling. In this paper we argue that such metrics are of limited use in
assessing the quality of coarse-grained document-centric services used in
majority of SOA applications and propose a Message Data Coupling Index
(MDCI) - a metric that evaluates orthogonality of a family of XML schemas
based on the level of data coupling. We describe the implementation of a
prototype tool that computes several variants of the MDCI metric.

Keywords: service design metrics, XML schema evolution, data coupling.

1 Introduction

Service oriented computing has emerged as an active research area more than a
decade ago and has now reached high level of maturity with extensive range of
technologies available for the construction of complex application systems based on
the SOA (Service Oriented Architecture) paradigm. Today, it is not uncommon for
such applications to consist of hundreds, and in some cases thousands of individual
services that support complex business processes and involve multiple business
partners. As the complexity of SOA applications grows it is becoming imperative that
software services can be maintained and evolved without costly and time-consuming
software modifications often exacerbated by poor design. It is widely accepted that
software maintenance accounts for a significant part overall costs and time spent on

 Evaluation of Quality of Design for Document-Centric Software Services 357

software projects [1]. Predictions of software maintainability during the design stage
of SDLC (Software Development Life Cycle) and early rectification of design defects
can lead to a significant reduction of maintenance costs [1]. Maintainability is closely
related to software quality as measured by structural properties of software (size,
complexity, cohesion and coupling) [2-4]. Design metrics based on measurements of
cohesion and coupling have been used extensively in object-oriented software
development and were recently adapted for service-oriented software [5]. However,
while there are many similarities between object-oriented software and software
services, there are also significant differences that make it difficult to apply similar
metrics to both approaches. Service-oriented applications typically use coarse-grained
document-centric services that lack important characteristics normally associated with
software components limiting the potential for reuse and making metrics that measure
inter-service coupling inapplicable. Another significant difference is that service
interfaces are often based on pre-defined XML (message) schemas developed by
various consortia and standards organizations, or internally as organization-wide
standards. For example, travel domain web services are based on the OTA (Open
Travel Alliance) specification [6] that defines the structure of message payloads that
are used to implement travel applications. Changing requirements result in the need to
modify message schemas with a corresponding impact on existing services, and
related applications and databases. It follows that the problem of maintenance and
evolution of SOA applications is closely related to the problem of schema evolution,
and that the quality of design of message schemas determines the impact of
requirements changes on services. This situation is illustrated in Figure 1 that shows
the various layers involved in the implementation of service-oriented applications.
The top layer is constituted by the Domain Data Model that represents information
requirements for a particular domain of interest and can be expressed as UML class
diagram. In practice, the Domain Data Model may need to be retrofitted from the
underlying XML schemas and this presents a number of technical challenges as the
schemas may overlap and contain inconsistencies [7]. A family of standard XML
schemas that define the message structures used for business interactions forms the
Message Schemas layer. Services layer represents the services that implement
business transactions such as travel booking. For example, OTA airline ticket booking
request/response dialog uses the message pair OTA_AirBookRQ/RS to implement
flight bookings. This message interchange constitutes a service where the request and
response messages form the service interface:

air_booking(OTA_AirBookRQ, OTA_AirBookRS)

The Applications layer consists of SOA applications that are compositions of
individual services and implement high-level business functions (e.g. booking a
multiple-segment flight). Finally, the Database layer represents databases that store
data records generated by business transactions.

358 G. Feuerlicht

Fig. 1. Layered model of service-oriented applications

As services are implemented on top of pre-existing XML message schemas the
design of the schemas determines the structural properties of services and hence their
maintainability. Design of XML schemas usually follows document engineering [8-
10] or similar methodology that produces XML documents by identifying and
aggregating common data elements [11]. For example, OTA message level schemas
that represent business transactions are hierarchical collection of XML schemas
constructed by aggregation of simple (OpenTravel Simple Types) and complex
(OpenTravel Common Types, and Industry Common Types) schema elements [6].
This design approach while ensuring uniform structure and semantics of data
elements results in overlapping message schemas and high levels of data coupling
reducing maintainability of services [12], [3].

Predicting maintainability of SOA applications has been the subject of recent
research interest [1, 5, 13], however the proposed metrics assess structural properties
of services at the Service layer and are of limited use in assessing the quality of
coarse-grained document-centric services that are used extensively in SOA
applications. In this paper we propose a service design metric - MDCI (Message Data
Coupling Index) that evaluates orthogonality of a family of XML schemas by
estimating the level of data coupling. We describe the implementation of prototype
tool that computes the MDCI metric by matching complex schema elements across a
family of XML schemas. We first review related literature dealing with service design
metrics (section 2.1) and XML schema metrics and change management techniques
(section 2.2). In section 3 we describe our proposal for the MDCI metric (section 3.1)
and the implementation of a MDCI prototype tool (section 3.2). Section 4 presents our
conclusions and outlines further work.

 Evaluation of Quality of Design for Document-Centric Software Services 359

2 Related Work

Metrics for evaluating the quality of service design are essential to allow the
comparison of different design strategies and evaluation of their impact on service
maintainability. Maintainability of software systems has been the subject of extensive
research in the area of object-oriented software and more recently in the context of
SOA. Maintainability is closely related to software quality, and a key determinant of
software quality is orthogonality of software components. Orthogonality allows
individual components to be maintained independently without undesirable side
effects (i.e. without impacting on other components) and is achieved by maximizing
cohesion and minimizing coupling during the design phase of SDLC [14, 15]. Both
coupling and cohesions have been used in traditional software design as indicators of
software quality [16], [17, 18]. Maximizing intra-service cohesion and minimizing
inter-service coupling improves stability of service-oriented applications by reducing
the impact of changes, and at the same time increases potential for reuse [19, 20]. In
the following section we review efforts to develop service design metrics that attempt
to measure quality of service design (section 2.1), and then discuss XML schema
metrics and change management techniques (section 2.2). In the context of the
layered model in Figure 1, service design metrics operate at the Services layer and
XML metrics operate at the Message Schema layer.

2.1 Service Design Metrics

While the underlying principles of service design are extensively documented in the
literature, relatively little work has been done so far on how the adherence to these
principles may be quantitatively measured [5]. The original work by Chidamber et al.
who proposed the Lack of Cohesion in Methods (LCOM) metric for object-oriented
software has been used as the basis for developing metrics for software services.
LCOM evaluates similarity of methods for a given class by counting the number of
method pairs whose similarity is zero minus the number of method pairs whose
similarity is not zero, where similarity of methods is defined as the intersection of the
sets of instance variables used by the methods [21]. Several authors have proposed
service design metrics based on LCOM. For example, the Service Interface Data
Cohesion metric (SIDC) proposed by Perepletchikov et al. [13] measures cohesion by
comparing the messages of service operations based on data types. Sindhgatta et al.
developed a comprehensive set of metrics to measure service cohesion, coupling, and
composability and applied these metrics to case studies in order to evaluate their
applicability to practical SOA scenarios [5]. Two variants of the LCOM metric
(LCOS1, LCOS2) for use with services were adapted, and several additional metrics
have been proposed by the authors in order to evaluate service and message coupling.
These metrics include: Service Operational Coupling Index (SOCI) - a measure of
dependence of a service on the operations of other services, Inter-Service Coupling
Index (ISCI) – based on the number of services invoked by a given service, and
Service Message Coupling Index (SMCI) that measures the dependence of a service
on the messages derived from the information model of the domain (i.e. messages that

360 G. Feuerlicht

service operations receive as inputs, and produce as output via the declared interface).
Finally, Sindhgatta et al. propose several metrics dealing directly with service reuse
and composability, including Service Reuse Index (SRI), based on the number of
existing consumers of a service, Operation Reuse Index (ORI) that counts the number
of consumers of a given operation, and Service Composability Index (SCOMP)
defined on the basis of the number of compositions in which the service is a
(composition) participant and the number of distinct composition participants which
succeed or precede the service. Service granularity is closely related to reuse and
composability and is evaluated using Service Capability Granularity (SCG) and
Service Data Granularity (SDG) metrics, where higher values indicate coarser
granularity (i.e. larger functional scope).

As the above design metrics are based on metrics for object-oriented software, the
underlying assumption is that the service model consists of a set of services S= [s1,
s2…sS] and that each service has a set of operations O(s) = [o1, o2,….oO] with
interfaces formed by input and output messages M(o) [5]. However, most SOA
applications use coarse-grained (document-centric) services that implement the
request/response message exchange pattern and do not involve service operations,
making such metrics not applicable.

2.2 XML Schema Metrics and Change Management Techniques

Another direction of research of relevance to assessing the quality of service design is
work that focuses on evaluating the design of XML schemas [1, 22, 23]. As discussed in
section 1 above, pre-existing XML message schemas define the structure of service
message payloads, and consequently the structural properties of services. As the
message schemas constitute an interface contract, poor schema design can affect the
overall quality of the software system. Numerous XML schema quality metrics have
been proposed primarily with the objective to measure various aspects of schema
complexity. McDowell et al. proposed metrics based on counts of complex type
declarations, derived complex types, number of global type declarations, etc. [22]. Basci
et al. proposed and validated XML schema complexity metric that evaluates the internal
structure of XML documents taking into account various sources of complexity that
include recursion and complexity arising from importing external schema elements.

An alternative perspective on the problem of maintainability of SOA applications
is to focus on change management; i.e. rather than attempting to predict
maintainability by assessing the quality of XML schema design, such techniques
alleviate the impact of changes in requirements by providing tools for automating
change management. The problem of XML schema change management (i.e. schema
evolution) has been investigated, but not adequately solved [23]. XML schema
evolution in the context of SOA presents a particularly difficult problem as the
schemas are often developed in the absence of a Domain Data Model, and are
characterized by complex and overlapping data structures [22]. Current work in this
area focuses on identifying the impact of changes on XML schemas and developing
methods and tools for automating the propagation of these changes. Necasky, et al.
proposed a five-level XML evolution architecture with the top level Platform-
Independent Model (PIM) that represents the data requirements for a particular

 Evaluation of Quality of Design for Document-Centric Software Services 361

domain of interest. PIM model is mapped into a Platform-Specific Model (PSM) that
describes how parts of the PIM schema are represented in XML. PSM then maps into
Schema, Operational and Extensional level models. Atomic operations (create,
update, and remove) for editing schemas are defined on classes, attributes, and
associations, and a mechanism for propagating these operations from PIM to PSM
schema proposed. Composite operations are constructed from atomic operations to
implement complex schema changes [7, 24, 25].

3 Proposed Message Data Coupling Index Metric

In our earlier work we proposed a service design metric that evaluates the quality of
service design by estimating the level of data coupling between services (i.e. at the
Services layer) [26]. Given a family of XML schemas consisting of pairs of request
(RQ) and response (RS) messages [mrq, mrs] that constitute interfaces [si1, si2, si3,
….sin] for services [s1, s2…sn], DCI (Data Coupling Index) is defined as the average
number of (complex) schema elements that are shared between the service interfaces.

In this paper we describe a MDCI (Message Data Coupling Index) metric that
evaluates orthogonality of a family of XML schemas that represent a domain of
interest (e.g. travel) directly at the Message Schema layer. The rationale for the metric
is that maintenance effort required to accommodate new requirements can be
estimated based on the level of overlap (lack of orthogonality) of message schemas;
i.e. schemas that share a large number of complex data elements are more likely to be
impacted as requirements evolve. Conversely, impact of change in requirements on a
family of orthogonal schemas is likely to be limited. We rely on data coupling,
estimated by counting the number of shared complex elements, as an indirect measure
of orthogonality.

Complex elements (composite XML structures with multiple levels of nesting) are
used extensively in XML schema specifications. For example, the OTA
TravelPreferences complex element type consists of eleven simple elements with two
levels of nesting and is embedded in two parent complex element types (AirSearch
and OriginDestinationInformation) and three top-level OTA messages
(OTA_AirAvailRQ, OTA_AirFareDisplayRQ, and OTA_AirLowFareSearchRQ).
Changes in the TravelPreferences element type as the specification evolves will affect
all parent data types and messages, with corresponding impact on existing
applications and underlying databases.

Coupling through sharing complex schema elements is known in software
engineering literature as stamp coupling and is regarded as undesirable as it inhibits
evolution [17, 27]. Avoiding stamp coupling increases reusability by creating services
with simpler interfaces and greater reuse potential [28-30].

3.1 Message Data Coupling Index (MDCI)

Given a family of XML message schemas that represent a domain of interest [m1,
m2, m3, .. mN] MDCI (Message Data Coupling Index) is defined as the sum of the

362 G. Feuerlicht

number of shared schema elements for each message pair combination (i.e. cardinality
of the intersection of schema elements) divided by the number of message pair
combinations r: MDCI = ଵଶ୰ ∑ |M୨ ת M୩N୨,୩ୀଵ | ; where j≠k, and r = ∑ iNିଵ୧ୀଵ
The calculation of MDCI is based on matching complex schema elements only (i.e. it
is a measure of stamp coupling) and gives the average number of shared complex
elements evaluated across all message combinations. This is consistent with the
approach adopted by McDowell et al. and Visser et al. [22, 23].

3.2 Prototype Tool for Evaluating MDCI

In this section we describe the implementation of a prototype tool for the evaluation
of the MDCI metric developed using the Rich Ajax Platform
(http://www.eclipse.org/rap/). Given a set of XML messages the MDCI tool reads the
message level elements types and the types included in the corresponding libraries.
For each message pair combination the tool identifies all complex element types and
attempts to match these types producing an average count of matches across all
message combinations.

Evaluation of the MDCI metric involves a number of important decisions. Firstly, a
decision needs to be made about what constitutes a match between data elements. As
noted above we restrict matching to complex element types, i.e. match occurs if two
messages that are being compared contain the same complex element type. It is
common practice to use extension of complex element types, i.e. complex types
derived from other complex types by adding additional elements. For example, as
shown in Figure 2 OTA SpecificFlightInfo extends SpecificFlightInfoType by adding
elements FlightNo, Airline, and BookingClassPref.

Fig. 2. Extended complex element types

 Evaluation of Quality of Design for Document-Centric Software Services 363

Fig. 3. Multiple element type matches

Computation of MDCI counts the matches between complex elements and their
extended versions, as type extensions result in data coupling. As message schemas are
constructed by assembling common element types into multi-level hierarchical XML
structures, element type matches can occur at different levels of the hierarchy.

We consider two alternatives for the computation of the MDCI index: 1) MDCI1 -
counts element matches only at the top-level of the schema, i.e. message level,
indicated by the prefix OTA, 2) MDCI2 - counts element matches for all levels of the
schema hierarchy. Finally, it is possible for element matches to occur several times
for the same message pair as illustrated in Figure 3. The OTA_AirAvailRQ and
OTA_AirFareDisplayRQ messages exhibit multiple matches for
SpecificFlightInfoType and AirSearchPrefType, indicating that these complex types
occur twice in one of the messages. The MDCI tool provides an option to count only
unique matches for both MDCI1 and MDCI2 metrics.

3.3 Example Calculations of MDCI

We use a subset of OTA Airline (Air) message schemas (Flattened OTA Schemas
version 2011b) shown in Table 1 for the computation of the MDCI index in this
paper, but the prototype tool can use message schemas from other sources.

The OTA Air messages implement various business functions related to airline
travel, such as checking flight availability, flight booking, etc. For example, the
Search and Availability of flights business function is implemented using the
Air_AvailabilityRQ/RS request/response message pair [31]. OTA defines common
data types (OTA_AirCommonTypes) for the airline messages that form a repository

364 G. Feuerlicht

Table 1. Subset of OpenTravel Air Messages used for calculation of MDCI

Ident. OpenTravel Message Business Functionality
AIR01 OTA_AirAvailRQ/RS Search & Availability
AIR02 OTA_AirBookRQ/RS Reservation Management: Booking
AIR03 OTA_AirBookModifyRQ Reservation Management: Modification
AIR04 OTA_AirCheckInRQ/RS Passenger Check‐in & Check‐out
AIR05 OTA_AirDemandTicketRQ/RS Ticket Fulfillment
AIR06 OTA_AirDetailsRQ/RS Descriptive Information: Flight leg and Codeshare
AIR07 OTA_AirFareDisplayRQ/RS Fare Search & Display (No Availability)
AIR08 OTA_AirFlifoRQ/RS Descriptive Information: Flight Operation
AIR09 OTA_AirPriceRQ/RS Fare Pricing
AIR10 OTA_AirRulesRQ/RS Fares Rules: Fare Basis & Negotiated Fares
AIR11 OTA_AirScheduleRQ/RS Descriptive Information: Flight Schedules
AIR12 OTA_AirSeatMapRQ/RS Seat Availability & Information

of reusable XML Schema components used in the construction OTA Air messages.
OTA differentiates between complex types (types that contain multiple data elements)
and simple types (types that contain a single data element).

Using the OTA (Flattened) Air message schemas in Table 1 the value for MDCI1 =
1.51, and 1.18 for multiple and unique element matches, respectively; i.e. on average
the selected OTA Air messages share 1.51 complex elements at the top message
schema level, and 1.18 complex elements if only unique matches are counted.
Corresponding values for MDCI2 (i.e. counting complex element matches for all
levels of the message schema hierarchy) are 77.42 and 6.97 for multiple and unique
element matches, respectively.

4 Conclusions and Further Work

Standardized XML schemas that define message structures for domain-specific
services form the basis for large-scale SOA applications. Complex hierarchical
message schemas with overlapping structures that characterize document-centric
services result in applications that are difficult maintain and evolve. Reliable metrics
that can identify poor design early during system development can significantly
reduce maintenance costs.

We have briefly reviewed existing service design metrics and identified their
limitations in the context of coarse-grained document-centric services. Following on
from our previous proposal of a service design metric that evaluates data coupling
between service interfaces [26] we propose a design metric that estimates

 Evaluation of Quality of Design for Document-Centric Software Services 365

orthogonality of a family of message schemas that typically form the basis for the
implementation of services for a particular domain of interest (e.g. travel). We argue
that the maintenance effort required to accommodate new requirements increases with
the extent of overlap (i.e. lack of orthogonality) of message schemas. The proposed
MDCI metric relies on evaluating the level of data coupling by counting the number
of shared complex schema elements among a set of message schemas. We have
described a prototype tool that uses a set of XML schemas as input and provides a
number of options for the evaluation of the MDCI metric.

The MDCI metric needs to be empirically validated using different sets of XML
schemas and for different design strategies to establish the reliability of MDCI as a
measure of design quality. We are currently investigating the of impact service
granularity on the orthogonality of the message schemas. We expect that re-designing
the schemas to reduce granularity of services will improve the orthogonality of the
message schemas and produce a measurable effect on the MDCI index.

Acknowledgments. This research was supported by GAČR (Grant Agency, Czech
Republic) grant No. P403/11/0574 and P403/10/0092. Dr George Feuerlicht was
supported by the Australian-China Science and Research Fund ACSCRF-01280 from
the Australian Department of Innovation, Industry, Science, Research and Tertiary
Education (DIISRTE) and the Research Centre for Human Centered Technology
Design at the University of Technology, Sydney. We acknowledge the assistance of
Enrico Shi with the development of the MDCI prototype tool.

References

1. Basci, D., Misra, S.: Measuring and evaluating a design complexity metric for XML
schema documents. Journal of Information Science and Engineering 25(5), 1405–1425
(2009)

2. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on Software Engineering 28(1), 4–17 (2002)

3. Etzkorn, L.H., et al.: A comparison of cohesion metrics for object-oriented systems.
Information and Software Technology 46(10), 677–687 (2004)

4. Eder, J., Kappel, G., Schrefl, M.: Coupling and cohesion in object-oriented systems.
Technical Report, University of Klagenfurt, Austria (1994)

5. Sindhgatta, R., Sengupta, B., Ponnalagu, K.: Measuring the Quality of Service Oriented
Design. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS,
vol. 5900, pp. 485–499. Springer, Heidelberg (2009)

6. OTA. OTA Specifications (May 6, 2010),
http://www.opentravel.org/Specifications/Default.aspx

7. Necaský, M.: Conceptual Modeling for XML. Dissertations in Database and Information
Systems Series. IOS Press/AKA Verlag (2009)

8. Glushko, R., McGrath, T.: Document engineering: analyzing and designing documents for
business informatics and Web services. MIT Press Books (January 2008)

366 G. Feuerlicht

9. Glushko, R., McGrath, T.: Patterns and reuse in document engineering. In: XML 2002
Proceedings (2002)

10. Glushko, R.J., McGrath, T.: Document Engineering for e-Business. In: Proceedings of the
2002 ACM Symposium on Document Engineering (DocEng 2002), McLean, Virginia,
USA. ACM Press, New York (2002)

11. ebXML. ebXML - Enabling A Global Electronic Market (December 9, 2007),
http://www.ebxml.org/

12. Feuerlicht, G., Lozina, J.: Understanding Service Reusability. In: 15th International
Conference Systems Integration 2007, Prague, Czech Republic. VSE Prague (2007)

13. Perepletchikov, M., Ryan, C., Frampton, K.: Cohesion metrics for predicting
maintainability of service-oriented software, pp. 328–335. qsic (2007)

14. Papazoglou, M.P., Yang, J.: Design Methodology for Web Services and Business
Processes. In: Buchmann, A.P., Casati, F., Fiege, L., Hsu, M.-C., Shan, M.-C. (eds.) TES
2002. LNCS, vol. 2444, pp. 54–64. Springer, Heidelberg (2002)

15. Papazoglou, M.P., Heuvel, W.V.D.: Service-oriented design and development
methodology. International Journal of Web Engineering and Technology 2(4), 412–442
(2006)

16. Vinoski, S.: Old measures for new services. IEEE Internet Computing 9(6), 72–74 (2005)
17. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. big’web services:

making the right architectural decision. In: 17th International Conference on World Wide
Web. ACM, Beijing (2008)

18. Pautasso, C., Wilde, E.: Why is the web loosely coupled?: a multi-faceted metric for
service design. In: 18th International Conference on World Wide Web. ACM, Madrid
(2009)

19. Stevens, W.P., Myers, G.J., Constantine, L.L.: Structured Design. IBM Systems
Journal 38(2 & 3) (1999)

20. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-oriented
modeling and design 1991. Prentice Hall, New Jersey (2000)

21. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE Transactions
on Software Engineering 20(6), 476–493 (2002)

22. McDowell, A., Schmidt, C., Yue, K.B.: Analysis and metrics of XML schema (2004)
23. Visser, J.: Structure metrics for XML Schema. In: Proceedings of XATA (2006)
24. Necaský, M., Mlýnková, I.: A Framework for Efficient Design, Maintaining, and

Evolution of a System of XML Applications. In: Proceedings of the Databases, Texts,
Specifications and Objects, DATESO, vol. 10, pp. 38–49

25. Necaský, M., Mlýnková, I.: Five-Level Multi-Application Schema Evolution. In:
Proceedings of the Databases, Texts, Specifications and Objects, DATESO, vol. 9, pp.
213–217

26. Feuerlicht, G.: Simple Metric for Assessing Quality of Service Design. In: Maximilien,
E.M., Rossi, G., Yuan, S.-T., Ludwig, H., Fantinato, M. (eds.) ICSOC 2010. LNCS,
vol. 6568, pp. 133–143. Springer, Heidelberg (2011)

27. Page-Jones, M.: The Practical Guide to Structured Systems Design, 2nd edn. Prentice Hall,
New Jersey (1988)

28. Feuerlicht, G.: Design of Service Interfaces for e-Business Applications using Data
Normalization Techniques. Journal of Information Systems and e-Business Management,
1–14 (2005)

 Evaluation of Quality of Design for Document-Centric Software Services 367

29. Feuerlicht, G.: System Development Life-Cycle Support for Service-Oriented
Applications. In: 5th International Conference on Software Methodologies, Tools and
Techniques, SoMet 2006, Quebec, Canada. IOS Press, The Netherlands (2006)

30. Schmelzer: Solving the service granularity challenge (December 13, 2007),
http://searchsoa.techtarget.com/tip/
0,289483,sid26_gci1172330,00.html

31. Alliance, O.T.: OpenTravelTM Alliance XML Schema Design Best Practices (September 1,
2010), http://www.opentravel.org/Resources/Uploads/PDF/
OTA_SchemaDesignBestPracticesV3.06.pdf

	Evaluation of Quality of Designfor Document-Centric Software Services
	Introduction
	Related Work
	Service Design Metrics
	XML Schema Metrics and Change Management Techniques

	Proposed Message Data Coupling Index Metric
	Message Data Coupling Index (MDCI)
	Prototype Tool for Evaluating MDCI
	Example Calculations of MDCI

	Conclusions and Further Work
	References

