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Abstract. While end-users enjoy the full-fledged data service mashup with high 
convenience and flexibility, such issues as the response efficiency and the 
maintenance cost have popped up as the major concerns. In this paper, an effi-
cient data maintenance strategy for the data service mashup is proposed. The 
strategy proposes a data maintenance model to measure the response cost and 
update cost of a group of data service mashups in terms of the request frequency 
and update frequency. Based on the model, a materialized view selection for data 
service mashup is proposed. Experiments show that our strategy can effectively 
reduce the maintenance cost of a lot of hosted data service mashups. 
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1 Introduction 

Data service mashup has become so popular over the last few years. It is a special class 
of mashup application that combines information on the fly from multiple data sources. 
Its applications vary from addressing transient business needs in modern enterprises to 
conducting scientific research in e-science communities [1]. The data sources are 
provided through Web Services, also known as DaaS (Data-as-a-Service) or Data 
Service [2, 3]. While providing enhanced immediacy and personalization to explore, 
aggregate and enrich data from various heterogeneous sources, data service mashups 
also pose distinct data maintenance challenges. In general, the mashup results are often 
cached in order to enhance the performance of responding to end-users’ request. 
However, when the primitive data sources are updated, the cache should be updated to 
ensure their consistency with the underlying data sources, which brings the high 
maintenance cost. For a mashup platform which hosted a lot of mashup applications, 
some cached results may be shared and reused by other mashups. So it will be more 
efficient to materialize certain “shared” mashup results to achieve the best performance 
with minimum consistency maintenance cost. In this paper, we call this problem as the 
data maintenance problem. The challenges to solve this problem are analyzed from the 
following three aspects: 
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Firstly, most of the mashup platforms allow all kinds of users to develop their own 
mashups, so there are often a large number of data service mashups hosted on the 
mashup platforms, which implies that the data maintenance cost for mashup platforms 
is much higher. 

Secondly, data service mashups are often designed by non-technical-savvy 
end-users, and hence they are not necessarily optimized from the point of view of data 
maintenance. 

Thirdly, the data sources often have various non-functional characteristics such as 
update frequency, data volume and so on but the data service mashups lack of their 
description. So they can not optimize the data maintenance utilizing these characteris-
tics. 

All these reasons make it quite necessary to consider the data maintenance of a lot of 
hosted data service mashups. Unfortunately, the efficiency aspects of mashup plat-
forms have not received enough attention from the research community. Only a few 
works give some preliminary research results [4, 5]. In this paper, we present an effi-
cient data maintenance strategy for data service mashup, which has the following 
special features. 

• We establish the maintenance cost model for the data service mashup, and 
propose the materialized view selection strategy based on the maintenance cost 
model. 

• We evaluate the performance of our proposed strategy through standard datasets 
from TPC-H and demonstrate that our strategy achieves significant improve-
ments. 

The paper is organized as follows: Section 2 gives an example to formulate the prob-
lem. Section 3 introduces the maintenance cost model and materialized view selection 
strategy. A detailed example is introduced. Section 4 is experiment and discussion. 
Section 5 introduces related works. Section 6 sums up with several concluding remarks. 

2 Problem Description 

Consider an example data service mashup. Firstly, it invokes data service M1 and M2, 
fetches the popular movies from mtime.com and movie.hao123.com (two famous 
movie guide portal in China). Secondly, the output of M1 and M2 are combined as 
M1∪M2. Thirdly, it invokes the movie review API from douban.com (the most popular 
book & movie reviews portal in China). The result is a complete popular movie list with 
reviews as  (M1∪M2) RiR. The mashup steps are shown in Figure 1, where the data 
services from the two popular movie websites are abbreviated as M1 and M2, and the 
data service from the movie review website is abbreviated as R. 

In fact, in order to get the same results, different users may use different mashup 
scheme. The right side of Figure 1 shows the other mashup scheme. In this scheme, at 
first, the movie lists from mtime.com and movie.hao123.com are each used as the input 
to invoke the API from douban.com. Then both the outputs are combined. The outputs 
of both mashups are the same. 
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Fig. 1. An example data service mashup 

According to the interaction between user and the data mashup, we can make a dis-
tinction of the execution mode of mashup between active and passive as shown in Table 
1. At the active mode, when some data sources are updated, the platform actively sends 
the update to users. At this mode, we design a “materialized data view” to cache the 
results on the client side. As such, the maintenance cost of a mashup in active mode is 
equal to the cost of responding to the update of the data sources. 

While for those mashups in passive mode, they send the results to users only when 
there comes in a user request. At this mode, there is no materialized data view for the 
mashup. The mashup gets results by re-computing the underlying data sources from 
bottom to top. Compared with the “materialized data view” to cache the results, it can 
be called the “virtual data view”. In order to make it more efficient, the mashup can 
reuse some materialized results. As such the maintenance cost of a mashup in passive 
mode is equal to the cost of responding to request. 

Table 1. The maintenance cost category 

Execution Mode  View Mode Maintenance Cost 

Active Materialized update cost of the data sources 

Passive Virtual response cost of the user’s request 

 

Therefore, given a group of mashups, the data maintenance cost is composed of two 
parts: one part is the response cost of all virtual data views, and the other part is the 
updating cost of all materialized data views, where some virtual data views can reuse 
some materialized execution results of the materialized data views. 

When the outputs of several mashups are the same, their execution costs may not be 
the same from the following analysis. For example, as shown in the right part of Figure 
1, if M1 RiR is executed in active mode, and (M1 RiR)∪(M2 RiR) is executed in 
passive mode, then (M1 RiR)∪(M2 RiR) can reuse the materialized execution result 
of M1 RiR to reduce response cost, so that the data maintenance cost is reduced. 
However, because there are no common part between the mashup shown in the left part 
of Figure 1 (M1∪M2) RiR  and M1

 RiR, so the (M1∪M2) RiR can not reuse the 
materialized execution result of the mashup M1

 RiR, and maybe generate higher data 
maintenance cost. So in Figure 1, though (M1 RiR)∪(M2 RiR) has the same results as 
the (M1∪M2) RiR,  the data maintenance costs are different. 
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In addition, for single mashup, the mashup schema also has an impact on the data 
maintenance cost. For instance, one schema first filters the popular movie list from 
“mtime.com” according to the category, and then sorts the list by their score. The other 
schema sorts the list ahead of filtering. The former one’s data maintenance cost is lower 
than the latter one even if they have the same results. This is because when data sources 
are updated, filtering generally makes the intermediate results for computation reduced. 

Based on above analysis, we can get such a conclusion that given that different 
mashup schemas and execution modes, even if the mashups output the same results, 
their data maintenance cost may be different, so our goal can be defined as follows: 
Given a group of mashups, how to select the mashup schema and execution mode, in 
order to get the minimum data maintenance cost. 

3 Materialized View Selection 

The mashup operators include count, filter, union, unique, join, sort, projection, 
truncate, tail, rename, which are similar to the operators in the relational algebra, and 
we use Σ, σ, ∪, μ,  j, s, π, t, τ, r respectively to represent them, so the mashup can 
represented by tree that could be transformed into equivalent results according to the 
equivalent tranformation rules [6]. In order to select mashup schema and execution 
mode for each mashup to get the minimum data maintenance cost, our solution includes 
two steps: the first step is to establish the maintenance cost model for the mashups; the 
second step is to solve the model to get the optimization results. Here, we still take the 
two mashups (M1∪M2) RiR and M1 RiR for example to firstly introduce their data 
maintenance cost model. 

3.1 Maintenance Cost Model 

For simplicity, we neglect the join attribute in this example, and use the upper case 
letter to represent the name of set or function, and use the lower case letter to represent 
the element of the set, where the length of set indicates the number of elements. For 
example, V={(M1∪M2) RiR, M1 RiR}={v1,v2}, represents a set of mashups, and their 
maintenance cost model as shown in formula 1: 

                       cV=min P∪A=V’∧V’∈E(V) (cP+cA)                           (1) 

Where P represents the set of mashups with the passtive mode, A represents the set of 
mashups with the active mode, cV represents the data maintenance cost of the mashups, 
cP represents the response cost of the mashups with the passive mode and will be 
introduced in following section, cA represents the update cost of the mashups with the 
active mode and will be introduced in following section, and V’ is an equivalent set of 
V. In order to calculate them, we first have to obtain the following three matrices EV, 
BE, AB. At the same time, some symbols, such as logic negative “¬”, logic and “∧”, dot 
product “⊗”, matrix multiplication “×”, matrix or vector transpose “T”, and the 
function L changing any non-zero to zero are introduced. 
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E(vi) is the set of the mashups which are equivalent to the mashup vi. E(vi) can be 
obtained by equivalence transformation rules. E represents all mashups which are 
equivalent to any element in the set V, and we call any element of E equivalent mashup. 
In this example, E(v1)={(M1∪M2)  RiR, (M2∪M1)  RiR, 
(M1  RiR)∪(M2  RiR),(M2  RiR)∪(M1  RiR)}={e1,e2,e3,e4},E(v2)={M1  Ri 

R}={e5},E={e1, e2, e3, e4, e5}.EV is a 0-1 Boolean matrix with |V|×|E|, and if and only if 
E(vi)=ej, EV(i, j)=1, else EV(i, j)=0. In this example, 

1 1 1 1 0

0 0 0 0 1
EV

 =  
 

 

B(ei) is the set of all intermediate results of the equivalent mashup ei. B represents the 
set of all intermediate results of all equivalent mashups in E, and we call any element of 
B intermediate result. In this paper, we only consider the re-computing cost of the 
intermediate results. In fact, there is also communication cost, but it has no impact on 
our model. In this example, B={M1∪M2, M2∪M1, M1 RiR, M2 RiR,(M1∪M2) RiR, 
(M2∪M1) RiR, (M1 RiR)∪(M2 RiR), (M2 RiR)∪(M1 RiR)}. BE is a 0-1 Boolean 
matrix with |E|×|B|, if and only if B(ej)=bi, BE(i, j)=1, otherwise BE(i, j)=0. In this 
example, 

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0
  

0 0 1 1 0 0 1 0

0 0 1 1 0 0 0 1

0 0 1 0   0 0 0 0

T

BE

 
 
 
 =
 
 
  

 

A(bi) is the set of all atomic data services related with the intermediate result bi, and we 
call any element of A atomic data service. In this example, A={M1,M2,R}. AB is a 0-1 
Boolean matrix with |B|×|A|, and if and only if A(bj)=ai, AB(i, j)=1, otherwise AB(i, 
j)=0. In this example, 

1 1 1 0 1 1 1 1

1 1 0   1 1 1  1  1

0 0 1 1 1 1 1 1

T

AB

 
 =  
  

 

pV is a 0-1 Boolean vector representing the execution modes of the mashups, where 1 
represents the mashup is executed in active mode, and 0 represents the mashup is 
executed in passive mode. rV and uA are the request frequency vector of the mashups and 
the update frequency vector of atomic data services respectively. They can be obtained 
from monitoring and service interface description. In order to facilitate the computation 
of the data maintenance cost, in this example, we assume that rV=[1,1], and uA=[1,1,1]. 
cB is the cost vector of the single-step-computing of intermediate results. For example, 
the cost of the single-step-computing of the (M1∪ M2) RiR is the cost of join operation 
between M1∪M2 and R. The cB can be obtained by testing. In this example, we suppose 
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that cB=[1,1,2,2,3,3,1,1]. The cost of the single-step-computing of (M1∪M2) RiR is set 
to 3, which is lower than the sum of M1 RiR (set to 2) and M2 RiR (set to 2), and 
higher than any of them. The above information is all input to establish the data 
maintenance cost model of the mashups. Next, we will explain how to compute the cP 

and cA in our example. 
cP=((((rV×EV)⊗xE)×BE)⊗cB)×(L(xE×BE)∧¬xBP)T is the total cost of the sin-

gle-step-computing of the intermediate results, where xE is a 0-1 vector, 0 indicates that 
the equivalent mashup is not selected and 1 indicates the equivalent mashup is selected. 
The (rV×EV)⊗xE is the request frequency vector of the selected equivalent mashups, 
and the ((rV×EV)⊗xE)×BE indicates the number of the single-step-computing of the 
intermediate results of the selected equivalent mashups. After the ((rV×EV)⊗xE)×BE is 
multiplied by cB, we can get the total cost of the single-step-computing of the 
intermediate results without taking into account reusing the materialized results. The 
total cost is multiplied by the transpose of L(xE×BE)∧¬xBP to eliminate the cost of the 
single-step-computing of materialized results, where the xBP=L((pV∧xE)×BE) represents 
the materialized results of all selected equivalent mashups. 

cA=((xBP⊗cB)×AB)×(uA)T is the total cost of the single-step-computing of the inter-
mediate results related with the atomic data services when the atomic data services are 
updated. Firstly, we multiply cB and xBP to get the total cost of all single-step-computing 
of intermediate results. AB represents the relationships between atomic data services 
and intermediate results, which is multiplied by xBP⊗cB to get the total cost of the all 
single-step-computing of intermediate results when all atomic data services are 
updated. The total cost further is multiplied by the transpose of uA to get the final total 
update cost, where uA is the update frequency vector of all atomic data services. In this 
example, we use a genetic algorithm as shown in [3] to solve the 0-1 programming to 
get the approximate optimal solution, and the solution is as follows: pV=[0,1] and 
xE=[0,0,1,0,1], namely the (M1∪M2) RiR and M1 Ri R is passive mode and active 
mode respectively, and the script of (M1∪ M2) RiR is replaced with the script of 
(M1 RiR)∪(M2 RiR). 

4 Experiment and Discussion 

Our experimental setup is based on our data service mashup platform-DSM [7]. We 
simulate a group of data services spread out on the Internet based on TPC-H1. TPC-H 
describes a multi-part production and sales scenario, involving eight data tables. The 
tables are encapsulated into a group of Internet accessible data services. Since the 
experiment only considers the number of mashups, the request frequency of mashups, 
and the update frequency of the atomic data services, the data size of the output of the 
atomic data services is kept unchanged. We configure the default value to be 100 KB. 
In the future, we will consider the dynamic data size of data services. 

                                                           
1 http://www.tpc.org/tpch/ 
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In the following experiments, we build 10 mashups. To simulate the real data service 
mashups, the average number of operators in one data service mashup is limited less 
than 8, which is similar to those mashups on Yahoo! Pipes [8]. To simulate the real 
large-scale mashup platform scenario, we duplicate 80 mashups according to the Zip-
fian distribution with α=0.9 based on the statistical observation from syndic8, which 
has been studied in paper [4]. 

We use JMeter2 to simulate the stress testing on a single machine with 2GB memory 
and 2.26GHz CPU. In following experiments, we quantify the performance benefits of 
the materialized selection strategy. The materialized selection strategy is compared 
with two other strategies: “All Materialized” and “No Materialized”, the former means 
all results are materialized and the latter means no result is materialized. These three 
strategies are compared with respect to the total cost incurred by the mashup platform 
in serving the end-user requests. For an individual mashup, the cost is quantified as the 
associated computational latency at the mashup platform. In Figure 2, we randomly 
select mashups, and compare the data maintenance cost of three strategies as the 
number of the mashups increases from 4 to 80. The mean of the request frequencies is 
set to 50, and the mean of the update frequencies is set to 5. As the results indicate, the 
data maintenance cost incurred by DSM is lower than the other two strategies 
throughout the simulated range. The most important thing is DSM’s curve shows log 
tendency rather than linear tendency, and the reason is that the probability of reuse 
increases as the number of the mashups increases. 

 

Fig. 2. The maintenance cost comparison 

In Figure 3(a), we compare the three strategies as the mean of the request frequencies 
of all the one thousand mashups varies from 10 requests per unit time to 100 requests 
per unit time. The mean of the update frequencies of the data services is set to 5. The 
system is assumed to have enough storage to materialize the results of all mashups. 
Figure 3(a) shows the data maintenance cost per unit time for the results of the expe-
riments. As the results indicate, the data maintenance cost incurred by DSM’s  

                                                           
2 http://jmeter.apache.org/ 
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materialized selection is lower than the other two strategies throughout the simulated 
request frequency range. The data maintenance cost incurred by the “All Materialized” 
strategy is essentially constant as the requests are served using materialized results 
without additional computations. For this “All Materialized” strategy, the data main-
tenance cost is mainly due to re-computing of the materialized results when the asso-
ciated atomic data services used in the mashups are updated. At very low request rates, 
the data maintenance cost of “No Materialized” strategy is comparable to those of the 
DSM. However, with the request frequency increases, the data maintenance cost of “No 
Materialized” strategy raises quickly. It is to be noted here that although the data 
maintenance cost of the DSM strategy increases with the increasing request frequency, 
its curve becomes flat once upon reaching the “All Materialized” cost levels. In Figure 
3(b), we study the effect of update frequencies of data services on the data maintenance 
cost of the three strategies. The setup is very similar to that of the previous one except 
that the mean request frequency is fixed at 50 requests per unit time whereas the update 
frequency of all data services is varied from 1 to 10 per unit time. Again, we see that the 
DSM has the best performance than the other two strategies. However, in this expe-
riment, the data maintenance cost of the “No Materialized” remains constant. This is 
because there are no materialized results that need to be recomputed when the data 
services are updated. 

  

(a) Maintenance Cost When Request Frequency is Variable (b) Maintenance Cost When Update Frequency is Variable 

Fig. 3. The maintenance cost comparison 

We thus conclude that the maintenance cost reduction of the DSM system is 
achieved when there are higher request frequencies, update frequencies and the number 
of mashups. 

5 Related Works 

Since Harinarayan published the first paper about materialized view selection [9], the 
materialized view selection had been gradually warmed up in the database research, 
and attracted a growing number of researchers. Many research results continue to 
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emerge, including the static selection [10], the dynamic selection [11] and the hybrid 
approach [12], but all of them focus on traditional data integration on the data 
warehouse. On the contrary,  this paper focuses on the popular data integration on the 
Web called data mashup. So although our maintenance cost model is similar to the 
MVPP framework for materialized view design [10], we consider the interaction be-
tween user and the mashup (the execution mode of mashup) which is different from 
MVPP. 

In recent years, Web 2.0 technologies have been widely developed. There have been 
many tools and platforms to support just-in-time data mashup for non-professional 
users, however, seldom works have focused on the performance combined with 
maintenance. Hassan has presented a dynamic caching framework MACE [4] to im-
prove the performance of data mashups. MACE continuously observes the execution of 
mashups, and collects statistics such as request frequencies, update frequencies and 
cost and output size values at various nodes of mashups. It then performs cost-benefit 
analysis of caching at different nodes of mashups, and chooses a set of nodes that are 
estimated to yield the best benefit-cost ratios. For each new mashup, MACE platform 
analyzes whether any of the cached results can be substituted for part of the mashup 
workflow. If so, the mashup is modified so that the cached data can be re-used. To a 
great extent, MACE enhances the performance of mashups, but MACE does not con-
sider the reuse possibility through the mashup equivalence transformation. In addition, 
the paper [5] provides AMMORE platform to support mashups construction. 
AMMORE represents mashups as strings, and then it detects the longest common 
components across mashups, and merges mashups with other mashups by common 
components to minimize the total number of operators that the mashup platform has to 
execute. The longest common components can be used by multiple mashups. In this 
way, the maintenance cost of mashup platforms is reduced, but AMMORE does not 
establish their maintenance cost model. In fact, the DSM merges mashups based on the 
mainteance cost model, and also can minimize the number of maintenanced mashups. 

On the mashup maintenance, the paper [13] presents techniques that help mashup 
developers to maintain applications by identifying when and how the original applica-
tions’ UIs change, but the techniques are mainly used to search best matched widgets. 
Our prior work [2] introduces the maintenance cost model for the data service mashup, 
but the introduction is simple. 

6 Conclusions and Future Works 

Data service mashup is a special class of mashup application that combines information 
on the fly from multiple data sources. A challenging problem is how to achieve the best 
performance with the minimum maintenance cost. 

This paper presents an efficient strategy, based on materialized view selection. The 
strategy use the data maintenance model to measure the response cost and update cost 
of a group of data service mashups in terms of the request frequency and update fre-
quency. Based on the model, a materialized view selection for data service mashup is 
proposed. Experiments show that our strategy can effectively reduce the maintenance 
cost of a lot of hosted data service mashups. 
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