

A. Ghose et al. (Eds.): ICSOC 2012, LNCS 7759, pp. 263–274, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Towards RESTful Communications
in Self-managing Pervasive Systems

Meherun Nesa Lucky, Christina Tziviskou, and Flavio De Paoli

Dipartimento di Informatica, Sistemistica e Comunicazione, Università di Milano-Bicocca
Viale Sarca 336/14, 20126, Milan, Italy

{meherun.lucky,christina.tziviskou,depaoli}@disco.unimib.it

Abstract. The presence of heterogeneous communication protocols and
interfaces prevents from giving self-managing capabilities to service systems.
This paper proposes the exploitation of the widely adopted HTTP protocol to
create a shared platform that fosters the definition of services that can be easily
integrated and controlled. Such services will be provided with RESTful
interface and interaction style to gather data and control behavior of sensors to
support the development of sensor services integrated with other services in
pervasive systems.

Keywords: RESTful services, Sensors, Web Application, pervasive computing.

1 Introduction

Over the last decade, the Web has grown from a large-scale hypermedia application for
publishing and discovering documents (i.e., Web pages) into a programmable medium
for sharing data and accessing remote software components delivered as a service. The
need of global availability and sharing of huge amount of information through various
kinds of heterogeneous devices and services has changed the reference scenario for the
development of Web scale applications. The consequent growing complexity and
increasing request of adaptive services has made manual management impractical. A
possible answer toward self-management is to make services smarter by achieving
awareness of the target things’ or the applications’ physical environment or situations to
respond proactively and intelligently. To tackle the problem a first effort should be the
definition of a common protocol to foster automated interoperability.

As a matter of facts, the HTTP protocol has been used as a universal mean for
tunneling messages in business-to-business scenarios, but quite often to support
additional protocols, such as WSDL/SOAP for Web Services or OGC/SOS/SPS for
sensors, that are usually not interoperable. In this paper, we investigate the correct and
complete use of the HTTP protocol to publish, manage, and operate services on the
Web by fully exploiting the REST (REpresentational State Transfer) principles [5].
Today, more and more services published on the Web are claiming to be designed
using REST, but actually missing some of the features, like the hypermedia control,
which is crucial to automate self-management operations.

264 M.N. Lucky, C. Tziviskou, and F. De Paoli

The rest of the paper discusses on integrating data from sensors and other services,
which will be gathered by invoking different services through standardized interfaces
by the Self-manageable Pervasive System to fulfill its task. To investigate the issue,
we discuss two scenarios that differentiate between user control activities, where
users are asked to invoke different types of services to fulfill a composite task, and
self-managing pervasive system, where users invoke a single composite service
without further interaction.

2 Motivations

Nowadays, the number and variety of available services on the Web enable for the
definition of sophisticated composed services, which can take great advantage from
pervasive computing and sensor Web to give users seamless assistance in daily
activities. In pervasive computing environments, different devices often use different
technologies, which make the communication complex and sometimes even
troublesome. Sensor Web has a central role in addressing new sources of
information that need to be dynamically integrated into systems. The Sensor Web
Enablement architecture of the Open Geospatial Consortium (OGC)[2] has been
developed to enable flexible integration of sensors into any type of software system
using standards: the Observations & Measurements and Sensor Model Language
specifications define the exchanged sensor data; the Sensor Observation Service
(SOS) gives pull-based access to observation data [3]; the Sensor Planning Service
(SPS) tasks sensors [15].

We want to point out, through the discussion of a use case, the problems that arise
from the diversity of the involved services, and show how the communication burden
can be transferred from the user to self-managing pervasive systems. Then, we
investigate the advantages of the RESTful approach as a mean for providing a
common interface for services communication and control.

2.1 Use Case Scenario

We consider two versions of a scenario in which a user, let’s say John, wants to go
to watch a movie looks for route directions to available parking spaces close to the
cinema hall. In the first version, the user is asked to interact with different
Web Services of different types, such as Web Form-based, SOAP, API and RESTful
Web services. As we have included sensors in our scenario, different OGC compliant
services such as SOS and SPS are invoked. In the second version, a self-managing
composite service minimizes the user interaction by transferring the control
from the user to the service. Self-management will be achieved by providing sensors
and services with RESTful interfaces to make interaction and control similar to the
one already in use on the Web and therefore already familiar to both users and
developers.

 Towards RESTful Communications in Self-managing Pervasive Systems 265

Use Case Scenario with User Control. As depicted in Fig. 1 (a), first John searches
for movies by filling up the Web form of the Cinema Portal, and gets the list of
movies meeting his search criteria, with the corresponding cinema hall name. Then,
John chooses a cinema hall and invokes the Location Service API to get the address.
Next, he invokes the Parking System, with RESTful interface, to get information
about the available parking spaces close to the selected cinema hall. The Parking
System interacts with the SOS and SPS services to get the observations from the
video cameras and location sensors installed in the parking lots, and makes decisions
about the available parking spaces. Finally, John chooses one parking lot from the list
of the available ones, indicates his current position, and invokes the Route Service,
through SOAP messages, to get directions on how to reach his destination.

Fig. 1. Use case scenario

Use Case Scenario Based on a Self-managing Approach. In this version, the
scenario has been changed to minimize the user control and add self-manageability to
the system. The user invokes only two services: the Web Form-based Cinema Portal
and the Self-managing Pervasive Parking System. Further, as shown in Fig. 1 (b), the
user has the Position Service in his mobile, which is able to get automatically
the position of the user and deliver it to other services. At first, John interacts with the
Cinema Portal to get the list of movies of his interest, as before. Then, he selects a
cinema hall and invokes the Parking System to get all the information needed to reach
the destination. The Parking System interacts with different services: (i) invokes the
Location Service to get the location of the selected cinema hall, (ii) invokes SOS and
SPS to get observations about parking spaces, and decides which are the available
parking spaces near to the cinema hall, (iii) gets the route direction for the nearest
available parking spaces by interacting with the Position and the Route services, and
(iv) delivers the cinema hall route direction to the user with maps.

266 M.N. Lucky, C. Tziviskou, and F. De Paoli

2.2 Common Interface for Services Interactions: The RESTful Approach

In order to increase the system interoperability, we have designed the Self-managing
Pervasive Parking System according to the Resource-Oriented Architecture that is
devoted to manage distributed, heterogeneous resources in which client applications
interact directly with the resources, by following the REST principles[5]:

1. Resources should be identified properly using URIs, so that each resource is
uniquely addressable.

2. Uniform interfaces should be provided through the use of a standard application-
level protocol. In this way, the operations to be applied on resources are external
and they have well known semantics [12].

3. Resources are manipulated through their representations, since clients and servers
exchange self-descriptive messages with each another. A resource can have
multiple representations that follow a standardized format or media type and can
be negotiated with the Web server. Representations convey the state of the
client's interaction within the application and contain hyperlinks that allow clients
to discover other resources or change the state of the current resource.

4. Interactions are stateless since servers only record and manage the state of the
resources they expose, i.e., client sessions are not maintained on the server. This
increases the decoupling between client and server.

5. Hypermedia is the engine of application state, i.e., the application state is build
following hyperlinks according to the navigation paradigm. Therefore, the
application state is not known a priori, but it is built based on user navigation.

Further, we expose data produced by the services according to the Linked Data
paradigm. Linked Data Design defines1 the following rules for exposing structured
data on the Web: (i) use URIs to identify data as names, (ii) use HTTP to look up
those names, (iii) provide useful information about URIs using standards, and (iv)
include links to other URIs, so that they can discover more things.

Most of the technologies used in the first version of our use case (Fig. 1 (a)) do not
follow the REST principles. Consequently, they compromise the interoperability of
services and do not facilitate computer-to-computer interactions in the context of self-
managing pervasive systems. In particular, the Route, SOS and SPS services
communicate through SOAP messages. Thus, the HTTP methods are used as
transport protocol while the application protocol is domain specific and the operations
invoked by the user lay on the message envelope. Such communication pattern
tunnels all the requests to a single URI that identifies an endpoint. HTTP GET and
POST are the most-in-use methods but their semantics are not maintained, i.e. GET is
used to invoke operations on server side that modify resources state, and therefore, it
is not possible to optimize the network traffic by using caching mechanisms.
Different is the case of the Web form-based Cinema Portal. The user interacts with
different URIs via an html form, using again GET or POST possibly with a different
semantics: URIs encapsulate server-side information, like operation names and
parameters, revealing implementation details to the user. Such an approach enforces

1 http://www.w3.org/DesignIssues/LinkedData.html

 Towards RESTful Communications in Self-managing Pervasive Systems 267

the coupling between the client and the server: if the server implementation changes,
then the old URIs become invalid (operation and/or parameter names may change).
The Location service publishes an API but interactions with the service are not
hypermedia-driven since resources representation does not contain hypermedia
controls and the user advances to the next state using some out-of-band information .

The pervasive computing system is expected to be seamlessly adapting, in a fully
autonomic way, to different operational conditions to fulfill the user requirements.
Autonomous actions need to be performed by enabled devices, sensors and/or
services with different levels of capabilities. The Pervasive Parking System needs to
access and control services that use different technologies in the communication
which make interactions and integrations troublesome. This problem can be addressed
by employing a common architectural style for implementing the involved interfaces.
We propose to adopt the REST approach because interoperability is fostered by the
use of standard technologies, the stateless RESTful interactions support scalability,
and hypermedia controls reduce coupling between components by driving clients’
interaction. Moreover, REST principles provide the opportunity to reuse and
generalize the component interfaces, reduce interaction latency, enforce security, and
encapsulate legacy systems by using intermediary components.

3 Related Work

In the domain of SOAP/WSDL services, messages are exchanged between endpoints
of published applications by using the Web as a universal transport medium. In this
way, the applications interact through the Web but remain “outside” of the Web. In
addition, SOAP is the single standardized message format in this approach and
messages are exchanged in both directions by using only one HTTP verb (POST). In
the literature, there are several papers that compare the SOAP and the REST
approaches (e.g., [12]). The major advantage of adopting full semantics of HTTP
verbs to expose operations is that applications become part of the Web, making it a
universal medium for publishing globally accessible information.

In the domain of sensors, the most relevant works are related to OGC standards. In
[8], the authors have given a Linked Data model for sensor data and have
implemented a RESTful proxy for SOS in order to improve integration and inter-
linkage of observation data for the Digital Earth. We have been inspired from their
work regarding the URI scheme for observations data, and the creation of meaningful
links between data sets. We do not directly address the publication of sensor data as
Linked Data but, according to the view presented in [17], we expose sensor data
properly linked following the REST architectural style. Having sensor data properly
structured on the Web is fundamental whenever integration needs to take place as in
sensor networks. Our proposal extends the work in [8] towards hypermedia-driven
interactions with OGC compliant services since we consider the explicit definition of
the HTTP idioms used for operations, and the processing of observation groups.

Further approaches have addressed the discovery, selection and use of sensors as a
service. An advanced approach in [6] offers search mechanisms of sensors that
exploit semantic relationships and harvest sensor metadata into existing catalogues. In

268 M.N. Lucky, C. Tziviskou, and F. De Paoli

[9], a model-based, service-oriented architecture has been used for composing
complex services from elementary ones, on sensor nodes. The selection process
evaluates the processing and communication cost of the service. In [1], the authors
focus on service composition in pervasive systems. They propose ranking services
based on context-related criteria so that the selection is based on the service matching
score with the composition features. All the above mechanisms need to address
critical aspects like the heterogeneity of interfaces and data models mismatches, and
thus, can be used in conjunction to our proposal for the integration of sensor data in
sensor networks. In [11], the authors describe the selection of services that match user
preferences by collecting and evaluating services’ descriptions. RESTful interactions
can be integrated into such mechanism to facilitate the descriptions discovery and the
services selection, and to enable pervasive systems make use of the selection process.
Such solution minimizes the number of services and avoids unsuitable services in
pervasive systems since it involves only the services that meet the user requirements.

In [4], an approach similar to ours investigates the use of the REST architectural
style for providing the functionality of sensors in pervasive systems. It emphasizes the
abstraction of data and services as resources, services interoperation via self-
describing data and services orchestration with loosely typed components. We extend
the authors effort towards a more structural approach of defining the URI scheme for
resources, the HTTP idioms for sensors interactions and the application protocol
driven by hypermedia links through standard formats. In [14], the DIGIHOME
platform has been developed to deal with the heterogeneity, mobility and adaptation
issues in smart homes where devices have advanced computational capabilities to
improve the user satisfaction, but the heterogeneity of protocols used constrains the
integration of these devices into a larger monitoring system. The platform provides
software connectors for devices accessed by a variant of protocols such as ZigBee,
SOAP and CAN, while HTTP is the communication protocol for the detection of
adaptation situations and the handling of events. In [6], the authors explore REST as a
mean to build a “universal” API for web-enabled smart things. They give emphasis on
the decoupling of services from their representation and the negotiation mechanisms
for the representation format, and they propose AtomPub to enable push interactions
with sensors, and gateways that abstract communication with non Web-enabled
devices behind a RESTful API. Although [14][6] use HTTP according to the REST
principles, they do not make explicit how services with conventional interfaces are
mapped to a RESTful API. We complement their research by defining rules for the
URL writing, and we explore hypermedia controls for hypermedia driven interactions
with the service.

4 Design of a RESTful Interface for OGC Services

In this section, we describe how to design RESTful services that are compliant with
the OGC’s SOS and SPS standards. We focus on activities that allow data sensor
requestors to submit sensor tasks and retrieve the generated observations. These are
the SPS operations GetCapabilities, DescribeTasking, DescribeResultAccess, Submit,

 Towards RESTful Communications in Self-managing Pervasive Systems 269

Update, Cancel and GetStatus, and the SOS operations GetCapabilities,
DescribeSensor and GetObservations. The proposed paradigm enables computer-to-
computer interactions since, in the context of sensor data it is a common need to have
automated processes elaborating even raw data to proprietary formats.

The overall goal requires first to identify the structural elements of a RESTful
interface because these will become the building blocks for RESTful services. The
retrieval and managing of sensor data as resource representations requires the
identification of (i) the resources of interest, and (ii) the permitted hypermedia-driven
interactions of the consumer with the service offering the sensor data. We explore
these two dimensions in terms of the URI scheme used to describe resources, the
HTTP idioms (methods, headers, status codes) used to interact with the service, the
domain application protocol, and the media type for hypermedia-driven interactions.

4.1 Sensor Data as Resources

In SOS and SPS services, resources result from the computations applied to data
describing capabilities of services exposing sensor data, sensors as well as their tasks
and their observations. The main data classes of objects retrieved are the following:
SOS Capabilities provides metadata about a SOS service in terms of (i) parameters
that may be used to filter the retrieval of observations, (ii) observation offerings used
to further organize observations into sets, and (iii) set of sensors associated with the
service; SPS Capabilities provides metadata about an SPS service in terms of sensors
and phenomena that can be tasked; Sensor provides the highest level of detail of
sensor metadata; Task provides information about the status of the tasking request and
the task itself; Observations groups a set of observations retrieved using the same
criteria; Observation associates a retrieved value with the sensor providing it, the
offering it belongs to, the time period in which it was taken, etc.

The above classes are not enough to describe all the data objects involved in the
interactions with SOS and SPS services, and thus, we introduce: the
FeatureOfInterest to describe the observed stations; the Observation Offering to
organize observations; the ObservedProperty to describe the phenomenon, i.e.
temperature, we want to observe; the Time to indicate the time period of observations;
and the Procedure to describe the method used to observe a phenomenon.

URI Scheme. We assign URIs to the objects of the above classes using the
conventions proposed in [13] and used in [8, 16]. The base URI for every class has
the form: http://my.host/class. Therefore, the URI http://my.host/observations
represents a collection of all the observations published by the service. Further
segments following the base URI refer to additional criteria to be used for the
retrieval and correspond to parameters to be applied to the GetObservations SOS
operation. We have identified the following situations in the parameters:

− If the operation call requires multiple parameters, then two segments are
appended to the URI for each parameter: the first segment indicates the data class
corresponding to the parameter name, while the second one indicates the
parameter value. Although, this is a strict order for the segments of one

270 M.N. Lucky, C. Tziviskou, and F. De Paoli

parameter, the segments of distinct parameters can be appended to the URI in an
arbitrary way. The retrieved observations are those that satisfy all the criteria
indicated in the URI. The http://my.host/observations/sensors/urn:ogc:object:
Sensor:MyOrg:13/observedProperty/urn:ogc:def:property:MyOrg:AggregateCh
emicalPresence points to the collection of observations about
urn:ogc:def:propertyMyOrg:AggregateChemicalPresence taken by the sensor
urn:ogc:object:Sensor:MyOrg:13.

− If a parameter has multiple values, then, since order is not relevant, the semicolon
is used to separate the values in the corresponding segment. The retrieved
observations are those that satisfy the indicated criteria for at least one of the
values. The http://my.host/observations/sensors/urn:ogc:object:Sensor:MyOrg:
13;urn:ogc:object:Sensor:MyOrg:12/observedProperty/urn:ogc:def:property:My
Org:AggregateChemicalPresence points to the collection of observations from
the urn:ogc:object:Sensor:MyOrg:13 or urn:ogc:object:Sensor:Org:12 sensors.

− If a parameter has a range of values, then, since the order is relevant, the comma
is used to separate the start value of the range from the end value in the
corresponding segment. The http://my.host/observations/sensors/urn:ogc:object:
Sensor:MyOrg:13/eventTime/2011-04-14T17,2012-04-14T17,tm:rel:between/
points to the collection of observations taken from April 14th 2011 at 5pm and
April 14th 2012 at 5pm. The time strings are encoded according to ISO 8601.

− If a parameter has structured values, then, since the order indicates the meaning
of the value and thus, it is relevant, the comma is used to separate the values in
the corresponding segment.

The above rules define the meaning of the URI segments and they are applied to all
classes for assembling the URIs of the data objects defined by the class. The first
segment after the service host indicates the class whose objects are to be retrieved.
The successive segments indicate filtering conditions to be applied to the underlying
retrieval mechanism. Because of the different computations that may be applied to
retrieve the same resource, we have different URIs representing the same resource.
This facilitates the resource access, but it could also be troublesome, if clients are not
able to distinguish whether different URIs refer to the same resource. We follow the
convention stated above and for each resource we keep an URI that serves as a
reference for all the other URIs. Then, we explore hypermedia mechanisms to insert
this reference URI in the response every time the client requests other URIs.

4.2 Hypermedia-Driven Interactions with Sensor Services

SPS and SOS services are complementary: the former schedules tasks for collecting
sensor data, while the latter publishes the collected data. In particular:
• tasking requests are created when the user makes a submission;
• tasks are created by the service when a tasking request has been accepted;
• a user may retrieve tasks as well as tasking requests, to know their status;
• while a task is in execution, it can be updated and/or cancelled;
• during the execution of a task, observations are created and published;
• observations may be retrieved at any time after their publication.

 Towards RESTfu

HTTP Idioms. We distin
invocation of the above act
resource representations is
and cancelled with DELE
requests because the service
newly created resource. W
the service allows incremen

In Fig. 2, we exemplify
request is composed of th
the server and the payload
request, the control is passe
this since the operation is in
request resource and sends
of the resource, the respo
identifies its location. In th
task will be accepted, rejec
identifies also the task to
DELETE the task on the se
and (ii) server failures that
the HTTP requests for the r

The Domain Application
with both SOS and SPS ser
getting their observations. T
the state of the resources in
observations. Our method f
aspect in the service implem

ul Communications in Self-managing Pervasive Systems

nguish the HTTP methods that may be used for
tions. Tasking requests are created with POST, retrieva
achieved with GET, and tasks are updated with PAT

TE. We use POST instead of PUT for creating task
e and not the user will create and associate an URI with

We use PATCH instead of PUT for updating tasks beca
ntal and not overall modifications.

Fig. 2. POSTing a tasking request

y the HTTP request for submitting a tasking request. T
he POST method, the path that will serve the request

containing the tasking parameters. Upon reception of
ed to the Submit operation, but the user remains unaware
nside the server boundaries. The operation creates a task

the HTTP response to the user. Upon successful creat
onse status code is 201 Created, and the returned U
he meanwhile, the system decides whether the reques
cted or pending. The URI of the tasking request resou

o be created and it will be used to GET, PATCH
erver. Other status codes indicate: (i) a malformed requ

prevent the server from fulfilling the request. Similar
remaining actions.

Protocol. Possible interactions a single user may h
rvices constitute an overall protocol for tasking sensors
The partial or complete execution of this protocol chan

nvolved in the communication like tasking request, task
follows the methodology in [16]: resources are the cen
mentation and the user interactions drive their life cycle.

271

the
al of
TCH
king

the
ause

The
t at
the

e of
king
tion
URI
sted
urce
and

uest,
are

have
and

nges
and

ntral

272 M.N. Lucky, C. Tziv

Fig. 3.

In Fig. 3 (a), we depict
that will fire the state transi
the SPS Submit operation
state (as shown in Fig. 3
resource’s state will transi
corresponding events 2, 3
resource is created, and th
Submitted state and then a
submission, the user may G
These interactions do not h
In execution state, the use
firing the events 6 and 7, a
The latter activity fires the
(Fig. 3 (b)) and the user m
finished, the task resource t

Hypermedia-Aware Media
and get observations without
provide him with the entry
request, and then insert hype
drive the user in the prot
mechanism with the HTTP r
both the tasking request reso
If the tasking request is pend

viskou, and F. De Paoli

(a) DAP and (b) resources state transitions

the HTTP requests of possible interactions and the eve
ition for resources. The user POSTs a tasking request,
creates the tasking request resource that enters the Ini
(b)). Internal business logic decides whether the task

ition to Pending, Accepted or Rejected state fired by
and 5. In case the tasking request is accepted, a new t
he event 4 fires the entering of the task resource to
automatically, to In execution state (Fig. 3 (c)). After
GET the status of the tasking request and/or task resour
have any server-side effect. As long as the task resourc
er may PATCH modifications or DELETE the resou
and the publication of the collected sensor data is enabl

newly created observation resource to the Observed st
may GET its representation. Once the collection proces
transitions to the Completed state.

a Type. In order to enable the user to create tasking requ
t the need to explore any out-of-band information, we need
y point http://my.host/task where he may POST a task
ermedia controls in the HTTP responses so that link relati
tocol described above. In Fig. 4 (a), we exemplify
response to the POST tasking request. The response conta

ource representation, and links to further steps in the proto
ding, then the response provides a link for inquiring again

ents
and
itial
king

the
task
the
the

rce.
e is

urce
led.
tate
s is

uests
d to
king
ions
this
ains

ocol.
n the

 Towards RESTfu

current tasking request and
request). A subsequent user
a different response since, in
the task is in execution.

Fig. 4. H

The representation conta
modifications and canceling
far. The media type for reso
links in order to enable their
order to enable both human
extends XHTML with meta
Link elements in Fig. 4 (b),
request maybe (i) retrieved
observations may be retrie
represents an SPS tasking
semantically html elements
can extract the enclosed info

5 Conclusions

In this paper we have m
Pervasive Systems by disc
services, and, in particular
communication standard en
to give services the capabi
services can become smar
information from sensors a
using inter-linkage of senso
development for demonstra
plan to continue in the eff
paradigms to foster the int

ul Communications in Self-managing Pervasive Systems

the task to be generated (it has the same URI as the task
GET request for the tasking request representation, result
n the meanwhile, the tasking request has been accepted

Hypermedia-aware resource representation

ains further links for retrieving the task resource, request
g it, as well as links for getting the observations produced
ource representations must understand the semantics of th
r automatic interpretation. We have used XHTML+RDFa

n-to-computer and computer-to-computer interactions. RD
adata that have the form of triples: subject-predicate-obj
convey the location where the task submitted by the curr

d, (ii) updated, and (iii) cancelled, and the location wh
eved. The meta element informs that the current con
request with id 2. The XML attribute property annota
so that a software agent understanding the SPS definiti

ormation.

made a step towards the development of Self-manag
cussing the definition of RESTful interfaces to exist
r to sensor services. The adoption of such a widely u
nables for interoperability, which is the basic requirem
ilities to adapt their behavior. We have shown how W
ter and deliver more complex functionality by gather
and traditional services with minimal human interventi
or data with hypermedia controls. A first prototype is un
ating the applicability of our proposal. In the future,
fort of extending the adoption of REST and Linked D
tegration of Internet of Things, Internet of Services,

273

king
ts to
and

ting
d so
hese
a in
DFa
ject.
rent
here

ntext
ates
ions

ging
ting

used
ment
Web
ring
ion,

nder
we

Data
and

274 M.N. Lucky, C. Tziviskou, and F. De Paoli

Internet of People by developing a common and interoperable platform on the
existing Web infrastructure. Furthermore, we intend to adopt REST in the contract-
driven selection of services [11] in pervasive systems.

Acknowledgements. The work has been partially supported by RegioneLombardia-
IBM-UniMiB research grant n.12A135, and project PON01_00861 SMART-Services
and Meta-services for SmART Government.

References

1. Bottaro, A., Gérodolle, A., Lalanda, P.: Pervasive Service Composition in the Home
Network: Advanced Information Networking and Applications. In: 21st Int. Conf. on
Advanced Networking and Applications, AINA 2007, Canada, pp. 596–603 (2007)

2. Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC® Sensor Web Enablement:
Overview and High Level Architecture. In: Nittel, S., Labrinidis, A., Stefanidis, A. (eds.)
GSN 2006. LNCS, vol. 4540, pp. 175–190. Springer, Heidelberg (2008)

3. Broring, A., Stasch, C., Echterhoff, J.: OGC Sensor Observation Service Interface
Standard. Open Geospatial Consortium (2010)

4. Drytkiewicz, W., Radusch, I., Arbanowski, S., Popescu-Zeletin, R.: pREST: a REST-
based protocol for pervasive systems. In: IEEE International Conference on Mobile Ad-
hoc and Sensor Systems, Fort Lauderdale, Florida, pp. 340–348. IEEE (2004)

5. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine (2000)

6. Guinard, D., Trifa, V., Wilde, E.: A Resource Oriented Architecture for the Web of Things. In:
Proceedings of the International Conference on Internet of Things 2010, IoT (2010)

7. Ibbotson, J., Gibson, C., Wright, J., Waggett, P., Zerfos, P., Szymanski, B.K., Thornley,
D.J.: Sensors as a Service Oriented Architecture: Middleware for Sensor Networks. In: 6th
Int. Conf. on Intelligent Environment, Kuala Lumpur, Malaysia, pp. 209–214 (2010)

8. Janowicz, K., Broring, A., Stasch, C., Schade, S., Everding, T., Llaves, A.: A RESTful
Proxy and Data Model for Linked Sensor Data. International Journal of Digital Earth,
1–22, doi:10.1080/17538947.2011.614698

9. Jirka, S., Bröring, A., Stasch, C.: Discovery Mechanisms for the Sensor Web.
Sensors 9(4), 2661–2681 (2009)

10. Palmonari, M., Comerio, M., De Paoli, F.: Effective and Flexible NFP-Based Ranking of
Web Services. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009.
LNCS, vol. 5900, pp. 546–560. Springer, Heidelberg (2009)

11. Panziera, L., Comerio, M., Palmonari, M., De Paoli, F., Batini, C.: Quality-driven
Extraction, Fusion and Matchmaking of Semantic Web API Descriptions. Journal of Web
Engineering 11(3), 247–268 (2012)

12. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs. “Big” Web
Services: Making the Right Architectural Decision. In: 17th International World Wide
Web Conference, Beijing, China. ACM Press (2008)

13. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly, Sebastopol (2007)
14. Romero, D., Hermosillo, G., Taherkordi, A., Nzekwa, R., Rouvoy, R., Eliassen, F.:

RESTful Integration of Heterogeneous Devices in Pervasive Environments. In: Eliassen,
F., Kapitza, R. (eds.) DAIS 2010. LNCS, vol. 6115, pp. 1–14. Springer, Heidelberg (2010)

15. Simonis, I., Echterhoff, J.: OGC Sensor Planning Service Implementation Standard (2011)
16. Webber, J., Parastatidis, S., Robinson, I.: REST in Practice. O’Reilly, Sebastopol (2010)
17. Wilde, E.: Linked Data and Service Orientation. In: Maglio, P.P., Weske, M., Yang, J.,

Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 61–76. Springer, Heidelberg (2010)

	Towards RESTful Communicationsin Self-managing Pervasive Systems
	Introduction
	Motivations
	Use Case Scenario
	Common Interface for Services Interactions: The RESTful Approach

	Related Work
	Design of a RESTful Interface for OGC Services
	Sensor Data as Resources
	Hypermedia-Driven Interactions with Sensor Services

	Conclusions
	References

