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Abstract. The presence of heterogeneous communication protocols and 
interfaces prevents from giving self-managing capabilities to service systems. 
This paper proposes the exploitation of the widely adopted HTTP protocol to 
create a shared platform that fosters the definition of services that can be easily 
integrated and controlled. Such services will be provided with RESTful 
interface and interaction style to gather data and control behavior of sensors to 
support the development of sensor services integrated with other services in 
pervasive systems.  
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1 Introduction 

Over the last decade, the Web has grown from a large-scale hypermedia application for 
publishing and discovering documents (i.e., Web pages) into a programmable medium 
for sharing data and accessing remote software components delivered as a service. The 
need of global availability and sharing of huge amount of information through various 
kinds of heterogeneous devices and services has changed the reference scenario for the 
development of Web scale applications. The consequent growing complexity and 
increasing request of adaptive services has made manual management impractical. A 
possible answer toward self-management is to make services smarter by achieving 
awareness of the target things’ or the applications’ physical environment or situations to 
respond proactively and intelligently. To tackle the problem a first effort should be the 
definition of a common protocol to foster automated interoperability.  

As a matter of facts, the HTTP protocol has been used as a universal mean for 
tunneling messages in business-to-business scenarios, but quite often to support 
additional protocols, such as WSDL/SOAP for Web Services or OGC/SOS/SPS for 
sensors, that are usually not interoperable. In this paper, we investigate the correct and 
complete use of the HTTP protocol to publish, manage, and operate services on the 
Web by fully exploiting the REST (REpresentational State Transfer) principles [5]. 
Today, more and more services published on the Web are claiming to be designed 
using REST, but actually missing some of the features, like the hypermedia control, 
which is crucial to automate self-management operations. 
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The rest of the paper discusses on integrating data from sensors and other services, 
which will be gathered by invoking different services through standardized interfaces 
by the Self-manageable Pervasive System to fulfill its task. To investigate the issue, 
we discuss two scenarios that differentiate between user control activities, where 
users are asked to invoke different types of services to fulfill a composite task, and 
self-managing pervasive system, where users invoke a single composite service 
without further interaction. 

2 Motivations 

Nowadays, the number and variety of available services on the Web enable for the 
definition of sophisticated composed services, which can take great advantage from 
pervasive computing and sensor Web to give users seamless assistance in daily 
activities. In pervasive computing environments, different devices often use different 
technologies, which make the communication complex and sometimes even 
troublesome.  Sensor Web has a central role in addressing new sources of 
information that need to be dynamically integrated into systems. The Sensor Web 
Enablement architecture of the Open Geospatial Consortium (OGC)[2] has been 
developed to enable flexible integration of sensors into any type of software system 
using standards: the Observations & Measurements and Sensor Model Language 
specifications define the exchanged sensor data; the Sensor Observation Service 
(SOS) gives pull-based access to observation data [3]; the Sensor Planning Service 
(SPS) tasks sensors [15]. 

We want to point out, through the discussion of a use case, the problems that arise 
from the diversity of the involved services, and show how the communication burden 
can be transferred from the user to self-managing pervasive systems. Then, we 
investigate the advantages of the RESTful approach as a mean for providing a 
common interface for services communication and control.  

2.1 Use Case Scenario 

We consider two versions of a scenario in which a user, let’s say John, wants to go  
to watch a movie looks for route directions to available parking spaces close to the 
cinema hall. In the first version, the user is asked to interact with different  
Web Services of different types, such as Web Form-based, SOAP, API and RESTful 
Web services. As we have included sensors in our scenario, different OGC compliant 
services such as SOS and SPS are invoked. In the second version, a self-managing 
composite service minimizes the user interaction by transferring the control  
from the user to the service. Self-management will be achieved by providing sensors 
and services with RESTful interfaces to make interaction and control similar to the 
one already in use on the Web and therefore already familiar to both users and 
developers.  
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Use Case Scenario with User Control. As depicted in Fig. 1 (a), first John searches 
for movies by filling up the Web form of the Cinema Portal, and gets the list of 
movies meeting his search criteria, with the corresponding cinema hall name. Then, 
John chooses a cinema hall and invokes the Location Service API to get the address. 
Next, he invokes the Parking System, with RESTful interface, to get information 
about the available parking spaces close to the selected cinema hall. The Parking 
System interacts with the SOS and SPS services to get the observations from the 
video cameras and location sensors installed in the parking lots, and makes decisions 
about the available parking spaces. Finally, John chooses one parking lot from the list 
of the available ones, indicates his current position, and invokes the Route Service, 
through SOAP messages, to get directions on how to reach his destination. 

 

 

Fig. 1. Use case scenario 

Use Case Scenario Based on a Self-managing Approach. In this version, the 
scenario has been changed to minimize the user control and add self-manageability to 
the system. The user invokes only two services: the Web Form-based Cinema Portal 
and the Self-managing Pervasive Parking System. Further, as shown in Fig. 1 (b), the 
user has the Position Service in his mobile, which is able to get automatically  
the position of the user and deliver it to other services. At first, John interacts with the 
Cinema Portal to get the list of movies of his interest, as before. Then, he selects a 
cinema hall and invokes the Parking System to get all the information needed to reach 
the destination. The Parking System interacts with different services: (i) invokes the 
Location Service to get the location of the selected cinema hall, (ii) invokes SOS and 
SPS to get observations about parking spaces, and decides which are the available 
parking spaces near to the cinema hall, (iii) gets the route direction for the nearest 
available parking spaces by interacting with the Position and the Route services, and 
(iv) delivers the cinema hall route direction to the user with maps. 
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2.2 Common Interface for Services Interactions: The RESTful Approach 

In order to increase the system interoperability, we have designed the Self-managing 
Pervasive Parking System according to the Resource-Oriented Architecture that is 
devoted to manage distributed, heterogeneous resources in which client applications 
interact directly with the resources, by following the REST principles[5]: 

1. Resources should be identified properly using  URIs, so that each resource is 
uniquely addressable. 

2. Uniform interfaces should be provided through the use of a standard application-
level protocol. In this way, the operations to be applied on resources are external 
and they have well known semantics [12].  

3. Resources are manipulated through their representations, since clients and servers 
exchange self-descriptive messages with each another. A resource can have 
multiple representations that follow a standardized format or media type and can 
be negotiated with the Web server. Representations convey the state of the 
client's interaction within the application and contain hyperlinks that allow clients 
to discover other resources or change the state of the current resource. 

4. Interactions are stateless since servers only record and manage the state of the 
resources they expose, i.e., client sessions are not maintained on the server. This 
increases the decoupling between client and server. 

5. Hypermedia is the engine of application state, i.e., the application state is build 
following hyperlinks according to the navigation paradigm. Therefore, the 
application state is not known a priori, but it is built based on  user navigation. 

Further, we expose data produced by the services according to the Linked Data 
paradigm. Linked Data Design defines1 the following rules for exposing structured 
data on the Web: (i) use URIs to identify data as names, (ii) use HTTP to look up 
those names, (iii) provide useful information about URIs using standards, and (iv) 
include links to other URIs, so that they can discover more things. 

Most of the technologies used in the first version of our use case (Fig. 1 (a)) do not 
follow the REST principles. Consequently, they compromise the interoperability of 
services and do not facilitate computer-to-computer interactions in the context of self-
managing pervasive systems. In particular, the Route, SOS and SPS services 
communicate through SOAP messages. Thus, the HTTP methods are used as 
transport protocol while the application protocol is domain specific and the operations 
invoked by the user lay on the message envelope. Such communication pattern 
tunnels all the requests to a single URI that identifies an endpoint. HTTP GET and 
POST are the most-in-use methods but their semantics are not maintained, i.e. GET is 
used to invoke operations on server side that modify resources state, and therefore, it 
is not possible to optimize the network traffic by using caching mechanisms. 
Different is the case of the Web form-based Cinema Portal. The user interacts with 
different URIs via an html form, using again GET or POST possibly with a different 
semantics: URIs encapsulate server-side information, like operation names and 
parameters, revealing implementation details to the user. Such an approach enforces 

                                                           
1 http://www.w3.org/DesignIssues/LinkedData.html 
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the coupling between the client and the server: if the server implementation changes, 
then the old URIs become invalid (operation and/or parameter names may change). 
The Location service publishes an API but interactions with the service are not 
hypermedia-driven since resources representation does not contain hypermedia 
controls and the user advances to the next state using some out-of-band information . 

The pervasive computing system is expected to be seamlessly adapting, in a fully 
autonomic way, to different operational conditions to fulfill the user requirements. 
Autonomous actions need to be performed by enabled devices, sensors and/or 
services with different levels of capabilities. The Pervasive Parking System needs to 
access and control services that use different technologies in the communication 
which make interactions and integrations troublesome. This problem can be addressed 
by employing a common architectural style for implementing the involved interfaces. 
We propose to adopt the REST approach because interoperability is fostered by the 
use of standard technologies, the stateless RESTful interactions support scalability, 
and hypermedia controls reduce coupling between components by driving clients’ 
interaction. Moreover, REST principles provide the opportunity to reuse and 
generalize the component interfaces, reduce interaction latency, enforce security, and 
encapsulate legacy systems by using intermediary components. 

3 Related Work 

In the domain of SOAP/WSDL services, messages are exchanged between endpoints 
of published applications by using the Web as a universal transport medium. In this 
way, the applications interact through the Web but remain “outside” of the Web. In 
addition, SOAP is the single standardized message format in this approach and 
messages are exchanged in both directions by using only one HTTP verb (POST). In 
the literature, there are several papers that compare the SOAP and the REST 
approaches (e.g., [12]).  The major advantage of adopting full semantics of HTTP 
verbs to expose operations is that applications become part of the Web, making it a 
universal medium for publishing globally accessible information. 

In the domain of sensors, the most relevant works are related to OGC standards. In 
[8], the authors have given a Linked Data model for sensor data and have 
implemented a RESTful proxy for SOS in order to improve integration and inter-
linkage of observation data for the Digital Earth. We have been inspired from their 
work regarding the URI scheme for observations data, and the creation of meaningful 
links between data sets. We do not directly address the publication of sensor data as 
Linked Data but, according to the view presented in [17], we expose sensor data 
properly linked following the REST architectural style. Having sensor data properly 
structured on the Web is fundamental whenever integration needs to take place as in 
sensor networks. Our proposal extends the work in [8] towards hypermedia-driven 
interactions with OGC compliant services since we consider the explicit definition of 
the HTTP idioms used for operations, and the processing of observation groups. 

Further approaches have addressed the discovery, selection and use of sensors as a 
service. An advanced approach in [6] offers search mechanisms of sensors that 
exploit semantic relationships and harvest sensor metadata into existing catalogues. In 
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[9], a model-based, service-oriented architecture has been used for composing 
complex services from elementary ones, on sensor nodes. The selection process 
evaluates the processing and communication cost of the service. In [1], the authors 
focus on service composition in pervasive systems. They propose ranking services 
based on context-related criteria so that the selection is based on the service matching 
score with the composition features. All the above mechanisms need to address 
critical aspects like the heterogeneity of interfaces and data models mismatches, and 
thus, can be used in conjunction to our proposal for the integration of sensor data in 
sensor networks. In [11], the authors describe the selection of services that match user 
preferences by collecting and evaluating services’ descriptions. RESTful interactions 
can be integrated into such mechanism to facilitate the descriptions discovery and the 
services selection, and to enable pervasive systems make use of the selection process. 
Such solution minimizes the number of services and avoids unsuitable services in 
pervasive systems since it involves only the services that meet the user requirements.  

In [4], an approach similar to ours investigates the use of the REST architectural 
style for providing the functionality of sensors in pervasive systems. It emphasizes the 
abstraction of data and services as resources, services interoperation via self-
describing data and services orchestration with loosely typed components. We extend 
the authors effort towards a more structural approach of defining the URI scheme for 
resources, the HTTP idioms for sensors interactions and the application protocol 
driven by hypermedia links through standard formats. In [14], the DIGIHOME 
platform has been developed to deal with the heterogeneity, mobility and adaptation 
issues in smart homes where devices have advanced computational capabilities to 
improve the user satisfaction, but the heterogeneity of protocols used constrains the 
integration of these devices into a larger monitoring system. The platform provides 
software connectors for devices accessed by a variant of protocols such as ZigBee, 
SOAP and CAN, while HTTP is the communication protocol for the detection of 
adaptation situations and the handling of events. In [6], the authors explore REST as a 
mean to build a “universal” API for web-enabled smart things. They give emphasis on 
the decoupling of services from their representation and the negotiation mechanisms 
for the representation format, and they propose AtomPub to enable push interactions 
with sensors, and gateways that abstract communication with non Web-enabled 
devices behind a RESTful API. Although [14][6] use HTTP according to the REST 
principles, they do not make explicit how services with conventional interfaces are 
mapped to a RESTful API. We complement their research by defining rules for the 
URL writing, and we explore hypermedia controls for hypermedia driven interactions 
with the service.  

4 Design of a RESTful Interface for OGC Services 

In this section, we describe how to design RESTful services that are compliant with 
the OGC’s SOS and SPS standards. We focus on  activities that allow data sensor 
requestors to submit sensor tasks and retrieve the generated observations. These are 
the SPS operations GetCapabilities, DescribeTasking, DescribeResultAccess, Submit, 
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Update, Cancel and GetStatus, and the SOS operations GetCapabilities, 
DescribeSensor and GetObservations. The proposed paradigm enables computer-to-
computer interactions since, in the context of sensor data it is a common need to have 
automated processes elaborating even raw data to proprietary formats.  

The overall goal requires first to identify the structural elements of a RESTful 
interface because these will become the building blocks for RESTful services. The 
retrieval and managing of sensor data as resource representations requires the 
identification of (i) the resources of interest, and (ii) the permitted hypermedia-driven 
interactions of the consumer with the service offering the sensor data. We explore 
these two dimensions in terms of the URI scheme used to describe resources, the 
HTTP idioms (methods, headers, status codes) used to interact with the service, the 
domain application protocol, and the media type for hypermedia-driven interactions. 

4.1 Sensor Data as Resources 

In SOS and SPS services, resources result from the computations applied to data 
describing capabilities of services exposing sensor data, sensors as well as their tasks 
and their observations. The main data classes of objects retrieved are the following: 
SOS Capabilities provides metadata about a SOS service in terms of (i) parameters 
that may be used to filter the retrieval of observations, (ii) observation offerings used 
to further organize observations into sets, and (iii) set of sensors associated with the 
service; SPS Capabilities provides metadata about an SPS service in terms of sensors 
and phenomena that can be tasked; Sensor provides the highest level of detail of 
sensor metadata; Task provides information about the status of the tasking request and 
the task itself; Observations groups a set of observations retrieved using the same 
criteria; Observation associates a retrieved value with the sensor providing it, the 
offering it belongs to, the time period in which it was taken, etc. 

The above classes are not enough to describe all the data objects involved in the 
interactions with SOS and SPS services, and thus, we introduce: the 
FeatureOfInterest to describe the observed stations; the Observation Offering to 
organize observations; the ObservedProperty to describe the phenomenon, i.e. 
temperature, we want to observe; the Time to indicate the time period of observations; 
and the Procedure to describe the method used to observe a phenomenon. 

 
URI Scheme. We assign URIs to the objects of the above classes using the 
conventions proposed in [13] and used in [8, 16]. The base URI for every class has 
the form: http://my.host/class. Therefore, the URI http://my.host/observations 
represents a collection of all the observations published by the service. Further 
segments following the base URI refer to additional criteria to be used for the 
retrieval and correspond to parameters to be applied to the GetObservations SOS 
operation. We have identified the following situations in the parameters: 

− If the operation call requires multiple parameters, then two segments are 
appended to the URI for each parameter: the first segment indicates the data class 
corresponding to the parameter name, while the second one indicates the 
parameter value. Although, this is a strict order for the segments of one 
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parameter, the segments of distinct parameters can be appended to the URI in an 
arbitrary way. The retrieved observations are those that satisfy all the criteria 
indicated in the URI. The http://my.host/observations/sensors/urn:ogc:object: 
Sensor:MyOrg:13/observedProperty/urn:ogc:def:property:MyOrg:AggregateCh
emicalPresence points to the collection of observations about 
urn:ogc:def:propertyMyOrg:AggregateChemicalPresence taken by the sensor 
urn:ogc:object:Sensor:MyOrg:13. 

− If a parameter has multiple values, then, since order is not relevant, the semicolon 
is used to separate the values in the corresponding segment. The retrieved 
observations are those that satisfy the indicated criteria for at least one of the 
values. The http://my.host/observations/sensors/urn:ogc:object:Sensor:MyOrg: 
13;urn:ogc:object:Sensor:MyOrg:12/observedProperty/urn:ogc:def:property:My
Org:AggregateChemicalPresence points to the collection of observations from 
the urn:ogc:object:Sensor:MyOrg:13 or urn:ogc:object:Sensor:Org:12 sensors. 

− If a parameter has a range of values, then, since the order is relevant, the comma 
is used to separate the start value of the range from the end value in the 
corresponding segment. The http://my.host/observations/sensors/urn:ogc:object: 
Sensor:MyOrg:13/eventTime/2011-04-14T17,2012-04-14T17,tm:rel:between/ 
points to the collection of observations taken from April 14th 2011 at 5pm and 
April 14th 2012 at 5pm. The time strings are encoded according to ISO 8601. 

− If a parameter has structured values, then, since the order indicates the meaning 
of the value and thus, it is relevant, the comma is used to separate the values in 
the corresponding segment. 
 

The above rules define the meaning of the URI segments and they are applied to all 
classes for assembling the URIs of the data objects defined by the class. The first 
segment after the service host indicates the class whose objects are to be retrieved. 
The successive segments indicate filtering conditions to be applied to the underlying 
retrieval mechanism. Because of the different computations that may be applied to 
retrieve the same resource, we have different URIs representing the same resource. 
This facilitates the resource access, but it could also be troublesome, if clients are not 
able to distinguish whether different URIs refer to the same resource. We follow the 
convention stated above and for each resource we keep an URI that serves as a 
reference for all the other URIs. Then, we explore hypermedia mechanisms to insert 
this reference URI in the response every time the client requests other URIs. 

4.2 Hypermedia-Driven Interactions with Sensor Services 

SPS and SOS services are complementary: the former schedules tasks for collecting 
sensor data, while the latter publishes the collected data. In particular: 
• tasking requests are created when the user makes a submission; 
• tasks are created by the service when a tasking request has been accepted; 
• a user may retrieve tasks as well as tasking requests, to know their status; 
• while a task is in execution, it can be updated and/or cancelled; 
• during the execution of a task, observations are created and published; 
• observations may be retrieved at any time after their publication. 
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Internet of People by developing a common and interoperable platform on the 
existing Web infrastructure. Furthermore, we intend to adopt REST in the contract-
driven selection of services [11] in pervasive systems. 
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