
Towards an Architectural Framework
for Service-Oriented Enterprises

Nanjangud C. Narendra1, Lam-Son Lê2, Aditya K. Ghose2, and Gandhi Sivakumar3

1 IBM India Software Lab, Bangalore, India
narendra@in.ibm.com

2 University of Wollongong, Wollongong, Australia
{lelamson,aditya.ghose}@gmail.com

3 IBM Australia
gandhis@au1.ibm.com

Abstract. Business enterprises today are increasingly being modeled as service-
oriented enterprises (SOEs). That is, they are increasingly part of collaborations
with other enterprises, with such collaborations being fulfilled by the exchange
of business services among the participants. To that end, there is now a felt need
for developing formal models of such collaborations, by leveraging past work
on Enterprise Architecture (EA) models. In this paper, we present an architec-
tural framework for modeling such collaborations as virtual enterprises (VEs),
since these collaborations involve interactions among multiple enterprises. Our
framework is modeled by treating the VE as an enterprise itself, but with special
characteristics that distinguish it from regular enterprises, viz., nature of collab-
orations among the participating enterprises, extent of their participation, and
conflicts among the participants. The latter characteristic arises due to the auton-
omy of the participants and the dynamic nature of inter-organizational business
interactions, and is especially crucial for VE modeling. Throughout the paper, we
illustrate our architectural framework with a realistic running example. We also
present and discuss some future challenges regarding modeling dynamic behavior
in the VE, in particular, conflict modeling & resolution among the participating
enterprises.

Keywords: service-oriented enterprise, enterprise architecture, virtual enterprises,
architectural framework.

1 Introduction

Most business enterprises are now being modeled according to the principles of service-
oriented computing [1] for the purposes of improving efficiency, agility and response
to changing market needs. One of the key aspects of service-oriented computing is the
integration of several enterpises into an entity called virtual enterprise (VE). A VE pos-
sesses the following characteristics: (i) it is formed for a specific service-oriented pro-
cess execution (could be short-lived or long term), and may dissolve once that process
execution is done; (ii) its models are dependent on the nature of the interactions among
the participating enterprises; (iii) it is typically formed via a joint alignment of strate-
gies among the participating enterprises; and (iv) since the participating enterprises are
autonomous, conflicts could arise among them.

A. Ghose et al. (Eds.): ICSOC 2012, LNCS 7759, pp. 215–227, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

216 N.C. Narendra et al.

Traditionally, business enterprises have been modeled using enterprise architecture
(EA) models. Several EA modeling frameworks have been developed; e.g., CIMOSA [2],
TOGAF1, Zachman [3] in industry; Archimate2, SEAM3 in academia; and international
standards such as RM-ODP4. EA captures the whole vision of an enterprise in various
aspects regarding both business and information technology (IT) resources. In EA, the
goal is to align the business resources and IT resources in order to improve the com-
petitiveness of the enterprise. EA is a discipline that analyzes the services offered by an
enterprise and its partners to the customer, the services offered by the enterprise to its
partners and the organization of the enterprise itself and of its IT.

However, most EA frameworks model only single enterprises and do not consider
VEs. From our viewpoint, this makes them unsuitable for conceptual modeling of
service-oriented enterprises. Hence in this paper we address this lacuna by present-
ing an architectural framework for VEs. However, as stated above, the behavior of a VE
is critically dependent on the interactions between its participating enterprises (also re-
ferred to interchangeably throughout the rest of this paper as “entities”). Hence our VE
model is based on the interaction types, which we refer to in this paper as collaboration
patterns. We define four types of collaboration patterns, ranging from loosely coupled
enterprises that can retain their autonomy, to subcontract-style collaboration where the
subcontractor allows itself to be placed under the control of the prime contractor for
the duration of the collaboration. To the best of our knowledge, this is the first attempt
to develop an integrated model for a VE, with emphasis on modeling the collaboration
patterns themselves as first-class objects in the model.

For our model, we adopt the 3-layer approach that consists of the strategy layer, the
operational layer and the service layer [4, 5]. The strategy layer models the goals and
business rules that define the behavior of the VE and its participants; the operational
layer defines the business services [6] that are an abstraction of the actual process and
service implementations that form the service layer. The unique feature of our approach
is the usage of (business) artifacts [7] to model process implementations at the service
layer. We use artifacts to model both the actual operation of the VE (collaboration arti-
facts) and the process executions of each participating entity (entity artifacts). We have
incorporated artifact-based modeling in our approach, since this approach provides a
convenient abstraction for translating business service models to lower-level IT service
implementations. Moreover, since their dynamic behavior can be specified formally
via communicating state machines, it is also possible to reason about them and per-
form formal verification before they are then translated to IT service implementations.
Additionally, since IT service implementations are typically too low-level for business
managers and analysts to monitor and track progress, artifacts can be used instead. The
communicating state machine property of artifacts also renders them amenable to be
used to model the collaboration artifact and the associated entity artifacts, and the inter-
actions thereof, in a manner similar to that described in our earlier work [8].

1 http://www.togaf.info/
2 http://www3.opengroup.org/subjectareas/enterprise/archimate
3 http://www.seam.ch/
4 http://www.rm-odp.net/

http://www.togaf.info/
http://www3.opengroup.org/subjectareas/enterprise/archimate
http://www.seam.ch/
http://www.rm-odp.net/

Towards an Architectural Framework for Service-Oriented Enterprises 217

This paper is organized as follows. Section 2 introduces our running example. Our
virtual enterprise architecture models are explained in Section 3. Related work is dis-
cussed in Section 4. Finally, we present concluding remarks and suggestions for future
work in Section 5.

2 Running Example

We model the VE as per the 3-layered approach as described in [4, 5]. The topmost
layer is the Strategy layer, and it represents the following: businesss goals that the VE
must fulfill, and policies and business rules of the VE and its participating entities that
need to be taken into account while fulfilling the goals. The next lower layer is the
Operational layer, which represents the Business Services [6] that each partner offers,
and also describes how they are integrated to provide the overall functionality needed to
fulfill the business goals specified at the Strategy layer. The actual operations executed
and data exchanged are represented at the bottom layer, i.e., Service layer, which is the
IT realization of the abstract concepts in the upper two layers.

For our running example we model a car manufacturerCarMan with three partners.
SupSt and SupTy are suppliers of steering wheels and tyres, respectively, while Ship
is a shipper who transports the completed cars. Together these entities form a (part of
a) VE for manufacturing and selling cars. The relationship between CarMan and its
partners varies depending on the type of partner.

At the Strategy layer, the common goals of our VE would be “Manufacture Car” and
“Ship Manufactured Car”, which would also be the goals for CarMan. For SupSt,
its goals could be “Manufacture Steering Wheel” and “Deliver Steering Wheel”. For
SupTy, its goals could be “Manufacture Tyres” and “Deliver Tyres”. In order for the
VE to be successful, those goals of each participating entity that pertain to the VE
should be derivable from the common goals of the VE.

For CarMan one of its business rules could be R1 = “If order amount for any
shipment is greater than $1 million, choose lowest cost shipper; else choose Ship”,
whereas a business rule for SupSt could be R2 = “Choose Ship for all shipments”.
A business rule for SupTy could be R3 = “If order amount between $100,000 and
$250,000, choose Ship; else choose the lowest cost shipper”. Clearly, these business
rules could result in conflicts. For example, for order amounts exceeding $1 million,
a conflict between CarMan and SupSt could arise. Whereas, for order amounts be-
tween $250,000 and $1 million, a conflict between CarMan and SupTy could arise.
This would be handled by specifying consistency rules among the goals of the VE and
the participating entities, so as to eliminate conflicts.

The above business goals are then mapped to the appropriate business services at
the Operational layer. Some business services for CarMan could be “Car Manufactur-
ing” and “Car Shipment”, and would be directly derivable from the common goals. For
SupSt, some of its business services could be “Steering Wheel Manufacturing”, “Steer-
ing Wheel Testing” and “Steering Wheel Shipment”. While the former two would be
directly derivable from the goals of SupSt, the third business service would need to be

218 N.C. Narendra et al.

directly linked to “Ship Manufactured Car” goal. This is because delivery of steering
wheels is a necessary condition for shipping the finished product, i.e., the car.

It is to be noted that conflicts at the Strategic layer would directly impact the Op-
erational layer also. For example, from the viewpoint of SupSt, its “Steering Wheel
Shipment” business service would be affected by its policy of choosing Ship for all
shipments, and this may need to be redesigned in case of a conflict with CarMan.
This would also have to be handled via the consistency rules introduced above.

At the Service layer, the (more abstract) business services are mapped onto the (more
concrete) IT realizations. We subdivide this layer into two sub-layers, with the top sub-
layer being modeled via business artifacts, which are an abstraction of the following:
the data exchanged among the participating entities and the operations that they exe-
cute in order to fulfill the business goals of the VE. The bottom sub-layer comprises the
actual IT services and business processes through which the implementation of the busi-
ness services takes place. For our running example, some artifacts are CarAssembly,
CarShipment, SteeringWheelManufacture.

Our running example raises several interesting research questions. First, we need to
investigate what the overall metamodel of the VE and its participating entities should be,
with emphasis on the interactions among them. Second, we need to specify the goals,
business rules and consistency rules in a manner that enables easy analysis and reason-
ing. Third, at the Operational and Service layers, we need to investigate how business
services [6] should be represented so as to facilitate easy derivation of (collaboration &
entity) artifacts and IT service implementations. These research questions will form the
focus of the rest of our paper.

3 Models

In this Section we present the key contribution of our paper, i.e., metamodel for VEs.
But first we define what we mean by business strategy and business goals. Business
strategy is generally regarded as a high-level plan specified to achieve an objective. We
follow the taxonomy proposed in the KAOS methodology [9] to categorize business
goals5 into: achieve (an organization seeks to achieve a condition at some point of time
in the future), cease (seeks to undo a condition at some point of time in the future),
maintain (strikes to maintain a condition for a period of time), avoid (prevents a con-
dition from becoming true for a period of time) and optimize (usually articulated in the
form of maximization or minimization). In our running example, for simplicity, we have
restricted business goals to those conditions that are to be achieved, and we will be us-
ing the running example to illustrate our metamodel throughout the rest of this section.
However, our metamodel would be able to cater to the other goal types also.

Our metamodel definition for VEs will therefore be driven by the overall business
strategy of the VE, along with how it impinges on those of the participating enterprises.
Also, as already stated earlier in our paper, the VE metamodel will be based on the in-
teractions among the participating enterprises as derived from their business strategies.

5 Goal-oriented modeling in the literature [10] includes both business goals and system goals.
As we do business strategy modeling, we address only business goals.

Towards an Architectural Framework for Service-Oriented Enterprises 219

3.1 Collaboration Patterns

We model the interactions among the participating service-oriented enterprises as col-
laboration patterns [11], defined in increasing order of coupling among the enterprises
as follows:

– CP1: Informal Joint Venture: In this collaboration, a set of enterprises get together
on a relatively ad-hoc basis, for a limited period of time, driven by a common busi-
ness goal. In such a collaboration, each participating entity would have its own busi-
ness services and derived business processes, but without revealing any internals of
their business processes. Hence the entire collaboration would be implemented via
exchanges of messages based on a commonly agreed protocol. Conflict resolution
in such a collaboration is accomplished primarily via negotiations.

For example,CarMan could have a short-lived adhoc arrangement withSupTy
for the immediate purchase & delivery of a batch of car tyres, and this would
be a collaboration of type CP1. The possible conflict in business rules between
CarMan and SupTy as described in Section 2 would have to be negotiated among
the partners.

– CP2: Association: In this collaboration, the participating enterprises agree on a
common set of business processes that each enterprise has to comply with. This
may necessitate them exposing parts of their internal business processes & opera-
tions. Bound as they are together with the common business processes, the partici-
pating enterprises’ negotiating positions during conflict resolution get constricted.
In other words, they would experience a lower degree of freedom as opposed to
participation in a CP1-type pattern.

For example, in the collaboration between CarMan and SupTy, if it were
of type CP2, then SupTy would be bound by a delivery arrangement, and in any
conflict with CarMan, such as the one described in Section 2, the onus would be
on SupTy to ensure conflict resolution.

– CP3: Formal Joint Venture: Moving further onto increased coupling among the
participants, this collaboration pattern externalizes all the business rules and con-
straints on each participant, and makes them part of the overall collaboration. (In
the earlier two collaboration types, the rules and constraints governing the actions
of each participant are not made public, since many participants may consider them
confidential information.) In such a pattern, the VE as a whole dictates conflict res-
olution.

For example, in the collaboration between CarMan and SupTy, CarMan
would dictate how conflict resolution, if any, were to be implemented, sinceSupTy’s
business rules would become visible to it.

– CP4: Subcontract: This collaboration pattern is the most formal and binding of all;
here, one participant - the contractor - controls all the business processes to be exe-
cuted, as well as the business rules and constraints affecting the participants in the
collaboration. Conflicts betwen the contractor and its subcontractors are resolved
in favor of the contractor; whereas, conflicts among subcontractors are resolved by
the contractor as per preference rankings among the business rules.

For example, in the collaboration between CarMan and SupTy, the latter
would become CarMan’s subcontractor, hence even its business rules would be

220 N.C. Narendra et al.

underCarMan’s control. Similarly, any conflict beween SupSt and SupTy, e.g, a
scheduling conflict regarding integrated supply of tyres and steering wheels, would
also be resolved by CarMan.

3.2 Metamodel

Fig. 1 presents our metamodel for VEs. We model the VEs from two different perspec-
tives: collaboration-centric and entity-centric (Subsections 3.3 and 3.4, respectively).
In this figure, the metamodel constructs are presented at the three layers, namely the
strategy layer, operational layer and service layer (in this order from the top down to
the bottom of Fig. 1). A collaboration occurs as per a collaboration pattern, introduced
above. Each collaboration has a goal, which is realized by a plan, which is a set of steps
to achieve the goal. Each plan can be realized via a schedule, which is a sequence of
business service executions in a particular order. Each plan can be realized by more than
one schedule. Each business service is defined via its inputs, outputs, preconditions and
postconditions, which are in turn derived from the attributes of the plan and schedule.

3.3 Service- and Collaboration-Centric Modeling

As depicted in Fig. 1, we model the VE itself – as stated earlier, this model will be based
on the nature of the collaborations – and ensuing interactions thereof, that comprise the
VE. The entity-centric conceptual model will be presented in Section 3.4.

At the service layer, the business service is finally realized by a collaboration arti-
fact [8], which models the business service executions. This artifact represents the exe-
cution of the business services involved in the collaboration, and consists of a lifecycle
composed of states. Each state has incoming and outgoing transitions, each of which
are implemented by IT services. Each IT service is modeled via its own inputs, outputs,
preconditions and postconditions, which are derived from the conditions governing the
incoming and outgoing transitions.

Formally, we represent a collaborationColl = 〈{Ei}, {Pj}, G, {Rk}〉, where Ei is a
participating enterprise, Pj is a collaboration pattern, G is the goal of the collaboration
expressed as a boolean condition to be achieved (as described above), and Rk is a
business rule that constrains the dynamic behavior of the collaboration. (Our definition
of business rules also includes business compliance requirements [12] that typically
apply to all participating entities.) The collaboration pattern Pj is defined as Pj =
〈{Ej}, CPk}〉, where Ej are the participating enterprises in the collaboration pattern
and CPk is the collaboration pattern type as introduced earlier.

We define the goal G of the collaboration as a boolean condition to be achieved.
Without loss of generality, we represent G in CNF as G = G1 ∧ G2 ∧ ... ∧ Gn,
where the Gi are sub-goals, typically assigned to the participating enterprises. In other
words, the overall goal of the collaboration should be consistent with the goals of the
participating enterprises. We express a business rule Rk also as a boolean condition
that should be satisfied in addition to the goal. An example of the goal for the V E
would be Car Delivered = Car Components Received∧Car Manufactured∧
Car Shipped.

Towards an Architectural Framework for Service-Oriented Enterprises 221

Fig. 1. Virtual Enterprise Architecture Model

Since the Plan is derived from the Goal, we define it as Plan = 〈G, {Rk}, Sch〉,
where Sch is the Schedule, defined as Sch = ({Prefj〈Bi, Bj , rel〉}). Here, Bi stands
for a business service, and rel denotes either “immediately” (IMM) or “eventually”
(EV E). That means the schedule defines a set of ordering preferences Prefj on the
execution of the business services to fulfill the Plan. The Rk refer to the business rules
that constrain the ordering and execution of the business services while fulfilling the
goal.

An example of a business rule for the VE could be the rule R1 described in Section 2;
this constrains the V E to select a particular type of shipper to deliver the manufactured
cars. This in turn constrains the plan and schedule to be designed; for example, if a
Shipping business service were to be invoked, then rule R1 may force the VE to ensure
that shipment of all cars occurs at the end of the schedule, instead of shipping the cars
as and when they are manufactured.

We define a business service [6] as Bi = 〈I, O, P,E, {Ai}〉, where I is the set of
inputs, O is the set of outputs, P is the set of preconditions (expressed as a conjunction
of boolean conditions) and E is the set of effects (also expressed as a conjunction of

222 N.C. Narendra et al.

boolean conditions). Here, Ai refers to the collaboration artifact(s) that realize the im-
plementation of the business service. Hence we define Ai as
Ai = 〈S, s0, Sf , L, T, L

′,M〉 [8], where S is the set of states of the artifact, s0 is
its initial state, Sf is its final state, L is the set of transition labels, T is the set of
transitions, L′ is the set of message labels, and M is the set of messages. In this defini-
tion, we assume that the modeled collaboration artifacts communicate with each other
via message passing, which will be one of the triggers for transitioning artifacts from
one state to the next. Hence we define a state transition in an artifact from state si
to state sj as t = 〈si, l, sj〉. Whereas, we define a message from one artifact to an-
other as m = 〈si, l′, sj〉, where si and sj are states in the sender and recipient artifact,
respectively.

As per our metamodel, state transitions in an artifact are realized via the implementa-
tion of a set of IT services in a predefined sequence; hence the transition is implemented
by ITS = 〈{ITSi}, 〈ITSi, ITSj, rel〉, where rel signifies either “eventually” or “im-
mediately”. That is, once the transition t is triggered, the set of IT services ITS execute,
thereby transitioning the artifact to the next state as defined by the transition.

In our running example, let us assume the existence of a Manufacturing business ser-
vice in the VE. Some of its inputs would be {{Compj}, {Matlk}}, where Compj and
Matlk are the car components and other raw materials needed for manufacture, respec-
tively. Its primary output would be {Cari}, i.e., the manufactured cars. Some precondi-
tions for the business service could be
{Components received,Raw Materials received} and the effect would be
{Cars Manu Completed}. One collaboration artifact that would help model the man-
ufacturing process could be CarAssembly, with the following states in its lifecycle:
Not Activated, Components Obtained, Raw Materials Obtained,
Engine Created, Chassis Created, Engine Assembled,
Other Components Assembled,Car Tested,Car Manufacture Completed. An
example of a transition between states could be 〈Other Components Assembled, lt,
Car T ested〉, which signifies that CarAssembly has transitioned (with the label lt)
from the state where all components have been assembled to the state where the car has
been fully tested before it is declared ready for shipment. An illustration of message pass-
ing between artifacts is provided in Section 3.4, once the entity metamodel is introduced.

3.4 Entity-Centric Modeling

Each participating enterprise or entity could be part of one or more collaboration pat-
terns with different other entities, even within the same collaboration. This entity also
has its own goal, realized by a plan. Ideally, it is expected that the entity goal should
not conflict with that of the collaboration depicted in Fig. 1. This plan is realized by
an entity schedule. The entity schedule is then realized at the operational layer by the
business services of the entity. Similar to Fig. 1, each business service is realized by
one or more entity artifacts, with their respective lifecycles, states, transitions and IT
service realizations.

Formally, we define a business enterprise as Ei = 〈Gi, {Pj}, {R′
k}〉, where Gi is the

goal of Ei, Pj denotes the collaboration patterns of which Ei is a part, and R′
k defines

the business rules constraining Ei’s behavior. The goal Gi and business rules R′
k are

Towards an Architectural Framework for Service-Oriented Enterprises 223

defined in a manner similar to those of the collaboration as already introduced earlier
in Section 3.3. The plan for Ei is Plani = 〈Gi, {R′

k}, Schi〉, where the schedule Schi

is defined as Schi = ({< B′
i, B

′
j , rel >}), where rel is as defined in Section 3.3, and

B′
i & B′

j are the business services of the enterprise.
From our running example, forSupSt, its goal could beDeliver Steering Wheel =

Manufacture Steering∧Deliver Steering. Its business service could be “Steering
Wheel Manufacturing”, while one of its business rules could be the rule R2 from Sec-
tion 2. If SupSt were in a CP1-type collaboration with CarMan, then the two enter-
prises would need to negotiate in case business rules R1 and R2 created a conflict. For
CP2- and CP3-type collaborations,SupSt would have to modify or remove R2 for con-
flict resolution. For a CP4-type collaboration,SupSt’s business rules may be invalidated
by the VE, thereby preventing conflicts from arising in the first place. Again, these busi-
ness services are as defined in Section 3.3, and their associated enterprise artifacts are
also modeled as defined in Section 3.3.

Referring to the illustration in Section 3.3, one possible artifact for SupSt could be
SteeringWheelManufacture, with the following states:Components Obtained,
Raw Materials Obtained, SteeringWheel Manufactured,
SteeringWheel T ested, SteeringWheel Shipped. An example transition could be
〈SteeringWheel Manufactured, lv, SteeringWheel T ested〉, which signifies that
SteeringWheelManufacture has transitioned (with the label lv) from the state
where the steering wheel has been assembled to the state where it has been fully tested,
bringing it one step closer to shipment to CarMan. The interaction between
SteeringWheelManufacture and CarAssembly artifacts can be modeled via
message sending from the former to the latter. Once the
SteeringWheelManufacture artifact has reached SteeringWheel Shipped
state, the message can be sent to
CarAssembly artifact, which enables the CarAssembly artifact to be instantiated.

Once all components (from other suppliers such as SupSt) are obtained, the
CarAssembly artifact attains the Components Obtained state. One of the triggers
for this transition would be a message from SteeringWheelManufacture artifact
while in state SteeringWheel Shipped, to CarAssembly artifact while it is in state
Not Activated.

3.5 Consistency Rules

In order for the VE to work successfully, the dynamic behavior of the collaboration
and its participating entities should be consistent. To that end, we define the following
consistency rules. At the Strategy layer, the goals and business rules of the collaboration
and its participating entities need to be consistent. This can be formally denoted by the
following:

– G ⇒ Gi, ∀i, i.e., the goal of the collaboration should serve as the overall goal for
the participating entities

– R∧R′
i �|=⊥, ∀i, i.e., the business rules of the collaboration should not conflict with

those of any of the participating entities

224 N.C. Narendra et al.

– For Pj 	 {Ei, Ej}, R′
il ∧R′

kl �|=⊥, ∀i, j, k, l, i.e., no two business rules from each
of the participating entities, especially those that are part of a collaboration pattern,
should conflict with each other

For example, rules R1 and R2 from Section 2 would be consistent with each other,
but this would not be the case for R1 and R3. At the Operational layer, the following
consistency rules can be defined:

– The schedules of the collaboration and that of any of the participating enterprises
should not conflict. For the collaboration, let the schedule beSchColl = ({Prefj =
〈Bi, Bj , rel〉}) and the schedule of a participating enterprise beSchE = ({Prefk =
〈B′

i, B
′
j , rel〉}). Let the combined schedule be the set Sch′ = SchColl ∪ SchE .

Then for any two preference rules Prefm and Prefn, where Prefm ∈ Sch′ and
Prefn ∈ Sch′, the following should hold: Sch′ ∧ Schi �|=⊥.

– Let there be N business services Bi in the collaboration, with the effect of each
being Effi. Then Eff1 ∧ Eff2 . . . ∧ EffN |= G, i.e., the business services in
the collaboration will entail the goal G of the collaboration.

– For any participating enterprise with goal Gi, let there be M business services
B′

i with the effect of each being Eff ′
i . Then, in a manner similar to that of the

collaboration, Eff ′
1 ∧ Eff ′

2 . . . ∧ Eff ′
M |= Gi, i.e., the business services of the

participating enterprise will entail its goal Gi.

For example, one preference rule for our running example from Section 2 could be
〈Steering Wheel Manufacturing, Steering Wheel Shipment, IMM〉 and
〈Steering Wheel Shipment, Car Manufacturing, EV E〉. The former rule states
that steering wheeels should be shipped as soon as their manufacture is completed; the
latter rule states that steering wheels are needed in order to complete the manufacture
of the cars.

Similarly, at the Service layer, the following consistency rules can be defined:

– The collaboration artifact & enterprise/entity artifacts should not conflict with each
other. Since each such artifact is modeled as a state machine, techniques from com-
municating state machine verification (such as [13]) can be used to verify that the
artifacts do not conflict with each other.

– The modeled IT services for the collaboration and the participating enterprises
should also be consistent with each other. The verification of this can be accom-
plished via techniques such as those described in [14].

3.6 Discussion - Conflicts and Conflict Resolution

One of the key advantages of developing a metamodel for VEs, is the ability to use it
as a basis for reasoning about dynamic behavior. For our purposes, from the viewpoint
of VE modeling, beyond the usual applications of orchestration & choreography for
modeling inter-organizational inteactions [15, 16], the crucial question is of modeling
conflicts and their resolution. Conflicts can be classified along three orthogonal dimen-
sions - type, origin and impact [17]. The type of conflict would be determined by the
highest layer at which they manifest; for example, a conflict in goals or business rules

Towards an Architectural Framework for Service-Oriented Enterprises 225

would manifest at the Strategy layer, whereas a conflict among interacting IT services
from different participants would manifest at the Service layer. The origin of a conflict
would define the participant, or one of its constructs (e.g., business service, IT service,
etc.) where the conflict originated; multiple origins could exist for a single conflict. The
impact of a conflict would model the side-effects of the conflict on the rest of the partic-
ipants and the VE itself in general. For example, a minor scheduling conflict among two
interacting entities, which can be resolved by the entities themselves, would have local
impact. Whereas, a product supply conflict, that could affect the collaboration artifact
of a VE, would have global impact.

As part of future work, we will be integrating our earlier work on conflict modeling
in B2B applications [17] and formalizing it by incorporating it into our VE metamodel.

4 Related Work

EA Modeling Frameworks: The importance of EA modeling has given rise to several
frameworks. One of the earliest was the Zachman framework [3], which provides a for-
mal and highly structured way of viewing and defining an enterprise. It consists of a two
dimensional classification matrix based on the intersection of six communication ques-
tions (What, Where, When, Why, Who and How) with six rows representing six reifica-
tion criteria (scope, business, system, technology, component, operations). CIMOSA [2]
is a similar EA framework, organized along three dimensions, viz., view (organiza-
tion, resource, information, function), lifecycle (requirements, design, implementation)
& generic (generic, partial, particular). Unlike the Zachman framework, CIMOSA pro-
vides a methodology and supporting technology. The other popular framework, TOGAF
is modeled at four layers, viz., business, application, data and technology, and provides
an integrated approach for designing and implementing an EA. It is to be noted, how-
ever, that none of these frameworks attempt to explicitly model VEs.

The VE model described in our paper is inspired in part by our earlier ODP-based
work on enterprise modeling [18], and also on the 3-layer service architecture model
described in [4, 5]. The latter model also describes how inter-organizational service
interactions can be modeled at the strategic, operational and service layers. We have
borrowed the layers from [4, 5], but we have redefined them with VEs in mind, i.e.,
with emphasis on collaboration patterns and consistency rules for conflict handling.

Virtual Enterprise Modeling: The earliest notable work in this realm was about
capturing the requirements of a VE using the ODP enterprise language [19]. There
exists some recent work focusing on modeling and detailing collaboration pattern
types [20, 21, 11]. In those works, the authors have delineated the various ways in
which an enterprise and its partners can interact, with emphasis on the various ways
in which work can be outsourced from one business to another. Indeed, our idea of
collaboration patterns is inspired by those works; however, those works do not con-
sider a layered approach, nor do they model consistency rules for conflict handling. The
e3 Value project6 has also focused on inter-organizational aspects, but primarily from
the viewpoint of how B2B interactions can be modeled as value exchanges. Hence we

6 http://e3value.few.vu.nl/

http://e3value.few.vu.nl/

226 N.C. Narendra et al.

consider e3 Value to be complementary to our work, and our future work will investigate
how it can be integrated into our VE metamodel.

Our work in this paper on conflict handling is based on our earlier work on modeling
B2B conflicts in B2B interactions [17], as we have already described in Section 3.6.

Goal & Strategy-Based Business Process Modeling: In the area of goal-based busi-
ness process modeling [22–26], the citation [22] showed how to model and evaluate
business processes at a level of abstraction higher than the business process level. Based
on that idea, our earlier work has focused on how to derive business process models
from goals [27], which also leveraged the KAOS stepwise refinement approach [9].
We have leveraged this same approach in this paper, by modeling business processes
as derivable from goals, via plans and schedules. Our paper also incorporates some of
our ongoing work on business service modeling [6], which aims to model business ser-
vices as an abstraction of IT service implementations. We have further enhanced this
abstraction by incorporating our earlier work [8] on artifacts and Web services.

5 Conclusions and Future Work
In this paper, we have addressed the crucial but little-researched area of modeling
service-oriented enterprises as virtual enterprises. Since the key constructs in such an
enterprise are the types of collaborations among the participating enterprises, we have
presented and detailed a metamodel for VEs where these types are modeled upfront as
first-class objects. We have also positioned this within a 3-layer framework comprising
Strategy, Operational and Service layers, with interactions among the participating en-
terprises modeled at all these three layers. We have also formally defined consistency
rules that are needed in order to ensure that the VE can function without conflicts among
the (relatively autonomous) participating enterprises. To the best of our knowledge, this
is the first attempt at developing a formal metamodel for VEs.

Future work will include incorporating conflict resolution in our metamodel via tech-
niques such as those presented in [28, 17], and developing a prototype implementation
to evaluate and refine our metamodel.

References

1. Huhns, M.N., Singh, M.P.: Service-oriented computing: Key concepts and principles. IEEE
Internet Computing 9(1), 75–81 (2005)

2. Cuenca, L., Ortiz, A., Vernadat, F.: From uml or dfd models to cimosa partial models and
enterprise components. Int. J. Computer Integrated Manufacturing 19(3), 248–263 (2006)

3. Zachman, J.A.: The information systems management system: A framework for planning.
DATA BASE 9(3), 8–13 (1978)

4. Orriens, B., Yang, J., Papazoglou, M.P.: A Rule Driven Approach for Developing Adaptive
Service Oriented Business Collaboration. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826, pp. 61–72. Springer, Heidelberg (2005)

5. Orriens, B., Yang, J.: A rule driven approach for developing adaptive service oriented busi-
ness collaboration. In: IEEE SCC, pp. 182–189 (2006)

6. Lê, L.-S., Ghose, A., Morrison, E.: Definition of a Description Language for Business Ser-
vice Decomposition. In: Morin, J.-H., Ralyté, J., Snene, M. (eds.) IESS 2010. LNBIP, vol. 53,
pp. 96–110. Springer, Heidelberg (2010)

7. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Syst. J. 42, 428–445 (2003)

Towards an Architectural Framework for Service-Oriented Enterprises 227

8. Narendra, N.C., Badr, Y., Thiran, P., Maamar, Z.: Towards a unified approach for business
process modeling using context-based artifacts and web services. In: IEEE SCC, pp. 332–
339 (2009)

9. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Jour-
nal of Science of Computer Programming 20(1-2), 3–50 (1993)

10. Mylopoulos, J., Chung, L., Yu, E.S.K.: From object-oriented to goal-oriented requirements
analysis. Commun. ACM 42(1), 31–37 (1999)

11. Norta, A., Grefen, P.W.P.J.: Discovering patterns for inter-organizational business process
collaboration. Int. J. Cooperative Inf. Syst. 16(3/4), 507–544 (2007)

12. Governatori, G., Milosevic, Z., Sadiq, S.W.: Compliance checking between business pro-
cesses and business contracts. In: EDOC, pp. 221–232 (2006)

13. Peng, W., Purushothaman, S.: Data flow analysis of communicating finite state machines.
ACM Trans. Program. Lang. Syst. 13(3), 399–442 (1991)

14. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing web service
protocols. Data Knowl. Eng. 58(3), 327–357 (2006)

15. Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation Patterns in Service-Oriented Ar-
chitectures. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 245–259.
Springer, Heidelberg (2007)

16. McIlvenna, S., Dumas, M., Wynn, M.T.: Synthesis of orchestrators from service choreogra-
phies. In: APCCM, pp. 129–138 (2009)

17. Maamar, Z., Thiran, P., Narendra, N.C., Subramanian, S.: A framework for modeling b2b
applications. In: AINA, pp. 12–19 (2008)

18. Lê, L.-S., Wegmann, A.: Hierarchy-oriented modeling of enterprise architecture using
reference-model of open distributed processing. Special Issue on RM-ODP, Computer Stan-
dards & Interfaces Journal (February 2012)

19. Oldevik, J., Aagedal, J.: ODP-Modelling of Virtual Enterprises with Supporting Engineering
Architecture. In: Proceedings of 3rd EDOC, pp. 172–182. IEEE Computer Society (Septem-
ber 1999)

20. Grefen, P.W.P.J.: Towards dynamic interorganizational business process management. In:
WETICE, pp. 13–20 (2006)

21. Norta, A., Grefen, P.W.P.J.: A framework for specifying sourcing collaborations. In: ECIS,
pp. 626–638 (2006)

22. Kueng, P., Kawalek, P.: Goal-based business process models: Creation and evaluation. Busi-
ness Process Management Journal 3, 17–38 (1997)

23. Cardoso, E., Almeida, J., Guizzardi, R.: On the support for the goal domain in enterprise
modelling approaches. In: 2010 14th IEEE International Enterprise Distributed Object Com-
puting Conference Workshops (EDOCW), pp. 335–344 (October 2010)

24. Xu, T., Ma, W., Liu, L., Karagiannis, D.: Synthesizing enterprise strategic model and busi-
ness processes in active-i*. In: 2010 14th IEEE International Enterprise Distributed Object
Computing Conference Workshops (EDOCW), pp. 345–354 (October 2010)

25. Neiger, D., Churilov, L.: Goal-Oriented Business Process Modeling with EPCs and Value-
Focused Thinking. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080,
pp. 98–115. Springer, Heidelberg (2004)

26. De la Vara Gonzalez, J.L., Diaz, J.S.: Business process-driven requirements engineering: a
goal-based approach. In: Business Process Management Workshops,
http://lams.epfl.ch/conference/bpmds07/program/Gonzalez 23.
pdf

27. Ghose, A.K., Narendra, N.C., Ponnalagu, K., Panda, A., Gohad, A.: Goal-Driven Business
Process Derivation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011.
LNCS, vol. 7084, pp. 467–476. Springer, Heidelberg (2011)

28. Bentahar, J., Moulin, B., Bélanger, M.: A taxonomy of argumentation models used for
knowledge representation. Artif. Intell. Rev. 33(3), 211–259 (2010)

http://lams.epfl.ch/conference/bpmds07/program/Gonzalez_23.pdf
http://lams.epfl.ch/conference/bpmds07/program/Gonzalez_23.pdf

	Towards an Architectural Framework for Service-Oriented Enterprises

	Introduction
	Running Example
	Models
	Collaboration Patterns
	Metamodel
	Service- and Collaboration-Centric Modeling
	Entity-Centric Modeling
	Consistency Rules
	Discussion - Conflicts and Conflict Resolution

	Related Work
	Conclusions and Future Work
	References

